首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The performance of Pseudomonas biocontrol agents may be improved by applying mixtures of strains which are complementary in their capacity to suppress plant diseases. Here, we have chosen the combination of Pseudomonas fluorescens CHA0 with another well-characterized biocontrol agent, P. fluorescens Q2-87, as a model to study how these strains affect each other's expression of a biocontrol trait. In both strains, production of the antimicrobial compound 2,4-diacetylphloroglucinol (DAPG) is a crucial factor contributing to the suppression of root diseases. DAPG acts as a signaling compound inducing the expression of its own biosynthetic genes. Experimental setups were developed to investigate whether, when combining strains CHA0 and Q2-87, DAPG excreted by one strain may influence expression of DAPG-biosynthetic genes in the other strain in vitro and on the roots of wheat. DAPG production was monitored by observing the expression of lacZ fused to the biosynthetic gene phlA of the respective strain. Dual-culture assays in which the two strains were grown in liquid medium physically separated by a membrane revealed that Q2-87 but not its DAPG-negative mutant Q2-87::Tn5-1 strongly induced phlA expression in a DeltaphlA mutant of strain CHA0. In the same way, phlA expression in a Q2-87 background was induced by DAPG produced by CHA0. When coinoculated onto the roots of wheat seedlings grown under gnotobiotic conditions, strains Q2-87 and CHA0, but not their respective DAPG-negative mutants, were able to enhance phlA expression in each other. In summary, we have established that two nonrelated pseudomonads may stimulate each other in the expression of an antimicrobial compound important for biocontrol. This interpopulation communication occurs in the rhizosphere, i.e., at the site of pathogen inhibition, and is mediated by the antimicrobial compound itself acting as a signal exchanged between the two pseudomonads.  相似文献   

2.
The phytotoxic pathogenicity factor fusaric acid (FA) represses the production of 2,4-diacetylphloroglucinol (DAPG), a key factor in the antimicrobial activity of the biocontrol strain Pseudomonas fluorescens CHA0. FA production by 12 Fusarium oxysporum strains varied substantially. We measured the effect of FA production on expression of the phlACBDE biosynthetic operon of strain CHA0 in culture media and in the wheat rhizosphere by using a translational phlA′-′lacZ fusion. Only FA-producing F. oxysporum strains could suppress DAPG production in strain CHA0, and the FA concentration was strongly correlated with the degree of phlA repression. The repressing effect of FA on phlA′-′lacZ expression was abolished in a mutant that lacked the DAPG pathway-specific repressor PhlF. One FA-producing strain (798) and one nonproducing strain (242) of F. oxysporum were tested for their influence on phlA expression in CHA0 in the rhizosphere of wheat in a gnotobiotic system containing a sand and clay mineral-based artificial soil. F. oxysporum strain 798 (FA+) repressed phlA expression in CHA0 significantly, whereas strain 242 (FA) did not. In the phlF mutant CHA638, phlA expression was not altered by the presence of either F. oxysporum strain 242 or 798. phlA expression levels were seven to eight times higher in strain CHA638 than in the wild-type CHA0, indicating that PhlF limits phlA expression in the wheat rhizosphere.  相似文献   

3.
The production of hydrogen cyanide (HCN) and 2,4-diacetylphloroglucinol (DAPG) is a major factor in the control of soil-borne diseases by Pseudomonas fluorescens CHA0. We investigated the impact of different biotic factors on the expression of HCN–in comparison to DAPG biosynthetic genes in the rhizosphere. To this end, the influence of plant cultivar, pathogen infection, and coinoculation with other biocontrol strains on the expression of hcnA-lacZ and phlA-lacZ fusion in strain CHA0 was monitored on the roots of bean. Interestingly, all the tested factors influenced the expression of the two biocontrol traits in a similar way. For both genes, we observed a several-fold higher expression in the rhizosphere of cv. Derakhshan compared with cvs. Goli and Naz, although bacterial rhizosphere colonization levels were similar on all cultivars tested. Root infection by Rhizoctonia solani stimulated total phlA and hcnA gene expression in the bean rhizosphere. Coinoculation of strain CHA0 with DAPG-producing P. fluorescens biocontrol strains Pf-68 and Pf-100 did neither result in a substantial alteration of hcnA nor of phlA expression in CHA0 on bean roots. To our best knowledge, this is the first study investigating the impact of biotic factors on HCN production by a bacterial biocontrol strain in the rhizosphere.  相似文献   

4.
The potent antimicrobial compound 2,4-diacetylphloroglucinol (DAPG) is a major determinant of biocontrol activity of plant-beneficial Pseudomonas fluorescens CHA0 against root diseases caused by fungal pathogens. The DAPG biosynthetic locus harbors the phlG gene, the function of which has not been elucidated thus far. The phlG gene is located upstream of the phlACBD biosynthetic operon, between the phlF and phlH genes which encode pathway-specific regulators. In this study, we assigned a function to PhlG as a hydrolase specifically degrades DAPG to equimolar amounts of mildly toxic monoacetylphloroglucinol (MAPG) and acetate. DAPG added to cultures of a DAPG-negative ΔphlA mutant of strain CHA0 was completely degraded, and MAPG was temporarily accumulated. In contrast, DAPG was not degraded in cultures of a ΔphlA ΔphlG double mutant. To confirm the enzymatic nature of PhlG in vitro, the protein was histidine tagged, overexpressed in Escherichia coli, and purified by affinity chromatography. Purified PhlG had a molecular mass of about 40 kDa and catalyzed the degradation of DAPG to MAPG. The enzyme had a kcat of 33 s−1 and a Km of 140 μM at 30°C and pH 7. The PhlG enzyme did not degrade other compounds with structures similar to DAPG, such as MAPG and triacetylphloroglucinol, suggesting strict substrate specificity. Interestingly, PhlG activity was strongly reduced by pyoluteorin, a further antifungal compound produced by the bacterium. Expression of phlG was not influenced by the substrate DAPG or the degradation product MAPG but was subject to positive control by the GacS/GacA two-component system and to negative control by the pathway-specific regulators PhlF and PhlH.  相似文献   

5.
Multitrophic interactions mediate the ability of fungal pathogens to cause plant disease and the ability of bacterial antagonists to suppress disease. Antibiotic production by antagonists, which contributes to disease suppression, is known to be modulated by abiotic and host plant environmental conditions. Here, we demonstrate that a pathogen metabolite functions as a negative signal for bacterial antibiotic biosynthesis, which can determine the relative importance of biological control mechanisms available to antagonists and which may also influence fungus-bacterium ecological interactions. We found that production of the polyketide antibiotic 2,4-diacetylphloroglucinol (DAPG) was the primary biocontrol mechanism of Pseudomonas fluorescens strain Q2-87 against Fusarium oxysporum f. sp. radicis-lycopersici on the tomato as determined with mutational analysis. In contrast, DAPG was not important for the less-disease-suppressive strain CHA0. This was explained by differential sensitivity of the bacteria to fusaric acid, a pathogen phyto- and mycotoxin that specifically blocked DAPG biosynthesis in strain CHA0 but not in strain Q2-87. In CHA0, hydrogen cyanide, a biocide not repressed by fusaric acid, played a more important role in disease suppression.  相似文献   

6.
7.
The biocontrol activity of the root-colonizing Pseudomonas fluorescens strain CHA0 is largely determined by the production of antifungal metabolites, especially 2,4-diacetylphloroglucinol. The expression of these metabolites depends on abiotic and biotic environmental factors, in particular, elements present in the rhizosphere. In this study, we have developed a new method for the in situ analysis of antifungal gene expression using flow cytometry combined with green fluorescent protein (GFP)-based reporter fusions to the phlA and prnA genes essential for the production of the antifungal compounds 2,4-diacetylphloroglucinol and pyrrolnitrin, respectively, in strain CHA0. Expression of phlA-gfp and prnA-gfp in CHA0 cells harvested from the rhizosphere of a set of plant species as well as from the roots of healthy, leaf pathogen-attacked, and physically stressed plants were analyzed using a FACSCalibur. After subtraction of background fluorescence emitted by plant-derived particles and CHA0 cells not carrying the gfp reporters, the average gene expression per bacterial cell could be calculated. Levels of phlA and prnA expression varied significantly in the rhizospheres of different plant species. Physical stress and leaf pathogen infection lowered phlA expression levels in the rhizosphere of cucumber. Our results demonstrate that the newly developed approach is suitable to monitor differences in levels of antifungal gene expression in response to various plant-derived factors. An advantage of the method is that it allows quantification of bacterial gene expression in rhizosphere populations at a single-cell level. To our best knowledge, this is the first study using flow cytometry for the in situ analysis of biocontrol gene expression in a plant-beneficial bacterium in the rhizosphere.  相似文献   

8.
Multitrophic interactions mediate the ability of fungal pathogens to cause plant disease and the ability of bacterial antagonists to suppress disease. Antibiotic production by antagonists, which contributes to disease suppression, is known to be modulated by abiotic and host plant environmental conditions. Here, we demonstrate that a pathogen metabolite functions as a negative signal for bacterial antibiotic biosynthesis, which can determine the relative importance of biological control mechanisms available to antagonists and which may also influence fungus-bacterium ecological interactions. We found that production of the polyketide antibiotic 2,4-diacetylphloroglucinol (DAPG) was the primary biocontrol mechanism of Pseudomonas fluorescens strain Q2-87 against Fusarium oxysporum f. sp. radicis-lycopersici on the tomato as determined with mutational analysis. In contrast, DAPG was not important for the less-disease-suppressive strain CHA0. This was explained by differential sensitivity of the bacteria to fusaric acid, a pathogen phyto- and mycotoxin that specifically blocked DAPG biosynthesis in strain CHA0 but not in strain Q2-87. In CHA0, hydrogen cyanide, a biocide not repressed by fusaric acid, played a more important role in disease suppression.  相似文献   

9.
The potent antimicrobial compound 2,4-diacetylphloroglucinol (DAPG) is a major determinant of biocontrol activity of plant-beneficial Pseudomonas fluorescens CHA0 against root diseases caused by fungal pathogens. The DAPG biosynthetic locus harbors the phlG gene, the function of which has not been elucidated thus far. The phlG gene is located upstream of the phlACBD biosynthetic operon, between the phlF and phlH genes which encode pathway-specific regulators. In this study, we assigned a function to PhlG as a hydrolase specifically degrades DAPG to equimolar amounts of mildly toxic monoacetylphloroglucinol (MAPG) and acetate. DAPG added to cultures of a DAPG-negative DeltaphlA mutant of strain CHA0 was completely degraded, and MAPG was temporarily accumulated. In contrast, DAPG was not degraded in cultures of a DeltaphlA DeltaphlG double mutant. To confirm the enzymatic nature of PhlG in vitro, the protein was histidine tagged, overexpressed in Escherichia coli, and purified by affinity chromatography. Purified PhlG had a molecular mass of about 40 kDa and catalyzed the degradation of DAPG to MAPG. The enzyme had a kcat of 33 s(-1) and a Km of 140 microM at 30 degrees C and pH 7. The PhlG enzyme did not degrade other compounds with structures similar to DAPG, such as MAPG and triacetylphloroglucinol, suggesting strict substrate specificity. Interestingly, PhlG activity was strongly reduced by pyoluteorin, a further antifungal compound produced by the bacterium. Expression of phlG was not influenced by the substrate DAPG or the degradation product MAPG but was subject to positive control by the GacS/GacA two-component system and to negative control by the pathway-specific regulators PhlF and PhlH.  相似文献   

10.
The phytotoxic pathogenicity factor fusaric acid (FA) represses the production of 2,4-diacetylphloroglucinol (DAPG), a key factor in the antimicrobial activity of the biocontrol strain Pseudomonas fluorescens CHA0. FA production by 12 Fusarium oxysporum strains varied substantially. We measured the effect of FA production on expression of the phlACBDE biosynthetic operon of strain CHA0 in culture media and in the wheat rhizosphere by using a translational phlA'-'lacZ fusion. Only FA-producing F. oxysporum strains could suppress DAPG production in strain CHA0, and the FA concentration was strongly correlated with the degree of phlA repression. The repressing effect of FA on phlA'-'lacZ expression was abolished in a mutant that lacked the DAPG pathway-specific repressor PhlF. One FA-producing strain (798) and one nonproducing strain (242) of F. oxysporum were tested for their influence on phlA expression in CHA0 in the rhizosphere of wheat in a gnotobiotic system containing a sand and clay mineral-based artificial soil. F. oxysporum strain 798 (FA(+)) repressed phlA expression in CHA0 significantly, whereas strain 242 (FA(-)) did not. In the phlF mutant CHA638, phlA expression was not altered by the presence of either F. oxysporum strain 242 or 798. phlA expression levels were seven to eight times higher in strain CHA638 than in the wild-type CHA0, indicating that PhlF limits phlA expression in the wheat rhizosphere.  相似文献   

11.
Structural and regulatory genes involved in the synthesis of antimicrobial metabolites are essential for the biocontrol activity of fluorescent pseudomonads and, in principle, amenable to genetic engineering for strain improvement. An eventual large-scale release of such bacteria raises the question of whether such genes also contribute to the persistence and dissemination of the bacteria in soil ecosystems. Pseudomonas fluorescens wild-type strain CHA0 protects plants against a variety of fungal diseases and produces several antimicrobial metabolites. The regulatory gene gacA globally controls antibiotic production and is crucial for disease suppression in CHA0. This gene also regulates the production of extracellular protease and phospholipase. The contribution of gacA to survival and vertical translocation of CHA0 in soil microcosms of increasing complexity was studied in coinoculation experiments with the wild type and a gacA mutant which lacks antibiotics and some exoenzymes. Both strains were marked with spontaneous resistance to rifampin. In a closed system with sterile soil, strain CHA0 and the gacA mutant multiplied for several weeks, whereas these strains declined exponentially in nonsterile soil of different Swiss origins. The gacA mutant was less persistent in nonrhizosphere raw soil than was the wild type, but no competitive disadvantage when colonizing the rhizosphere and roots of wheat was found in the particular soil type and during the period studied. Vertical translocation was assessed after strains had been applied to undisturbed, long (60-cm) or short (20-cm) soil columns, both planted with wheat. A smaller number of cells of the gacA mutant than of the wild type were detected in the percolated water and in different depths of the soil column. Single-strain inoculation gave similar results in all microcosms tested. We conclude that mutation in a single regulatory gene involved in antibiotic and exoenzyme synthesis can affect the survival of P. fluorescens more profoundly in unplanted soil than in the rhizosphere.  相似文献   

12.
Pseudomonas fluorescens CHA0 protects various crop plants against root diseases caused by pathogenic fungi. Among a range of exoproducts excreted by strain CHA0, the antifungal compounds 2,4-diacetylphloroglucinol (DAPG) and pyoluteorin (PLT) are particularly relevant to the strain's biocontrol potential. Here, we report on the characterization of MvaT and MvaV as novel regulators of biocontrol activity in strain CHA0. We establish the two proteins as further members of an emerging family of MvaT-like regulators in pseudomonads that are structurally and functionally related to the DNA-binding protein H-NS. In mvaT and mvaV in frame-deletion mutants of strain CHA0, PLT production was enhanced about four- and 1.5-fold, respectively, whereas DAPG production remained at wild-type levels. Remarkably, PLT production was increased up to 20-fold in an mvaT mvaV double mutant. DAPG biosynthesis was almost completely repressed in this mutant. The effects on antibiotic production could be confirmed by following expression of gfp-based reporter fusions to the corresponding biosynthetic genes. MvaT and MvaV also influenced levels of other exoproducts, motility, and physicochemical cell-surface properties to various extents. Compared with the wild type, mvaT and mvaV mutants had an about 20% reduced capacity (in terms of plant fresh weight) to protect cucumber from a root rot caused by Pythium ultimum. Biocontrol activity was nearly completely abolished in the double mutant Our findings indicate that MvaT and MvaV act together as further global regulatory elements in the complex network controlling expression of biocontrol traits in plant-beneficial pseudomonads.  相似文献   

13.
In soil ecosystems, bacteria must cope with predation activity, which is attributed mainly to protists. The development of antipredation strategies may help bacteria maintain higher populations and persist longer in the soil. We analyzed the interaction between the root-colonizing and biocontrol strain Pseudomonas fluorescens CHA0 and three different protist isolates (an amoeba, a flagellate, and a ciliate). CHA0 produces a set of antibiotics, HCN, and an exoprotease. We observed that protists cannot grow on CHA0 but can multiply on isogenic regulatory mutants that do not produce the extracellular metabolites. The in vitro responses to CHA0 cells and its exoproducts included growth inhibition, encystation, paralysis, and cell lysis. By analyzing the responses of protists to bacterial supernatants obtained from different isogenic mutants whose production of one or more exometabolites was affected and also to culture extracts with antibiotic enrichment, we observed different contributions of the phenolic antifungal compound 2,4-diacetylphloroglucinol (DAPG) and the extracellular protease AprA to CHA0 toxicity for protists and to the encystation-reactivation cycle. The grazing pressure artificially produced by a mixture of the three protists in a microcosm system resulted in reduced colonization of cucumber roots by a regulatory isogenic CHA0 mutant unable to produce toxins. These results suggest that exometabolite production in biocontrol strain CHA0 may contribute to avoidance of protist grazing and help sustain higher populations in the rhizosphere, which may be a desirable and advantageous trait for competition with other bacteria for available resources.  相似文献   

14.
There is a significant potential to improve the plant-beneficial effects of root-colonizing pseudomonads by breeding wheat genotypes with a greater capacity to sustain interactions with these bacteria. However, the interaction between pseudomonads and crop plants at the cultivar level, as well as the conditions which favor the accumulation of beneficial microorganisms in the wheat rhizosphere, is largely unknown. Therefore, we characterized the three Swiss winter wheat (Triticum aestivum) cultivars Arina, Zinal, and Cimetta for their ability to accumulate naturally occurring plant-beneficial pseudomonads in the rhizosphere. Cultivar performance was measured also by the ability to select for specific genotypes of 2,4-diacetylphloroglucinol (DAPG) producers in two different soils. Cultivar-specific differences were found; however, these were strongly influenced by the soil type. Denaturing gradient gel electrophoresis (DGGE) analysis of fragments of the DAPG biosynthetic gene phlD amplified from natural Pseudomonas rhizosphere populations revealed that phlD diversity substantially varied between the two soils and that there was a cultivar-specific accumulation of certain phlD genotypes in one soil but not in the other. Furthermore, the three cultivars were tested for their ability to benefit from Pseudomonas inoculants. Interestingly, Arina, which was best protected against Pythium ultimum infection by inoculation with Pseudomonas fluorescens biocontrol strain CHA0, was the cultivar which profited the least from the bacterial inoculant in terms of plant growth promotion in the absence of the pathogen. Knowledge gained of the interactions between wheat cultivars, beneficial pseudomonads, and soil types allows us to optimize cultivar-soil combinations for the promotion of growth through beneficial pseudomonads. Additionally, this information can be implemented by breeders into a new and unique breeding strategy for low-input and organic conditions.Improvement of plant fitness and yield by root-colonizing microorganisms is of special value in low-input or organic wheat production. Beneficial soil bacteria, such as certain Pseudomonas strains, are known to promote plant growth, which might help to circumvent potential negative consequences of low-input cropping systems, such as the limited supply of nutrients and higher disease pressure. A wide range of traits in Pseudomonas spp. are responsible for plant-beneficial effects. Many pseudomonads are capable of solubilizing poorly soluble or insoluble mineral phosphates, thereby rendering this element available for the plant and promoting plant growth (25, 43). Root-colonizing pseudomonads are also able to indirectly promote plant growth by providing protection against plant diseases. The most important mechanisms for plant protection against attacking pathogens are the induction of systemic resistance in plants (3) and the direct suppression of soilborne pathogens through the production of antimicrobial metabolites (16). The protection of wheat plants against Gaeumannomyces graminis var. tritici by naturally occurring pseudomonads in take-all decline soils is a well-described phenomenon and highlights the importance of these bacteria in a successful and environmentally friendly wheat production (53). Interestingly, in many naturally disease-suppressive soils a specific group of fluorescent pseudomonads is enriched, which is able to produce the antimicrobial compound 2,4-diacetylphloroglucinol (DAPG) (6, 38, 53). The production of the polyketide DAPG, which has broad-spectrum activity against bacteria, plants, fungi, and nematodes (8, 9, 21, 28, 33, 45), has been shown to be a key factor in the suppression of soilborne plant diseases by various Pseudomonas biocontrol strains (16).The degree of plant protection and plant growth promotion provided by root-colonizing pseudomonads is highly dependent on different environmental factors. For example, the expression of important biocontrol genes such as DAPG or HCN biosynthetic genes in the rhizosphere is modulated by biotic factors such as fungi and other bacteria present in the rhizosphere and the secondary metabolites they release (7, 19, 27, 29, 32). Moreover, it has been observed that the plant species and cultivar as well as the physiological stage of the plant can influence the expression of biocontrol genes and the production of antimicrobial metabolites (4, 7, 19, 32, 35). In addition to the production of DAPG and other antimicrobial metabolites, efficient colonization of roots is a prerequisite for beneficial plant-Pseudomonas interactions. Root colonization is dependent not only upon specific characteristics of the bacterium itself but also on root morphology and root exudates that vary between host plant species and even between cultivars of the same species (5, 34). The host species/cultivar also influences the abundance and diversity of naturally occurring pseudomonads (13). This has been shown in particular for DAPG-producing populations (4, 5, 26, 30, 36).Wheat is a crop known to benefit strongly from naturally occurring DAPG-producing pseudomonad populations (52). It has been shown that the size and composition of DAPG-producing populations in the wheat rhizosphere and also the amount of DAPG produced by these populations may vary substantially between different cultivars (4, 35). However, holistic studies which evaluate specific wheat cultivars for both their ability to benefit from plant growth-promoting pseudomonads and their influence on bacterial populations and production of biocontrol compounds are missing. A comprehensive characterization of different cultivars is needed in order to better understand which cultivars promote beneficial interactions with the pseudomonads. This knowledge has potential in future breeding strategies to be used for selection of new cultivars that optimally attract and respond to these bacteria.In order to address this gap in knowledge, this study evaluated three Swiss winter wheat (Triticum aestivum) cultivars for several characteristics considered important in a successful wheat-pseudomonas interplay: (i) the ability to accumulate pseudomonads and phlD+ pseudomonads in two different Swiss soils, (ii) the ability to select for individual phlD+ genotypes in two different soils, (iii) the ability to benefit from the two model biocontrol strains, Pseudomonas fluorescens strain CHA0 (a DAPG producer) and P. putida KD (a DAPG nonproducer), in terms of direct plant growth promotion and disease suppression, and finally (iv) the level of biocontrol gene expression (DAPG-biosynthetic gene phlA) in the rhizosphere.  相似文献   

15.
A variety of stress situations may affect the activity and survival of plant-beneficial pseudomonads added to soil to control root diseases. This study focused on the roles of the sigma factor AlgU (synonyms, AlgT, RpoE, and ς22) and the anti-sigma factor MucA in stress adaptation of the biocontrol agent Pseudomonas fluorescens CHA0. The algU-mucA-mucB gene cluster of strain CHA0 was similar to that of the pathogens Pseudomonas aeruginosa and Pseudomonas syringae. Strain CHA0 is naturally nonmucoid, whereas a mucA deletion mutant or algU-overexpressing strains were highly mucoid due to exopolysaccharide overproduction. Mucoidy strictly depended on the global regulator GacA. An algU deletion mutant was significantly more sensitive to osmotic stress than the wild-type CHA0 strain and the mucA mutant were. Expression of an algU-lacZ reporter fusion was induced severalfold in the wild type and in the mucA mutant upon exposure to osmotic stress, whereas a lower, noninducible level of expression was observed in the algU mutant. Overexpression of algU did not enhance tolerance towards osmotic stress. AlgU was found to be essential for tolerance of P. fluorescens towards desiccation stress in a sterile vermiculite-sand mixture and in a natural sandy loam soil. The size of the population of the algU mutant declined much more rapidly than the size of the wild-type population at soil water contents below 5%. In contrast to its role in pathogenic pseudomonads, AlgU did not contribute to tolerance of P. fluorescens towards oxidative and heat stress. In conclusion, AlgU is a crucial determinant in the adaptation of P. fluorescens to dry conditions and hyperosmolarity, two major stress factors that limit bacterial survival in the environment.  相似文献   

16.
张燕  张阳  张博  吴小刚  张力群 《微生物学报》2018,58(7):1202-1222
【目的】包括碳源代谢等不同环境因子可调控生防菌株生防相关因子表达,进而影响其防病效果。荧光假单胞菌2P24可防治多种植物病原真菌、细菌引起的土传病害,抗生素2,4-二乙酰基间苯三酚(2,4-diacetylphoroglucinol,2,4-DAPG)是其主要生防因子之一。本文利用平板对峙法及遗传学方法研究不同碳源对菌株2P24产生2,4-DAPG的影响及相关的调控途径。【方法】利用平板对峙法检测了菌株2P24在添加葡萄糖、果糖和蔗糖等碳源的土豆浸液培养基中对棉花立枯丝核菌(Rhizoctonia solani)的拮抗能力及菌株2P24中影响2,4-DAPG产生的相关基因的表达。另外,利用Tn5转座子对含有2,4-DAPG合成基因phl A报告质粒p970Gm-phl Ap的野生型菌株2P24进行随机突变,在果糖土豆浸液培养基中筛选提高phl A基因表达的突变菌株。【结果】平板对峙实验表明,菌株2P24以葡萄糖为碳源时其抑菌活性最强,蔗糖次之,而以果糖等为碳源时菌株2P24无抑菌活性;转录融合实验进一步表明葡萄糖可促进phl A基因的表达,果糖则不影响phl A基因的表达。在果糖土豆浸液培养基中,转座子随机突变实验获得了5株可明显提高phl A基因表达的突变菌株。Tn5插入位点和序列分析显示其中一个突变体是Tn5破坏了che B基因。转录检测表明与野生菌株相比,che B突变体中phl A基因的表达和2,4-DAPG的前体物质间苯三酚(phloroglucinol,PG)产量都显著提高。游动性实验发现突变che B基因可显著降低该菌株的游动性。【结论】上述结果表明菌株2P24中不同碳源在转录水平上可影响phl A基因的表达,进而影响2,4-DAPG产生。遗传学结果也显示,che B基因参与调控2,4-DAPG生物合成过程。  相似文献   

17.
The arbuscular mycorrhizal symbiosis, a key component of agroecosystems, was assayed as a rhizosphere biosensor for evaluation of the impact of certain antifungal Pseudomonas inoculants used to control soil-borne plant pathogens. The following three Pseudomonas strains were tested: wild-type strain F113, which produces the antifungal compound 2,4-diacetylphloroglucinol (DAPG); strain F113G22, a DAPG-negative mutant of F113; and strain F113(pCU203), a DAPG overproducer. Wild-type strain F113 and mutant strain F113G22 stimulated both mycelial development from Glomus mosseae spores germinating in soil and tomato root colonization. Strain F113(pCU203) did not adversely affect G. mosseae performance. Mycelial development, but not spore germination, is sensitive to 10 μM DAPG, a concentration that might be present in the rhizosphere. The results of scanning electron and confocal microscopy demonstrated that strain F113 and its derivatives adhered to G. mosseae spores independent of the ability to produce DAPG.  相似文献   

18.
Fluorescent pseudomonads are ubiquitous bacteria that are common inhabitants of the rhizosphere and are the most studied group within the genus Pseudomonas. Bacterial isolates (n = 103) from the rhizosphere of wheat and common bean were assessed as potential biocontrol agents in this study. Fungal inhibition tests were performed by a plate assay in which each isolate was tested directly for the production of hydrogen cyanide, protease, siderophore and cellulase. Production of DAPG was verified by using an analytical high performance liquid chromatography assay (HPLC). Plant growth promotion was assessed in phytochamber trials and biocontrol activity was evaluated in greenhouse trials. In all, 52 bacterial isolates with antifungal activity against Rhizoctonia solani were found. Of the 52 isolates, 41 were selected according to their high efficiency in in vitro antagonism, which was shown as inhibition zones in the dual-culture assay. Six of the 41 rhizobacteria, including isolates UTPF7, UTPF13, UTPF18, UTPF22, UTPF27 and strain CHA0 produced HCN. Production of protease enzyme was detected for all isolates excluding UTPF30 isolate. Although some stains appeared not to produce any compound with affinity for ferric iron, other isolates produced prolific amounts, creating a large zone of orange (up to 160 mm2, i.e., UTPF16). Seventeen of 41 isolates of fluorescent pseudomonads including strain CHAO produced different amounts of DAPG ranging from 0.6 to 11.4 ng/108 cfu. A total of 39 isolates induced statistically significant effects on plant growth compared with the non-treated control for at least one parameter. The predominant influence observed was increased root length. No bacteria could completely protect the plant against R. solani, although all isolates significantly increased fresh weight as compared to the infested control in greenhouse trials. Pseudomonas fluorescens isolates UTPF16 and UTPF26 significantly (P < 0.05) decreased the number of seedlings with damping-off symptoms in the means of the experiments.  相似文献   

19.
In Pseudomonas fluorescens CHA0, mutation of the GacA-controlled aprA gene (encoding the major extracellular protease) or the gacA regulatory gene resulted in reduced biocontrol activity against the root-knot nematode Meloidogyne incognita during tomato and soybean infection. Culture supernatants of strain CHA0 inhibited egg hatching and induced mortality of M. incognita juveniles more strongly than did supernatants of aprA and gacA mutants, suggesting that AprA protease contributes to biocontrol.  相似文献   

20.
A quantitative competitive PCR (QC-PCR) assay targeting the phlA gene of Pseudomonas fluorescens CHA0 was developed and tested in vitro. Statistically significant, positive correlations were found between QC-PCR and both CFU and total cell number when studying cells in log or stationary phase. The correlations disappeared when considering stressed cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号