首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
A dual irradiation process involving aerobic thermophilic irradiation pretreatment (ATIP) and intermittent irradiation anaerobic digestion was developed to improve the digestion of waste-activated sludge. First, the effect of ATIP on further anaerobic digestion of activated sludge in batch mode was investigated. When exposed to ATIP for 24 h, the digestion reactor gave the highest methane yield, removed the most dissolved organic carbon (DOC) and showed the most effective reduction of VS compared to other irradiation times. This process was further enhanced by using an anaerobic fluidised-bed reactor packed with carbon felt in semi-continuous mode for digesting the pretreated activated sludge under intermittent irradiation conditions. Dual irradiation for 24 h followed by 60 min of anaerobic irradiation processing per day turned out to be optimal. This resulted in 65.3% of VS reduction, 83.9% of DOC removal ratio and 538 ml/g-VS of methane yield.  相似文献   

2.
A fixed-bed reactor with acclimated methanogens immobilized on a loofah support was studied on a laboratory scale to evaluate the system producing methane from the mixture of CO(2) and H(2) gas, with the production of vitamin B(12) as a by-product. Fermentation using CO(2)/H(2) acclimated methanogens was conducted in a jar fermentor with hydraulic retention times (HRTs) of three and six days. The performance of the reactor was mainly dependent on the HRT. With an HRT of three days, the methane production rate and the vitamin B(12) concentration in the culture broth were 6.18 l/l-reactor/h and 2.88 mg/l-culture liquid; these values were 11.96 l/l-reactor/h and 37.54 mg/l-culture liquid for an HRT of six days. A higher total cell mass of methanogens retained 42.5 g dry cell/l-culture liquid was achieved in the HRT of six days. The loofah carrier immobilized almost 95% of the methanogens, which led to a more effective bio-reaction. It was also observed that the fermentation system had a better ability to buffer pH, especially for an HRT of six days.  相似文献   

3.
The aim of this paper was to analyze the biomethanization process of food waste (FW) from a university campus restaurant in six reactors with three different total solid percentages (20%, 25% and 30% TS) and two different inoculum percentages (20-30% of mesophilic sludge). The experimental procedure was programmed to select the initial performance parameters (total solid and inoculum contents) in a lab-reactor with V: 1100mL and, later, to validate the optimal parameters in a lab-scale batch reactor with V: 5000mL. The best performance for food waste biodegradation and methane generation was the reactor with 20% of total solid and 30% of inoculum: give rise to an acclimation stage with acidogenic/acetogenic activity between 20 and 60 days and methane yield of 0.49L CH4/g VS. Also, lab-scale batch reactor (V: 5000mL) exhibit the classical waste decomposition pattern and the process was completed with high values of methane yield (0.22L CH4/g VS). Finally, a protocol was proposed to enhance the start-up phase for dry thermophilic anaerobic digestion of food waste.  相似文献   

4.
The effect of ultrasound and gamma-irradiation used as pre-treatments for the anaerobic digestion of waste activated sludge at both mesophilic and thermophilic temperatures was examined. Untreated activated sludge was also subjected to anaerobic digestion at these temperatures as a control. The sonication time was 90 s using a Soniprep 150 (MSE Scientific Instruments) which operated at 23 kHz and had been adjusted to give an output of 47 W and the gamma-irradiation dose was 500 krad. The digesters were operated in a semi-continuous mode, being fed with fresh sludge every 24 h at hydraulic retention times (HRT) of 8, 10 and 12 days. Over the 24 h period the differences between the digesters, in terms of volatile solids (VS) reductions and biogas production, were not statistically significant for any particular set of conditions. Thermophilic digestion performed better than mesophilic digestion in terms of biogas production, VS reductions (except at HRT of 8 days) and specific methane yields and the optimum retention time was 10 days, at both temperatures. When gas production over the initial eight hours (probably the hydrolytic stage) was examined, it was found that the gas production rates for pre-treated sludges were higher than those for untreated sludges. This was most pronounced at thermophilic temperatures and a HRT of 10 days. Sonication did not affect the numbers of faecal coliforms in the sludge. However, gamma-radiation caused a 3-log reduction and, when coupled with mesophilic digestion, gave a product which contained < 100 g(-1) TS. Thermophilic anaerobic digestion produced sludges which contained < 1 g(-1) TS irrespective of any pre-treatment.  相似文献   

5.
The removal of organic matter from a coastal mud sediment was carried out by a methane fermentation process under anaerobic conditions. In a batch acidogenic fermentation, the addition of vitamins containing thiamine, nicotinic acid and biotin dramatically enhanced acetate production from the mud sediment (200 g wet wt l(-1) artificial sea water), yielding 77 mM acetate after 6 days, which corresponded to 77% of the organic matter in the mud sediment, measured on the basis of chemical oxygen demand. Thereafter, the two-fold diluted, post-acidogenic fermentation liquor (PAF liquor) was continuously treated at 2.4x original dilution rate day(-1) for 30 days, using an upflow anaerobic sludge blanket methanogenic reactor containing the acclimated methanogenic sludge from the mud sediment. Acetate, 42 mM in the PAF liquor, was converted to methane at a maximum methane production rate of 96 mmol l(-1) day(-1); and 87.5% of the acetate and 88.7% of the total organic carbon in the PAF liquor were removed. Moreover, an efficient treatment of the mud sediment was carried out by a semi-continuous, two-stage reactor system, where the culture broth was circulated between acidogenic and methanogenic reactors. This two-stage reactor system gave a stable operation at 4-day intervals for one treatment period, yielding 112 mmol methane from the wet mud in the PAF liquor (278 g l(-1)).  相似文献   

6.
Treatment of brewery slurry in a thermophilic anaerobic sequencing batch reactor (ASBR) was studied using conventional fully mixed semi-continuous digestion as a control. The process phases were adapted to fit the brewery slurry discharge schedule. ASBR experiments were conducted under different organic loading rates (OLR) from 3.23 to 8.57 kg of COD/m(3)day of reactor and control was conducted with OLR of 3.0 kg of COD/m(3)day. The ASBR COD degradation efficiency was from 79.6% to 88.9%, control experiment efficiency was 65%. ASBR VSS removal efficiency was from 78.5% to 90.5%, control experiment efficiency was 54%. The ASBR methane production yield was from 371 to 418 L/kg COD inserted, control experiment methane yield was 248 L/kg COD inserted. The ASBR process was superior to conventional fully mixed digestion, and is fully adaptable to brewery slurry discharge, needs no additional collection and settling pools and experiences no solids settling problems.  相似文献   

7.
Effect of feed to inoculum ratios on biogas yields of food and green wastes   总被引:1,自引:0,他引:1  
Biogas and methane yields of food and green wastes and their mixture were determined using batch anaerobic digesters at mesophilic (35 ± 2 °C) and thermophilic (50 ± 2 °C) temperatures. The mixture was composed of 50% food waste and 50% green waste, based on the volatile solids (VS) initially added to the reactors. The thermophilic digestion tests were performed with four different feed to inoculum (F/I) ratios (i.e., 1.6, 3.1, 4.0 and 5.0) and the mesophilic digestion was conducted at one F/I (3.1). The results showed that the F/I significantly affected the biogas production rate. At four F/Is tested, after 25 days of thermophilic digestion, the biogas yield was determined to be 778, 742, 784 and 396 mL/g VS for food waste, respectively; 631, 529, 524 and 407 mL/g VS for green waste, respectively; and 716, 613, 671 and 555 mL/g VS for the mixture, respectively. About 80% of the biogas production was obtained during the first 10 days of digestion. At the F/I of 3.1, the biogas and methane yields from mesophilic digestion of food waste, green waste and their mixture were lower than the yields obtained at thermophilic temperature. The biogas yields were 430, 372 and 358 mL/g VS, respectively, and the methane yields were 245, 206, and 185 mL/g VS, respectively.  相似文献   

8.
Hydrogen and methane co-production from potato waste was examined using a two-stage process of anaerobic digestion. The hydrogen stage was operated in continuous flow under a pH of 5.5 and a HRT of 6h. The methane stage was operated in both continuous and semi-continuous flows under HRTs of 30 h and 90 h, respectively, with pH controlled at 7. A maximum gas production rate of 270 ml/h and an average of 119 ml/h were obtained from the hydrogen stage during the operation over 110 days. The hydrogen concentration contained in the gas was 45% (v/v), on average. The maximum and average gas production rates observed from methane reactor during the 74 days of semi-continuous flow operation were 187 and 141 ml/h, respectively, with an average methane concentration of 76%. Overall, 70% of VS, 64% of total COD in the feedstock were removed. The hydrogen and methane yields from the potato waste were 30 l/kg TS (with a maximum of 68 l/kg) and 183 l/kg TS (with a maximum of 225 l/kg), respectively. The total energy yield obtained was 2.14 kW h/kg TS, with a maximum of 2.74 kW h/kg TS.  相似文献   

9.
The influence of total solid contents during anaerobic mesophilic treatment of the organic fraction of municipal solid waste (MSW) has been studied in this work. The work was performed in batch reactors of 1.7L capacity, during a period of 85-95 days. Two different organic substrate concentrations were studied: 931.1 mgDOC/L (20% TS) and 1423.4 mgDOC/L (30% TS). Experimental results showed that the reactor with 20% total solids content had significantly higher performance. Thus, the startup phase ended at 14 days and the total DOC removal was 67.53%. The startup in reactor R30 ended at 28 days obtaining 49.18% DOC removal. Also, the initial substrate concentration contributed substantially to the amount of methane in the biogas. Hence, the total methane production in the methanogenic phase was 7.01 L and 5.53 L at the end of the experiments for R20 and R30, respectively.  相似文献   

10.
A novel two-stage anaerobic process for the microbial conversion of cellulose into biogas has been developed. In the first phase, a mixed population of rumen bacteria and ciliates was used in the hydrolysis and fermentation of cellulose. The volatile fatty acids (VFA) produced in this acidogenic reactor were subsequently converted into biogas in a UASB-type methanogenic reactor.A stepwise increase of the loading rate from 11.9 to 25.8 g volatile solids/L reactor volume/day (g VS/L/day) did not affect the degradation efficiency in the acidogenic reactor, whereas the methanogenic reactor appeared to be overloaded at the highest loading rate. Cellulose digestion was almost complete at all loading rates applied. The two-stage anaerobic process was also tested with a closed fluid circuit. In this instance total methane production was 0.438 L CH(4)g VS added, which is equivalent to 98% of the theoretical value. The application of rumen microorganisms in combination with a high-rate methane reactor is proposed as a means of efficient anaerobic degradation of cellulosic residues to methane. Because this newly developed two-phase system is based on processes and microorganisms from the ruminant, it will be referred to as "Rumen Derived Anaerobic Digestion" (RUDAD-) process.  相似文献   

11.
A thorough literature review was conducted to investigate the behaviour of food waste in anaerobic digestion experiments. The main goal of this literature review was to study the effect of several operating parameters on methane yields and to develop a simplified regression equation to predict methane generation. Using a data prospection methodology, all the papers published within 2013–2015 that contained selected keywords were included in this study (a total of 613 papers). After screening, 167 papers were finally retrieved using the search engines and our methodology. From these papers, data from 231 experiments were recorded and evaluated. The parameters recorded in each paper were: operation mode (batch or continuous), temperature (mesophilic or thermophilic), moisture content (wet or dry), presence or absence of pretreatment, reactor scale (laboratory, bench, pilot, demonstration/full scale), presence or absence of co-substrates (co- or mono-digestion), organic loading rate, hydraulic retention time (HRT) and methane yield. The novelty of the work is that it employed various statistical tools to examine the effect of the above-mentioned factors on food waste methane generation. Most of the experiments were performed at mesophilic temperatures, at a wet system without substrate pretreatment. An equal number of papers described mono-digestion and co-digestion studies, and an equal number of papers described batch and continuous reactor experiments. The mean HRT for the continuous processes was 36.7 days. Statistical analysis indicated that the parameters that significantly affected methane yields were the “operation mode” and “pretreatment”. A best reduced regression model was fitted to the methane yield data to describe the above effects. As a general conclusion, with this methodology, that involved the analysis of a large number of studies (with different conditions and set-ups, heterogeneous waste, etc.), correlations between some typical operating parameters of anaerobic digestion and methane yields were not obvious.  相似文献   

12.
Two-phase anaerobic digestion of cheese whey was investigated in a system consisting of a stirred acidogenic reactor followed by a stirred methanogenic reactor, the latter being coupled to a membrane filtration system to enable removal of soluble effluent whilst retaining solids. The acidogenic reactor was operated at a hydraulic retention time (HRT) of one day, giving maximum acidification of 52.25% with up to 5 g/l volatile fatty acids, of which 63.7% was acetic acid and 24.7% was propionic acid. The methanogenic reactor received an organic load up to 19.78 g COD/ld, corresponding to a HRT of 4 days, at which 79% CODs and 83% BOD(5) removal efficiencies were obtained. Average removals of COD, BOD(5) and TSS in the two-phase anaerobic digestion process were 98.5%, 99% and 100%, respectively. The daily biogas production exceeded 10 times reactor volume and biogas methane content was greater than 70%.  相似文献   

13.
【目的】为开发高效的高浓度木质纤维素燃料乙醇蒸馏废水厌氧处理及资源化利用工艺,以活性炭为载体,在实验室规模上对高温厌氧流化床反应器处理木质纤维素燃料乙醇蒸馏废水进行研究。【方法】反应器经65 d梯度驯化后启动,对工艺参数进行一系列优化,并通过基于16S rRNA基因的分子生态学技术分析厌氧污泥中的优势菌群。【结果】实验获得了最优的反应条件和处理效果:厌氧流化床反应器(Anaerobic fluidized bed reactor,AFBR)在温度55±1°C、有机负荷率(OLR)13.8 g COD/(L·d)及水力停留时间(HRT)48 h操作时,COD去除率达到90%以上,同时甲烷产率达到290 mL/g COD;菌群鉴定分析结果显示高温厌氧活性污泥中Clostridia所占比例最大,产甲烷菌属以Methanoculleus和Methanosarcina为主,其它功能菌群主要为Alphaproteobacteria等。【结论】AFBR反应器可高效降解木质纤维素燃料乙醇蒸馏废水并产生生物能源甲烷,其反应体系内微生物种类丰富。  相似文献   

14.
This study investigated the process of high-rate, high-temperature methanogenesis to enable very-high-volume loading during anaerobic digestion of waste-activated sludge. Reducing the hydraulic retention time (HRT) from 15 to 20 days in mesophilic digestion down to 3 days was achievable at a thermophilic temperature (55°C) with stable digester performance and methanogenic activity. A volatile solids (VS) destruction efficiency of 33 to 35% was achieved on waste-activated sludge, comparable to that obtained via mesophilic processes with low organic acid levels (<200 mg/liter chemical oxygen demand [COD]). Methane yield (VS basis) was 150 to 180 liters of CH4/kg of VSadded. According to 16S rRNA pyrotag sequencing and fluorescence in situ hybridization (FISH), the methanogenic community was dominated by members of the Methanosarcinaceae, which have a high level of metabolic capability, including acetoclastic and hydrogenotrophic methanogenesis. Loss of function at an HRT of 2 days was accompanied by a loss of the methanogens, according to pyrotag sequencing. The two acetate conversion pathways, namely, acetoclastic methanogenesis and syntrophic acetate oxidation, were quantified by stable carbon isotope ratio mass spectrometry. The results showed that the majority of methane was generated by nonacetoclastic pathways, both in the reactors and in off-line batch tests, confirming that syntrophic acetate oxidation is a key pathway at elevated temperatures. The proportion of methane due to acetate cleavage increased later in the batch, and it is likely that stable oxidation in the continuous reactor was maintained by application of the consistently low retention time.  相似文献   

15.
The possibility of improving a two-stage (68 degrees C/55 degrees C) anaerobic digestion concept for treatment of cattle manure was studied. In batch experiments, a 10-24% increase of the specific methane yield from cattle manure and its fractions was obtained, when the substrates were inoculated with bacteria of the genus Caldicellusiruptor and Dictyoglomus. In a reactor experiment inoculation of a 68 degrees C pretreatment reactor with Caldicellusiruptor resulted in a 93% increase in the methane yield of the pretreatment reactor for a period of 18 days, but gave only a slight increase in the overall methane yield of the two-stage setup.  相似文献   

16.
With increasing concerns of microalgal-biodiesel, algal residues after lipid extraction are raising great attention for energy production. A batch test of 15 days under mesophilic condition was conducted to evaluate the effects of inoculum to substrate ratios (ISRs) on the methane production by anaerobic digestion of Chlorella sp. residue. The stability and progress of the reaction from algal residue to methane were monitored by measuring the pH, volatile fatty acids (VFAs), total ammoniacal nitrogen (TAN), methane volume on a daily basis. The results indicated that the values obtained were 26.6, 191.6, 195.6 and 210.6 ml CH4/g volatile solid (VS) for ISRs of 1:2, 1:1, 2:1 and 3:1. The methane production was significantly decreased as the ISR was lower than 1:1, which was resulting from the poor methanogenesis inhibited by NH4 +-N. It would be of great importance that determination of ISRs might provide useful information on how to initialize a batch digester with algal residue as material.  相似文献   

17.
Anaerobic digestion of organic fraction of municipal solid waste was conducted in pilot-scale reactor based on high-solid combined anaerobic digestion process. This study was performed in two runs. In Run 1 and Run 2, pre-stage flushing and micro-aeration were conducted to determine their effect in terms of enhancing hydrolysis and acidification in ambient condition. In Run 2, after pre-stage, the methane phase (methanogenesis) was started-up after pH adjustment and inoculum addition in mesophilic condition. Acidified leachate produced in pre-stage was used for percolation during active methane phase. At the end of methane phase, air flushing was conducted before unloading the digesters. Hydrolysis and acidification yield of 140 g C/kg TS and 180 g VFA/kg TS were achieved, respectively in pre-stage. Micro-aeration exhibited an equivocal result in terms of enhancing hydrolysis/acidification; however it showed a positive effect in methane phase performance and this needed further investigation. Leachate percolation during methane phase showed an enhanced methanization when compared to the reactors without leachate percolation. After 60 days, 260 l CH(4)/kg VS was obtained. Based on the waste methane potential, 75% biogas conversion and 61% VS degradation were achieved.  相似文献   

18.
The feasibility of nearly-complete conversion of lignocellulosic waste (70% food crops, 20% faecal matter and 10% green algae) into biogas was investigated in the context of a life support project. The treatment comprised a series of processes, i.e., a mesophilic laboratory scale CSTR (continuously stirred tank reactor), an upflow biofilm reactor, a fiber liquefaction reactor employing the rumen bacterium Fibrobacter succinogenes and a hydrothermolysis system in near-critical water. By the one-stage CSTR, a biogas yield of 75% with a specific biogas production of 0.37 l biogas g(-1) VSS (volatile suspended solids) added at a RT (hydraulic retention time) of 20-25 d was obtained. Biogas yields could not be increased considerably at higher RT, indicating the depletion of readily available substrate after 25 d. The solids present in the CSTR-effluent were subsequently treated in two ways. Hydrothermal treatment (T approximately 310-350 degrees C, p approximately 240 bar) resulted in effective carbon liquefaction (50-60% without and 83% with carbon dioxide saturation) and complete sanitation of the residue. Application of the cellulolytic Fibrobacter succinogenes converted remaining cellulose contained in the CSTR-effluent into acetate and propionate mainly. Subsequent anaerobic digestion of the hydrothermolysis and the Fibrobacter hydrolysates allowed conversion of 48-60% and 30%, respectively. Thus, the total process yielded biogas corresponding with conversions up to 90% of the original organic matter. It appears that particularly mesophilic digestion in conjunction with hydrothermolysis at near-critical conditions offers interesting features for (nearly) complete and hygienic carbon and energy recovery from human waste in a bioregenerative life support context.  相似文献   

19.
An investigation into the influence of low temperature thermo-chemical pretreatment on sludge reduction in a semi-continuous anaerobic reactor was performed. Firstly, effect of sludge pretreatment was evaluated by COD solubilization, suspended solids reduction and biogas production. At optimized condition (60 °C with pH 12), COD solubilization, suspended solids, reduction and biogas production was 23%, 22% and 51% higher than the control, respectively. Secondly, semi-continuous process performance was studied in a lab-scale semi-continuous anaerobic reactor (5 L), with 4 L working volume. With three operated SRTs, the SRT of 15 days was found to be most appropriate for economic operation of the reactor. Combining pretreatment with anaerobic digestion led to 80.5%, 117% and 90.4% of TS, SS and VS reduction respectively, with an improvement of 103% in biogas production. Thus, low temperature thermo-chemical can play an important role in reducing sludge production.  相似文献   

20.
Integration of algae production with livestock waste management has the potential to recover energy and nutrients from animal manure, while reducing discharges of organic matter, pathogens, and nutrients to the environment. In this study, microalgae Chlorella sp. were grown on centrate from anaerobically digested swine manure. The algae were harvested for mesophilic anaerobic digestion (AD) with swine manure for bioenergy production. Low biogas yields were observed in batch AD studies with algae alone, or when algae were co-digested with swine manure at ≥43 % algae (based on volatile solids [VS]). However, co-digestion of 6–16 % algae with swine manure produced similar biogas yields as digestion of swine manure alone. An average methane yield of 190 mL/g VSfed was achieved in long-term semi-continuous co-digestion studies with 10?±?3 % algae with swine manure. Data from the experimental studies were used in an energy analysis assuming the process was scaled up to a concentrated animal feeding operation (CAFO) with 7000 pigs with integrated algae-based treatment of centrate and co-digestion of manure and the harvested algae. The average net energy production for the system was estimated at 1027 kWh per day. A mass balance indicated that 58 % of nitrogen (N) and 98 % of phosphorus (P) in the system were removed in the biosolids. A major advantage of the proposed process is the reduction in nutrient discharges compared with AD of swine waste without algae production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号