首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
S H Hwang  T Nowak 《Biochemistry》1986,25(19):5590-5595
The stereochemistry of the carboxylation of phosphoenolpyruvate to yield oxalacetate, catalyzed by chicken liver phosphoenolpyruvate carboxykinase and by Ascaris muscle phosphoenolpyruvate carboxykinase, was determined. The substrate (Z)-3-fluorophosphoenolpyruvate was used for the stereochemical analysis. The carboxylation reaction was coupled to malate dehydrogenase to yield 3-fluoromalate, and the stereochemistry of the products was identified by 19F NMR. In separate experiments, the enantiomeric tautomers of 3-fluorooxalacetate were shown to be utilized by malate dehydrogenase to yield (2R,3R)- and (2R,3S)-3-fluoromalate in nearly identical amounts. The products were identified by 19F NMR. When (Z)-3-fluorophosphoenolpyruvate was used as a substrate for phosphoenolpyruvate carboxykinase from avian liver and from Ascaris, and malate dehydrogenase was used to trap the product, only a single diastereomer was observed. This product was shown to be (2R,3R)-3-fluoromalate in each case. The assignments were based on coupling constants taken from Keck et al. [Keck, R., Hess, H., & Rétey, J. (1980) FEBS Lett. 114, 287]. These results indicate that the stereochemistry of carboxylation, catalyzed by chicken phosphoenolpyruvate carboxykinase and by Ascaris phosphoenolpyruvate carboxykinase, is identical and takes place from the si side of the enzyme-bound phosphoenolpyruvate. The carboxylation reaction was run both in H2O and in D2O. No deuterium incorporation into fluoromalate was shown to occur. The product 3-fluorooxalacetate is thus released from phosphoenolpyruvate carboxykinase as the keto form and is reduced more rapidly by reduced nicotinamide adenine dinucleotide with malate dehydrogenase than by the occurrence of tautomerization.  相似文献   

2.
S L Ausenhus  M H O'Leary 《Biochemistry》1992,31(28):6427-6431
In addition to the normal carboxylation reaction, phosphoenolpyruvate carboxylase from Zea mays catalyzes a HCO3(-)-dependent hydrolysis of phosphoenolpyruvate to pyruvate and Pi. Two independent methods were used to establish this reaction. First, the formation of pyruvate was coupled to lactate dehydrogenase in assay solutions containing high concentrations of L-glutamate and aspartate aminotransferase. Under these conditions, oxalacetic acid produced in the carboxylation reaction was efficiently transaminated, and decarboxylation to form spurious pyruvate was negligible. Second, sequential reduction of oxalacetate and pyruvate was achieved by initially running the reaction in the presence of malate dehydrogenase with NADH in excess over phosphoenolpyruvate. After the reaction was complete, lactate dehydrogenase was added, thus giving a measure of pyruvate concentration. At pH 8.0 in the presence of Mg2+, the rate of phosphoenolpyruvate hydrolysis was 3-7% of the total reaction rate. The hydrolysis reaction catalyzed by phosphoenolpyruvate carboxylase was strongly metal dependent, with rates decreasing in the order Ni2+ greater than Co2+ greater than Mn2+ greater than Mg2+ greater than Ca2+. These results suggest that the active site metal ion binds to the enolate oxygen, thus stabilizing the proposed enolate intermediate. The more stable the enolate, the less reactive it is toward carboxylation and the greater the opportunity for hydrolysis.  相似文献   

3.
Phosphoenolpyruvate when heated in acidic solution exchanges its phosphoryl and carboxyl oxygens rapidly and its enolic oxygen much more slowly with oxygens from water. The incorporation of 18O into phosphoenolpyruvate was measured by gas chromatography-mass spectrometry and phosphorus-31 nuclear magnetic resonance after heating in H218O at 98 degrees C. The rates of exchange of all six oxygens of phosphoenolpyruvate with water increase with increasing acidity, and the phosphoryl oxygens exchange more rapidly than the carboxyl oxygens. The rate of exchange of each oxygen of the phosphoryl group is 16-fold greater than the hydrolysis rate at 1 N HCl. This provides a simple and useful method for the synthesis of [18O]phosphoenolpyruvate highly enriched in its phosphoryl-group oxygens. An enrichment of 89% was obtained with a 50% yield. The [18O]-phosphoenolpyruvate showed a binomial distribution of 18O in the phosphoryl-group oxygens. The exchange may be explained by the reversible formation of a transient cyclic phosphate and, for exchange of the enolic oxygen, a transient acyl phosphate. Preparation of [18O]phosphoenolypyruvate from [18O]Pi by a chemical synthesis from beta-chlorolactate was not satisfactory because of drastic loss of 18O during the procedures used. Some loss of 18O also occurred during an enzymic synthesis with KCNO, [18O]Pi, carbamate kinase, and pyruvate kinase.  相似文献   

4.
Phosphoenolpyruvate carboxylase (EC 4.1.1.31) from Azotobacter vinelandii, like the corresponding enzyme from other organisms, is activated by acetyl coenzyme A and inhibited by l-aspartate. Both modifiers affect primarily the affinity of the enzyme for phosphoenolpyruvate. This is the first enzyme with a strictly anaplerotic (intermediate-replacing) function to be tested for response to the adenylate energy charge; it is entirely insensitive to variation in charge. The results suggest that carboxylation of phosphoenolpyruvate in this organism is controlled by negative feedback from aspartate and by the stimulatory effect of acetyl coenzyme A. The adenylate energy charge may be expected to affect the rate of this reaction indirectly through its effects on the concentrations of acetyl coenzyme A and l-aspartate.  相似文献   

5.
6.
7.
8.
9.
10.
The cytosolic factors that influence mitochondrial oxidative phosphorylation rates are relatively unknown. In this report, we examine the effects of phosphoenolpyruvate (PEP), a glycolytic intermediate, on mitochondrial function. It is reported here that in rat heart mitochondria, PEP delays the onset of state 3 respiration in mitochondria supplied with either NADH-linked substrates or succinate. However, the maximal rate of state 3 respiration is only inhibited when oxidative phosphorylation is supported by NADH-linked substrates. The capacity of PEP to delay and/or inhibit state 3 respiration is dependent upon the presence or absence of ATP. Inhibition of state 3 is exacerbated in uncoupled mitochondria, with a 40% decrease in respiration seen with 0.1mM PEP. In contrast, ATP added exogenously or produced by oxidative phosphorylation completely prevents PEP-mediated inhibition. Mechanistically, the results support the conclusion that the main effects of PEP are to impede ADP uptake and inhibit NADH oxidation. By altering the NADH/NAD(+) status of mitochondria, it is demonstrated that PEP enhances succinate dehydrogenase activity and increase free radical production. The results of this study indicate PEP may be an important modulator of mitochondrial function under conditions of decreased ATP.  相似文献   

11.
This paper deals with the contribution of P. Gadal’s group to the study of the phosphoenolpyruvate carboxylase protein kinase. It traces the important steps from the discovery up to the present time leading to characterize a new protein kinase which is specific for plants and displays original properties.  相似文献   

12.
Phenylphosphate, a structural analog of phosphoenolpyruvate (PEP), was found to be an activator of phosphoenolpyruvate carboxylase (PEP carboxylase) purified from maize leaves. This finding suggested the presence in the enzyme of a regulatory site, to which PEP could bind. We carried out kinetic studies on this enzyme using controlled concentrations of free PEP and of Mg-PEP complex and developed a theoretical kinetic model of the reaction. In summary, the main conclusions drawn from our results, and taken as assumptions of the model, were the following: (i) The affinity of the active site for the complex Mg-PEP is much higher than that for free PEP and Mg2+ ions, and therefore it can be considered that the preferential substrate of the PEP-catalyzed reaction is Mg-PEP. (ii) The enzyme has a regulatory site specific for free PEP, to which Mg2+ ions can not bind. (iii) The binding of free PEP, or an analog molecule, to this regulatory site yields a modified enzyme that has much lower apparent Km values and apparent Vmax values than the unmodified enzyme. So, free PEP behaves as an excellent activator of the reaction at subsaturating substrate concentrations, and as an inhibitor at saturating substrate concentrations. These findings may have important physiological implications on the regulation of the PEP carboxylase in vivo activity and, consequently, of the C4 pathway, since increased reaction rates would be obtained when the concentration of PEP rises, even at limiting Mg2+ concentrations.  相似文献   

13.
Y P Chao  J C Liao 《Applied microbiology》1993,59(12):4261-4265
Phosphoenolpyruvate and oxaloacetate are key intermediates at the junction between catabolism and biosynthesis. Alteration of carbon flow at these branch points will affect the growth yield and the formation of products. We attempted to modulate the metabolic flow between phosphoenolpyruvate and oxaloacetate by overexpressing phosphoenolpyruvate carboxylase and phosphoenolpyruvate carboxykinase from a multicopy plasmid under the control of the tac promoter. It was found that overexpression of phosphoenolpyruvate carboxylase decreased the rates of glucose consumption and organic acid excretion, but the growth and respiration rates remained unchanged. Consequently, the growth yield on glucose was improved. This result indicates that the wild-type level of phosphoenolpyruvate carboxylase is not optimal for the most efficient glucose utilization in batch cultures. On the other hand, overexpression of phosphoenolpyruvate carboxykinase increased glucose consumption and decreased oxygen consumption relative to those levels required for growth. Therefore, the growth yield on glucose was reduced because of a higher rate of fermentation product excretion. These data provide useful insights into the regulation of central metabolism and facilitate further manipulation of pathways for metabolite production.  相似文献   

14.
15.
Evolution of C4 phosphoenolpyruvate carboxylase   总被引:8,自引:0,他引:8  
C4 plants are known to be of polyphyletic origin and to have evolved independently several times during the evolution of angiosperms. This implies that the C4 isoform of phosphoenolpyruvate carboxylase (PEPC) originated from a nonphotosynthetic PEPC gene that was already present in the C3 ancestral species. To meet the special requirements of the C4 photosynthetic pathway the expression program of the C4 PEPC gene had to be changed to achieve a strong and selective expression in leaf mesophyll cells. In addition, the altered metabolite concentrations around C4 PEPC in the mesophyll cytoplasm necessitated changes in the enzyme's kinetic and regulatory properties. To obtain insight into the evolutionary steps involved in these altered enzyme characteristics, and even the order of these steps, the dicot genus Flaveria (Asteraceae) appears to be the experimental system of choice. Flaveria contains closely related C3, C3-C4, and C4 species that can be ordered by their gradual increase in C4 photosynthetic traits. The C4 PEPC of F. trinervia, which is encoded by the ppcA gene class, possesses typical kinetic and regulatory features of a C4-type PEPC. Its nearest neighbor is the orthologous ppcA gene of the C3 species F. pringlei. This latter gene encodes a typical nonphotosynthetic C3-type PEPC which is believed to be similar to the C3 ancestral PEPC. This pair of orthologous PEPCs has been used to map C4-specific molecular determinants for the kinetic and regulatory characteristics of C4 PEPCs. The most notable finding from these investigations was the identification of a C4 PEPC invariant site-specific mutation from alanine (C3) to serine (C4) at position 774 that was a necessary and late step in the evolution of C3 to C4 PEPC. The C3-C4 intermediate ppcA PEPCs are used to identify the sequence of events leading from a C3- to a C4-type PEPC.  相似文献   

16.
Inhibition of phosphoenolpyruvate carboxylase by malate   总被引:6,自引:6,他引:0       下载免费PDF全文
Malate has been noted to be a `mixed' inhibitor of phosphoenolpyruvate (PEP) carboxylase. The competitive portion of this inhibition appears to be fairly constant regardless of the condition of the enzyme being measured, but the noncompetitive (V-type) inhibition is subject to variation depending on the source of the enzyme, its storage condition, the presence or absence of various ligands, and differences in pH. In the case of the maize (Zea mays L.) phosphoenolpyruvate carboxylase (PEPC), the V-type inhibition by malate is much less pronounced at pH 8 than at pH 7. Examination of the response of the maize PEPC to PEP concentration reveals a pronounced cooperativity at pH 8 which is not present at pH 7, and which results in the disappearance of the V-type inhibition at pH 8. The ability of high concentrations of PEP to convert PEPC from a form readily inhibited by malate to one resistant to malate inhibition has been previously demonstrated and we attribute the cooperativity shown at pH 8 to this response to high levels of PEP. Support for this proposal is provided by studies of the enzyme at pH 7 and pH 8 run in 20% glycerol. In this case there was no V-type inhibition of PEPC at either pH. Treatment with 20% glycerol has been shown to result in the aggregation of maize PEPC.  相似文献   

17.
18.
The aim of this study was to investigate the relationship between the phosphorylation and activation states of phosphoenolpyruvate carboxykinase (PEPCK) and to investigate how the phosphorylation states of PEPCK and phosphoenolpyruvate carboxylase (PEPC) are coordinated in response to light intensity and CO(2) concentration during photosynthesis in leaves of the C(4) plant Guinea grass (Panicum maximum). There was a linear, reciprocal relationship between the phosphorylation state of PEPCK and its activation state, determined in a selective assay that distinguishes phosphorylated from nonphosphorylated forms of the enzyme. At high photon flux density and high CO(2) (750 microL L(-1)), PEPC was maximally phosphorylated and PEPCK maximally dephosphorylated within 1 h of illumination. The phosphorylation state of both enzymes did not saturate until high light intensities (about 1,400 micromol quanta m(-2) s(-1)) were reached. After illumination at lower light intensities and CO(2) concentrations, the overall change in phosphorylation state was smaller and it took longer for the change in phosphorylation state to occur. Phosphorylation states of PEPC and PEPCK showed a strikingly similar, but inverse, pattern in relation to changes in light and CO(2). The protein phosphatase inhibitor, okadaic acid, promoted the phosphorylation of both enzymes. The protein synthesis inhibitor, cycloheximide, blocked dark phosphorylation of PEPCK. The data show that PEPC and PEPCK phosphorylation states are closely coordinated in vivo, despite being located in the mesophyll and bundle sheath cells, respectively.  相似文献   

19.
20.
Diurnal regulation of phosphoenolpyruvate carboxylase from crassula   总被引:13,自引:10,他引:3       下载免费PDF全文
Wu MX  Wedding RT 《Plant physiology》1985,77(3):667-675
Phosphoenolpyruvate carboxylase appears to be located in or associated with the chloroplasts of Crassula. As has been found with this enzyme in other CAM plants, a crude extract of leaves gathered during darkness and rapidly assayed for phosphoenolpyruvate carboxylase (PEPc) activity is relatively insensitive to inhibition by malate. After illumination begins, the PEPc activity becomes progressively more sensitive to malate. This enzyme also shows a diurnal change in activation by glucose-6-phosphate, with the enzyme from dark leaves more strongly activated than that from leaves in the light.

When the enzyme is partially purified in the presence of malate, the characteristic sensitivity of the day leaf enzyme is largely retained. Partial purification of the enzyme from dark leaves results in a small increase in sensitivity to malate inhibition.

Partially purified enzyme is found by polyacrylamide gel electrophoresis analysis to have two bands of PEPc activity. In enzymes from dark leaves, the slower moving band predominates, but in the light, the faster moving band is preponderant. Both of these bands are shown by sodium dodecyl sulfate-polyacrylamide gel electrophoresis to be composed of the same subunit of 103,000 daltons.

The enzyme partially purified from night leaves has a pH optimum of 5.6, and is relatively insensitive to malate inhibition over the range from pH 4.5 to 8. The enzyme from day leaves has a pH optimum of 6.6 and is strongly inhibited by malate at pH values below 7, but becomes insensitive at higher pH values.

Gel filtration of partially purified PEPc showed two activity peaks, one corresponding approximately to a dimer of the single subunit, and the other twice as large. The larger protein was relatively insensitive to malate inhibition, the smaller was strongly inhibited by malate.

Kinetic studies showed that malate is a mixed type inhibitor of the sensitive, day, enzyme, increasing Km for phosphoenolpyruvate and reducing Vmax. With the insensitive, night, enzyme, malate is a K type inhibitor, reducing the Km for phosphoenolpyruvate, but having little effect on Vmax. The inhibition of the insensitive enzyme by malate appears to be hysteretic, taking several minutes to be expressed during assay, probably indicating a change in the conformation or aggregation state of the enzyme.

Activation by glucose-6-phosphate is of the mixed type for the day form of the enzyme, causing both a decreased Km for phosphoenolpyruvate and an increased Vmax, but the night, or insensitive, form shows only an increase in Vmax in response to glucose-6-phosphate.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号