首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
角鲨烯因其具有良好的抗氧化功能而被广泛应用于食品、医药、化妆品、工业应用等领域。本实验在大肠杆菌中构建角鲨烯合成途径,通过对其合成途径中关键限速酶(1-脱氧-D-木酮糖-5-磷酸合酶和异戊烯基二磷酸异构酶)过表达的方法进行初步调控,使角鲨烯的产量提升了近三倍。之后采用单因素试验对其发酵培养基和培养条件进行优化,以此来提高角鲨烯的产量。优化发酵条件后,使用最优发酵培养基——TB培养基,在最佳发酵条件:37℃,220r/min培养至OD600约为1.2时加入终浓度为0.1mmol/L的IPTG诱导剂,25℃条件下诱导48h,角鲨烯产量可达73.88mg/L。  相似文献   

2.
利用多酶级联催化反应合成精细化学品是近年来生物催化领域的研究热点。通过构建体外多酶级联体系,可以替代传统的化学合成法,实现多种双官能团功能化学品的绿色合成。本文系统介绍了多酶级联催化反应中不同级联方式的特点及其构建策略,总结了级联反应中元件酶常用的筛选方法、NAD(P)H和ATP等辅酶的再生策略及其在多酶级联反应中的应用,并且阐述了多酶级联催化反应体系在6种双官能团功能化学品,包括ω-氨基脂肪酸、烷基内酰胺、α,ω-二元羧酸、α,ω-二胺、α,ω-二醇、ω-氨基醇合成中的应用。  相似文献   

3.
4.
Ubiquinone (Coenzyme Q; abbreviation, UQ) acts as a mobile component of the respiratory chain by playing an essential role in the electron transport system, and has been widely used in pharmaceuticals. The biosynthesis of UQ involves 10 sequential reactions brought about by various enzymes. In this study we have cloned, expressed the decaprenyl diphosphate synthase, designated dps gene, from Agrobacterium tumefaciens, and succeeded in detecting UQ-10 in addition to innate UQ-8 in Escherichia coli. Furthermore, the production of UQ-10 was higher than UQ-8. To establish an efficient expression system for UQ-10 production, we used genes, including ubiC, ubiA, and ubiG involved in UQ biosynthesis in E. coli, to construct a better co-expression system. The expression coupled by dps and ubiCA was effective for increasing UQ-10 production by five times than that by expressing single dps gene in the shake flask culture. To study for a large-scale production of UQ-10 in E. coli, fed-batch fermentations were implemented to achieve a high cell density culture. A cell concentration of 85.40 g/L and 94.58 g/L dry cell weight (DCW), and UQ-10 content of 50.29 mg/L and 45.86 mg/L was obtained after 32.5 h and 27.5 h of cultivation, subsequent to isopropyl-β-d-thiogalactopy ranoside and lactose induction, respectively. In addition, plasmid stability was maintained at high level throughout the fermentation.  相似文献   

5.
The gene encoding a deoxyriboaldolase (DERA) was cloned from the chromosomal DNA of Klebsiella pneumoniae B-4-4. This gene contains an open reading frame consisting of 780 nucleotides encoding 259 amino acid residues. The predicted amino acid sequence exhibited 94.6% homology with the sequence of DERA from Escherichia coli. The DERA of K. pneumoniae was expressed in recombinant E. coli cells, and the specific activity of the enzyme in the cell extract was as high as 2.5 U/mg, which was threefold higher than the specific activity in the K. pneumoniae cell extract. One of the E. coli transformants, 10B5/pTS8, which had a defect in alkaline phosphatase activity, was a good catalyst for 2-deoxyribose 5-phosphate (DR5P) synthesis from glyceraldehyde 3-phosphate and acetaldehyde. The E. coli cells produced DR5P from glucose and acetaldehyde in the presence of ATP. Under the optimal conditions, 100 mM DR5P was produced from 900 mM glucose, 200 mM acetaldehyde, and 100 mM ATP by the E. coli cells. The DR5P produced was further transformed to 2'-deoxyribonucleoside through coupling the enzymatic reactions of phosphopentomutase and nucleoside phosphorylase. These results indicated that production of 2'-deoxyribonucleoside from glucose, acetaldehyde, and a nucleobase is possible with the addition of a suitable energy source, such as ATP.  相似文献   

6.
7.
Guanosine 5′-diphosphate (GDP)-fucose is the indispensible donor substrate for fucosyltransferase-catalyzed synthesis of fucose-containing biomolecules, which have been found involving in various biological functions. In this work, the salvage pathway for GDP-fucose biosynthesis from Bacterioides fragilis was introduced into Escherichia coli. Besides, the biosynthesis of guanosine 5′-triphosphate (GTP), an essential substrate for GDP-fucose biosynthesis, was enhanced via overexpression of enzymes involved in the salvage pathway of GTP biosynthesis. The production capacities of metabolically engineered strains bearing different combinations of recombinant enzymes were compared. The shake flask fermentation of the strain expressing Fkp, Gpt, Gmk and Ndk obtained the maximum GDP-fucose content of 4.6 ± 0.22 μmol/g (dry cell mass), which is 4.2 fold that of the strain only expressing Fkp. Through fed-batch fermentation, the GDP-fucose content further rose to 6.6 ± 0.14 μmol/g (dry cell mass). In addition to a better productivity than previous fermentation processes based on the de novo pathway for GDP-fucose biosynthesis, the established schemes in this work also have the advantage to be a potential avenue to GDP-fucose analogs encompassing chemical modification on the fucose residue.  相似文献   

8.
异戊二烯是橡胶合成的重要前体物质。为了提高菌株的异戊二烯产量,本实验室在研究中构建了一株异戊二烯产气的菌株BW-01,基于蛋白质预算理论的指导,理性设计通过改变质粒拷贝数、增加稀有密码子等合成生物学手段调控关键限速酶编码基因表达,从而提高大肠杆菌外源MVA代谢途径的异戊二烯产量。摇瓶发酵实验中我们构建的新产气菌株BW-07比原有的产气菌株BW-01的产量提高了73%,达到了761.1 mg/L。为后续菌株改造及进行发酵罐实验奠定了基础。  相似文献   

9.
紫苏醇,即[4-异丙烯基-1-环己烯]甲醇,是一种具有类似芳樟醇和松油醇特殊气味的单环单萜烯醇。在医药、食品和化妆品等行业具有广阔市场空间和研究价值。文中研究了以工程大肠杆菌通过甲羟戊酸途径合成紫苏醇的方法。首先在大肠杆菌中构建来源于粪肠球菌的MVA代谢途径合成柠檬烯,随后柠檬烯通过细胞色素P450烷烃羟化酶的羟基化转化为紫苏醇。然后将构建的紫苏醇合成菌株在摇瓶发酵条件下进行优化,研究发现工程大肠杆菌以葡萄糖为原料,通过MVA代谢途径可合成约50.12 mg/L的紫苏醇。本研究构建合成紫苏醇的MVA代谢途径也可用于其他萜类化合物的合成,为今后生物法合成萜类化合物提供了理论依据和技术支持。  相似文献   

10.
Outer membrane vesicles (OMVs) are extracellular vesicles released from the surface of Gram-negative bacteria, including Escherichia coli. Several gene-deficient mutants relating to envelope stress (nlpI and degP) and phospholipid accumulation in the outer leaflet of the outer membrane (mlaA and mlaE) increase OMV production. This study examined the combinatorial deletion of these genes in E. coli and its effect on OMV production. The nlpI and mlaE double-gene-knockout mutant (ΔmlaEΔnlpI) showed the highest OMV production. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis-based quantitative analysis showed that OMV production by strain ΔmlaEΔnlpI was ~30 times that by the wild-type (WT). In addition, to evaluate the protein secretion capacity of OMVs, a green fluorescent protein (GFP) fused with outer membrane protein W (OmpW) was expressed in OMVs. Western blot analysis showed that GFP secretion through OMVs reached 3.3 mg/L in the culture medium of strain ΔmlaEΔnlpI/gfp, 500 times that for the WT. Our approach using OMVs for extracellular protein secretion in E. coli is an entirely new concept compared with existing secretion systems.  相似文献   

11.
Glycolate is a bulk chemical which has been widely used in textile, food processing, and pharmaceutical industries. Glycolate can be produced from sugars by microbial fermentation. However, when using glucose as the sole carbon source, the theoretical maximum carbon molar yield of glycolate is 0.67 mol/mol due to the loss of carbon as CO2. In this study, a synergetic system for simultaneous utilization of acetate and glucose was designed to increase the carbon yield. The main function of glucose is to provide NADPH while acetate to provide the main carbon backbone for glycolate production. Theoretically, 1 glucose and 5 acetate can produce 6 glycolate, and the carbon molar yield can be increased to 0.75 mol/mol. The whole synthetic pathway was divided into two modules, one for converting acetate to glycolate and another to utilize glucose to provide NADPH. After engineering module I through activation of acs, gltA, aceA and ycdW, glycolate titer increased from 0.07 to 2.16 g/L while glycolate yields increased from 0.04 to 0.35 mol/mol-acetate and from 0.03 to 1.04 mol/mol-glucose. Module II was then engineered to increase NADPH supply. Through deletion of pfkA, pfkB, ptsI and sthA genes as well as upregulating zwf, pgl and tktA, glycolate titer increased from 2.16 to 4.86 g/L while glycolate yields increased from 0.35 to 0.82 mol/mol-acetate and from 1.04 to 6.03 mol/mol-glucose. The activities of AceA and YcdW were further increased to pull the carbon flux to glycolate, which increased glycolate yield from 0.82 to 0.92 mol/mol-acetate. Fed-batch fermentation of the final strain NZ-Gly303 produced 73.3 g/L glycolate with a productivity of 1.04 g/(L·h). The acetate to glycolate yield was 0.85 mol/mol (1.08 g/g), while glucose to glycolate yield was 6.1 mol/mol (2.58 g/g). The total carbon molar yield was 0.60 mol/mol, which reached 80% of the theoretical value.  相似文献   

12.
Isopentenyl diphosphate (IPP) is the common, five-carbon building block in the biosynthesis of all carotenoids. IPP in Escherichia coli is synthesized through the nonmevalonate pathway, which has not been completely elucidated. The first reaction of IPP biosynthesis in E. coli is the formation of 1-deoxy-D-xylulose-5-phosphate (DXP), catalyzed by DXP synthase and encoded by dxs. The second reaction in the pathway is the reduction of DXP to 2-C-methyl-D-erythritol-4-phos- phate, catalyzed by DXP reductoisomerase and encoded by dxr. To determine if one or more of the reactions in the nonmevalonate pathway controlled flux to IPP, dxs and dxr were placed on several expression vectors under the control of three different promoters and transformed into three E. coli strains (DH5alpha, XL1-Blue, and JM101) that had been engineered to produce lycopene. Lycopene production was improved significantly in strains transformed with the dxs expression vectors. When the dxs gene was expressed from the arabinose-inducible araBAD promoter (P(BAD)) on a medium-copy plasmid, lycopene production was twofold higher than when dxs was expressed from the IPTG-inducible trc and lac promoters (P(trc) and P(lac), respectively) on medium-copy and high-copy plasmids. Given the low final densities of cells expressing dxs from IPTG-inducible promoters, the low lycopene production was probably due to the metabolic burden of plasmid maintenance and an excessive drain of central metabolic intermediates. At arabinose concentrations between 0 and 1.33 mM, cells expressing both dxs and dxr from P(BAD) on a medium-copy plasmid produced 1.4-2.0 times more lycopene than cells expressing dxs only. However, at higher arabinose concentrations lycopene production in cells expressing both dxs and dxr was lower than in cells expressing dxs only. A comparison of the three E. coli strains transformed with the arabinose-inducible dxs on a medium-copy plasmid revealed that lycopene production was highest in XL1-Blue.  相似文献   

13.
Weiss B 《Journal of bacteriology》2007,189(21):7922-7926
When thymidylate production is diminished by a mutation affecting dCTP deaminase, Escherichia coli is known to use an alternate pathway involving deoxycytidine as an intermediate. The pathway requires the gene for any of three nucleoside diphosphate kinases (ndk, pykA, or pykF) and the gene for a 5′-nucleotidase (yfbR).  相似文献   

14.
Catechol 2,3-oxygenase was produced by Escherichia coli, harbouring the recombinant plasmid pBH100 which contained the pheB gene cloned from phenol-degrading Pseudomonas putida BH, and was applied for the determination of catechol in the liquor. E. coli JM103 (pBH100) and C600 (pBH100) showed, respectively, about 5 and 8.5 times higher activities than that of P. putida BH. Using the crude extract prepared from the culture broth of the recombinant, catechol between 0.1 and 3.0 g/ml could be determined quantitatively in phosphate buffer, synthetic sewage and in mixtures of phenol, benzoate and sallcylate, and also in sodium pyruvate solution. In addition to catechol, 3-methylcatechol, 4-methylcatechol and 4-chlorocatechol could be determined. Oxygenase activity of the crude extract was maintained completely during the 100-day storage at –20°C after being freeze-dried with 10% acelone.M. Fujita, M. Ike, Y. Kawagoshi and N. Shinohara are with the Department of Environmental Engineering, Osaka University, 2-1, Yamadaoka, Suita, Osaka 565, Japan. T. Kamiya is with the Central Research Laboratory of Mitsubishi Electric Co., Amagasaki, Hyogo 661, Japan.  相似文献   

15.
The isoprenoid pathway is a versatile biosynthetic network leading to over 23,000 compounds. Similar to other biosynthetic pathways, the production of isoprenoids in microorganisms is controlled by the supply of precursors, among other factors. To engineer a host that has the capability to supply geranylgeranyl diphosphate (GGPP), a common precursor of isoprenoids, we cloned and overexpressed isopentenyl diphosphate (IPP) isomerase (encoded by idi) from Escherichia coli and GGPP synthase (encoded by gps) from the archaebacterium Archaeoglobus fulgidus. The latter was shown to be a multifunctional enzyme converting dimethylallyl diphosphate (DMAPP) to GGPP. These two genes and the gene cluster (crtBIYZW) of the marine bacterium Agrobacterium aurantiacum were introduced into E. coli to produce astaxanthin, an orange pigment and antioxidant. This metabolically engineered strain produces astaxanthin 50 times higher than values reported before. To determine the rate-controlling steps in GGPP production, the IDI-GPS pathway was compared with another construct containing idi, ispA (encoding farnesyl diphosphate (FPP) synthase in E. coli), and crtE (encoding GGPP synthase from Erwinia uredovora). Results show that the conversion from FPP to GGPP is the first bottleneck, followed sequentially by IPP isomerization and FPP synthesis. Removal of these bottlenecks results in an E. coli strain providing sufficient precursors for in vivo synthesis of isoprenoids.  相似文献   

16.
Farnesol (FOH) production has been carried out in metabolically engineered Escherichia coli. FOH is formed through the depyrophosphorylation of farnesyl pyrophosphate (FPP), which is synthesized from isopentenyl pyrophosphate (IPP) and dimethylallyl pyrophosphate (DMAPP) by FPP synthase. In order to increase FPP synthesis, E. coli was metabolically engineered to overexpress ispA and to utilize the foreign mevalonate (MVA) pathway for the efficient synthesis of IPP and DMAPP. Two‐phase culture using a decane overlay of the culture broth was applied to reduce volatile loss of FOH produced during culture and to extract FOH from the culture broth. A FOH production of 135.5 mg/L was obtained from the recombinant E. coli harboring the pTispA and pSNA plasmids for ispA overexpression and MVA pathway utilization, respectively. It is interesting to observe that a large amount of FOH could be produced from E. coli without FOH synthase by the augmentation of FPP synthesis. Introduction of the exogenous MVA pathway enabled the dramatic production of FOH by E. coli while no detectable FOH production was observed in the endogenous MEP pathway‐only control. Biotechnol. Bioeng. 2010;107: 421–429. © 2010 Wiley Periodicals, Inc.  相似文献   

17.
We constructed a biosynthetic pathway of isoprene production in Escherichia coli by introducing isoprene synthase (ispS) from Populus alba. 1-deoxy-d-xylulose 5-phosphate synthase (dxs), 1-deoxy-d-xylulose 5-phosphate reductoisomerase (dxr) and isopentenyl diphosphate (IPP) isomerase (idi) were overexpressed to enhance the isoprene production. The isoprene production was improved 0.65, 0.16, and 1.22 fold over the recombinant BL21 (pET-30a-ispS), respectively, and idi was found to be a key regulating point for isoprene production. In order to optimize the production of isoprene in E. coli, we attempted to construct polycistronic operons based on pET-30a with genes dxs, dxr, and idi in various orders. The highest isoprene production yield of 2.727 mg?g?1?h?1 (per dry weight) was achieved by E. coli transformed with pET-30a-dxs/dxr/idi. Interestingly, the gene order was found to be consistent with that of the metabolic pathway. This indicates that order of genes is a significant concern in metabolic engineering and a sequential expression pattern can be optimized according to the biosynthetic pathway for efficient product synthesis.  相似文献   

18.
研究在大肠杆菌中重建了红霉素大环内酯(6-脱氧-红霉内酯B,6dEB)合成通路。先将参与6dEB合成所必需的基因分别克隆于多基因串联共表达载体中,获得单基因重组质粒;再利用载体中XbaⅠ/SpeⅠ互为同尾酶的特性实现相关基因的串联组合,获得多基因重组质粒pBJ130和pBJ144。将多基因重组质粒共转化BAP1,获得含6dEB合成通路的工程菌株BAP1(pBJ130/pBJ144),SDS-PAGE检测结果显示通路中各基因均有明显的表达;进行低温发酵,产物粗提后质谱检测到6dEB,其产量约10 mg/L。表明成功实现了6dEB合成通路在大肠杆菌中的重建,为红霉素大环内酯的改造和修饰提供了平台,也为红霉素合成通路在大肠杆菌中的完整重建以及聚酮类抗生素的组合性生物合成提供了参考。  相似文献   

19.
Escherichia coli is a valuable commercial host for the production of heterologous proteins. We used elementary mode analysis to identify all possible genetically independent pathways for the production of three specific recombinant proteins, green fluorescent protein, savinase and an artificial protein consisting of repeating units of a five-amino-acid cassette. Analysis of these pathways led to the identification of the most efficient pathways for the production of each of these proteins. The results indicate that the amino acid composition of expressed proteins has a profound effect on the number and identity of possible pathways for the production of these proteins. We show that several groups of elementary modes produce the same ratio of biomass and recombinant protein. The pattern of occurrence of these modes is dependent on the amino acid composition of the specific foreign protein produced. These pathways are formed as systemic combinations of other pathways that produce biomass or foreign protein alone after the elimination of fluxes in specific internal reversible reactions or the reversible carbon dioxide exchange reaction. Since these modes represent pathway options that enable the cell to produce biomass and protein without utilizing these reactions, removal of these reactions would constrain the cells to utilize these modes for producing biomass and foreign protein at constant ratios.  相似文献   

20.
The diaminopimmelate (DAP) pathway for lysine biosynthesis in Escherichia coli and some species of Bacillus are presented in the review. It was shown that the major variations of the DAP pathway of Bacillus subtilis from that described and extensively studied in Escherichia coli exist.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号