首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
4.
5.
陆地生态系统混合凋落物分解研究进展   总被引:26,自引:8,他引:18  
李宜浓  周晓梅  张乃莉  马克平 《生态学报》2016,36(16):4977-4987
凋落物分解在陆地生态系统养分循环与能量流动中具有重要作用,是碳、氮及其他重要矿质养分在生态系统生命组分间循环与平衡的核心生态过程。自然生态系统中,植物群落大多具有较高的物种丰富度和多样性,其混合凋落物在分解过程中也更有可能发生养分传递、化学抑制等种间互作,形成多样化的分解生境,多样性较高的分解者类群以及复杂的级联效应分解,这些因素和过程均对研究混合凋落物分解过程、揭示其内在机制形成了极大的挑战。从构成混合凋落物物种丰富度和多样性对分解生境、分解者多样性及其营养级联效应的影响等方面,综合阐述混合凋落物对陆地生态系统凋落物分解的影响,探讨生物多样性在凋落物分解中的作用。通过综述近些年的研究发现,有超过60%的混合凋落物对其分解速率的影响存在正向或负向的效应。养分含量有差异的凋落物混合分解过程中,分解者优先利用高质量凋落物,使低质量的凋落物反而具有了较高的养分有效性,引起低质量凋落物分解加快并最终使混合凋落物整体分解速率加快;而凋落物物种丰富度对土壤动物群落总多度有轻微的影响或几乎没有影响,但是对线虫和大型土壤动物的群落组成和多样性有显著影响,并随着分解阶段呈现一定动态变化;混合凋落物改变土壤微生物生存的理化环境,为微生物提供更多丰富的分解底物和养分,优化微生物种群数量和群落结构及其分泌酶的活性,并进一步促进了混合凋落物的分解。这些基于植物-土壤-分解者系统的动态分解过程的研究,表明混合凋落物分解作用不只是经由凋落物自身质量的改变,更会通过逐级影响分解者多样性水平而进一步改变分解速率和养分释放动态,说明生物多样性确实在一定程度上调控凋落物分解及其养分释放过程。  相似文献   

6.
Theories on the evolution of litter size among organisms were reexamined. The competition theories, including that based on the r−K-selection hypothesis, could not explain well why low-fecundity strategies have often evolved in stressful environments such as mountain streams, deep sea and the antarctic, where interspecies competition is considered to be lax. The theory, based on Itô's (1980) concept of the procurability of food by the young, was considered to have greater generality because it could explain not only the above-mentioned cases but also those where small litter size is observed in habitats with high species diversity (where interspecific competition may be keen), such as tropical rain forest. Examination of the process of selection of high-fecundity and low-fecundity genotypes also suggested that the procurability of food by the young can best explain the evolution of low-fecundity. The concept of density-induced dispersal and a distinction between density-dependent and density-independent predation pressures should be incorporated into our discussions on the evolution of reproductive rates.  相似文献   

7.
Decomposition of bracken litter   总被引:2,自引:0,他引:2  
Investigations on the decomposition of bracken petioles, over a five-year period on six adjacent soil types, including moder-type humus, mull and peat, are reviewed. Changes in gross physical features, chemical composition, pH and dry weight are outlined. The succession of colonizing fungi is described and related to fungal activities.
Until the petioles were buried in the litter layer, decomposition occurred at different rates on the various sites, the rate on moder > mull > peat, but the sequence of events was similar. Large proportions of readily leached components were removed in the first few months, but 95% loss of dry matter was estimated to occur only after 11–23 years. The majority of fungi were species cosmopolitan on litter, the population becoming less specialized as decay advanced. The succession resembled those on some other woody tissues, lignin and cellulose decomposers predominating before sugar fungi. From field observations and laboratory experiments, the Basidiomycete Mycena galopus (Pers. ex Fr.) Kummer appeared to be the most active of the fungal decomposers.
Some ecological and economic implications of the decomposition of bracken litter are briefly discussed, including its effect on soil type, and advantages of bracken compared with straw as bedding for farm animals.  相似文献   

8.
Summary A pot experiment withAlnus incana (L.) Moench growing in sand was set up to compare the amounts of nitrogen released from plants shoot litter with that released below ground as root litter and/or root exudation. No nitrogen fixation by free-living microorganisms was found in the sand and the increased nitrogen content of the plant + soil system was therefore due to nitrogen fixation byFrankia in the alder root-nodules. Most of the nitrogen released from the plants was in the nitrogen-rich leaf and other shoot litter. Only small amounts of nitrogen were found in the drainage water from the pots and were recorded as increased nitrogen content of the sand.  相似文献   

9.
To comprehend the potential consequences of biodiversity loss on the leaf litter decomposition process, a better understanding of its underlying mechanisms is necessary. Here, we hypothesize that positive litter mixture effects occur via complementary resource use, when litter species complement each other in terms of resource quality for detritivores. To investigate this, monocultures and mixtures of two leaf litter species varying in quality were allowed to decompose with and without a single macro-detritivore species (the terrestrial woodlice Oniscus asellus). Resource quality of the mixture was assessed by the mean concentration, the dissimilarity in absolute and relative concentrations, and the covariance between nitrogen (N), phosphorus (P) and calcium (Ca) supply. Our results clearly show that litter mixing effects were driven by differences in their resource quality for detritivores. In particular, complementary supply of N and P was a major driver of litter mixing effects. Interestingly, litter mixing effects caused by the addition of woodlice were predominantly driven by N dissimilarity, whereas in their absence, increased P concentration was the main driver of litter mixing effects. These results show that ultimately, litter diversity effects on decomposition may be driven by complementary resource use of the whole decomposer community (i.e., microbes and macro-detritivores).  相似文献   

10.
Varona L  Sorensen D  Thompson R 《Genetics》2007,177(3):1791-1799
An analysis of litter size and average piglet weight at birth in Landrace and Yorkshire using a standard two-trait mixed model (SMM) and a recursive mixed model (RMM) is presented. The RMM establishes a one-way link from litter size to average piglet weight. It is shown that there is a one-to-one correspondence between the parameters of SMM and RMM and that they generate equivalent likelihoods. As parameterized in this work, the RMM tests for the presence of a recursive relationship between additive genetic values, permanent environmental effects, and specific environmental effects of litter size, on average piglet weight. The equivalent standard mixed model tests whether or not the covariance matrices of the random effects have a diagonal structure. In Landrace, posterior predictive model checking supports a model without any form of recursion or, alternatively, a SMM with diagonal covariance matrices of the three random effects. In Yorkshire, the same criterion favors a model with recursion at the level of specific environmental effects only, or, in terms of the SMM, the association between traits is shown to be exclusively due to an environmental (negative) correlation. It is argued that the choice between a SMM or a RMM should be guided by the availability of software, by ease of interpretation, or by the need to test a particular theory or hypothesis that may best be formulated under one parameterization and not the other.  相似文献   

11.
12.
Empirical research in streams has demonstrated that terrestrial subsidies of tree leaf litter influence multiple community factors including composition, diversity and growth of individuals. However, little research has examined the importance of tree litter species on wetlands, which are ubiquitous across the landscape and serve as important habitats for a unique and diverse community of organisms. Using outdoor mesocosms, we assessed the impact of 12 litter monocultures and three litter mixtures (from both broadleaf and conifer trees) on pond communities containing gray tree frog tadpoles Hyla versicolor, periphyton, phytoplankton and zooplankton. We found that leaf litter species had substantial and differential impacts on all trophic groups in the community including effects on algal abundance, zooplankton density and amphibian growth. In many instances, patterns of responses were specific to individual litter species yet some responses, including both pH values and periphyton biomass, were generalizable to broad taxonomic groups. In addition, while most responses of litter mixtures were additive, we found evidence for antagonistic effects of litter mixing among responses of periphyton and amphibian body mass. Our results highlight the potential impact of human and naturally driven changes in forest composition on wetland communities through associated changes in leaf litter.  相似文献   

13.
The dependence of fungal decomposition of leaf litter on incubation temperature and litter types used as substrata was assessed under pure culture conditions. Isolates of Xylaria sp., a major ligninolytic fungus in cool temperate forests in Japan, were used as the fungal material. Xylaria sp. is mesophilic; maximum growth and decomposition occurred at 25°C. In the temperature test, the decomposition pattern of beech leaf litter by three isolates of Xylaria sp. changed at a threshold at 25°C. Cellulolytic activity increased with temperature from 5 to 25°C, whereas above 25°C ligninolytic activity increased at the expense of cellulolytic activity, leading to suppressed overall decomposition as a result of the higher temperature. The mass loss of leaf litter caused at 20°C by an isolate of Xylaria sp. was variable among 15 litter types and was correlated negatively with acid-unhydrolyzable residue (AUR) content and positively with total carbohydrate content for the 15 litter types. The effects of temperature and litter type on the growth and decomposition of leaf litter by Xylaria sp. may have implications for changes in fungal decomposition of leaf litter that would be predicted in response to future environmental changes.  相似文献   

14.
The leaf litter environment (single species versus mixed species), and interactions between litter diversity and macrofauna are thought to be important in influencing decomposition rates. However, the role of soil macrofauna in the breakdown of different species of leaf litter is poorly understood. In this study we examine the multiple biotic controls of decomposition – litter quality, soil macrofauna and litter environment and their interactions. The influence of soil macrofauna and litter environment on the decomposition of six deciduous tree species (Fraxinus excelsior L., Acer pseudoplatanus L., Acer campestre L., Corylus avellana L., Quercus robur L., Fagus sylvatica L.) was investigated in a temperate forest, Wytham Woods, Southern England. We used litterbags that selectively excluded macrofauna to assess the relative importance of macrofauna versus microbial, micro and mesofauna decomposition, and placed single species bags in either conspecific single species or mixed species litter environments. The study was designed to separate plant species composition effects on litter decomposition rates, allowing us to evaluate whether mixed species litter environments affect decomposition rates compared to single species litter environments, and if so whether the effects vary among litter species, over time, and with regard to the presence of soil macrofauna. All species had faster rates of decomposition when macrofauna were present, with 22–41% of the total mass loss attributed to macrofauna. Macrofauna were most important for easily decomposable species as soon as the leaves were placed on the ground, but were most important for recalcitrant species after nine months in the field. The mass loss rates did not differ between mixed and single species litter environments, indicating that observed differences between single species and mixed species litterbags in previous field studies are due to the direct contact of neighbouring species inside the litterbag rather than the litter environment in which they are placed.  相似文献   

15.
Synergistic effects on decomposition in litter mixtures have been suggested to be due to the transfer of nitrogen from N‐rich to N‐poor species. However, the dominant pathway and the underlying mechanisms remain to be elucidated. We conducted an experiment to investigate and quantify the control mechanisms for nitrogen transfer between two litter species of contrasting nitrogen status (15N labeled and unlabeled Fagus sylvatica and Fraxinus excelsior) in presence and absence of micro‐arthropods. We found that 15N was predominantly transferred actively aboveground by saprotrophic fungi, rather than belowground or passively by leaching. However, litter decomposition remained unaffected by N‐dynamics and was poorly affected by micro‐arthropods, suggesting that synergistic effects in litter mixtures depend on complex environmental interrelationships. Remarkably, more 15N was transferred from N‐poor beech than N‐rich ash litter. Moreover, the low transfer of 15N from ash litter was insensitive to destination species whereas the transfer of 15N from labeled beech litter to unlabeled beech was significantly greater than the amount of 15N transferred to unlabeled ash suggesting that processes of nitrogen transfer fundamentally differ between litter species of different nitrogen status. Microbial analyses suggest that nitrogen of N‐rich litter is entirely controlled by bacteria that hamper nitrogen capture of microbes in the environment supporting the source‐theory. In contrast, nitrogen of N‐poor fungal dominated litter is less protected and transferable depending on the nitrogen status and the transfer capacity of the microbial community of the co‐occurring litter species supporting the gradient‐theory. Thus, our results challenge the traditional view regarding the role of N‐rich litter in decomposing litter mixtures. We rather suggest that N‐rich litter is only a poor nitrogen source, whereas N‐poor litter, can act as an important nitrogen source in litter mixtures. Consequently both absolute and relative differences in initial litter C/N ratios of co‐occurring litter species need to be considered for understanding nitrogen dynamics in decomposing litter mixtures.  相似文献   

16.
根系在凋落物层生长对凋落叶分解及酶活性的影响   总被引:1,自引:0,他引:1  
根系向凋落物层生长是森林生态系统存在的普遍现象,研究根系存在对凋落物分解的影响对理解森林生态系统的养分物质循环具有重要意义.在福建三明市楠木和格氏栲林进行1年的凋落叶分解试验,设置有根处理和无根处理(对照),研究根系生长对凋落叶分解速率、养分释放和酶活性的影响.结果表明:在分解360 d后,有根处理楠木和格氏栲凋落叶干...  相似文献   

17.
We examined how the litter invertebrate communities were affected by the temporal changes in the mass and structural complexity of the litter resources by adding and removing litter on the forest floor of a temperate conifer plantation (Cryptomeria japonica) in Japan. We showed that litter mass and depth in the litter-addition (L+) plots changed rapidly into a steady-state condition similar to those in the control plots, mainly due to accelerated decomposition processes during the rainy season. Higher area-based densities of litter invertebrates in the L+ plots, similar mass-based densities between the L+ and control plots, and significant positive correlations between litter mass and the number of individuals implied that the abundance of litter invertebrates would be governed by litter mass rather than by the litter depth. Many litter invertebrates including detritivores were collected even in the litter-removal (L−) area. The relative abundances of invertebrate predators collecting pitfall traps were higher in the L− plots and lower in the L+ plots compared to those in the control plots, whereas those collecting Tullgren funnels were higher in the L+ plots than in the control plots. In the L+ plots, the range of variation in the community compositions among the samples decreased significantly over time in response to a drastic decrease in litter mass, in contrast to the control plots, which showed a relatively constant community composition during the study period. Our litter manipulation experiment reveals some of the mechanisms responsible for maintaining an equilibrium state of forest-floor litter mass and for the responses of litter invertebrate communities to temporal changes in the litter.  相似文献   

18.
Enhancing litter retention in streams   总被引:3,自引:0,他引:3  
1. Dobson & Hildrew (1992) enhanced leaf litter retention in four streams by placing small plastic leaf traps in manipulated stretches. Litter standing crop and the local abundance of shredders was increased, relative to control stretches, in all sites save one which was naturally highly retentive. These results could indicate food limitation in these detritivores, but might have occurred in response to an altered hydraulic regime or increased habitat availability. 2. Shear stress was characterized in the four streams manipulated by Dobson & Hildrew (1992). This was carried out on three occasions in both the manipulated and control stretches of each stream. While there was evidence that the manipulation of retention did influence near-bed flows, these changes were not consistent enough to explain the response of shredding invertebrates to experimental manipulation. 3. In a further experiment, we exposed real and artificial leaves to colonization by invertebrates. Shredders, collectors and predators all colonized real leaves in preference to plastic substitutes. 4. These results support the hypothesis that detritivorous macroinvertebrates exploit aggregations of leaf litter primarily as sources of food, rather than as habitat or habitat modifier.  相似文献   

19.
根系在凋落物层中的生长及其对凋落物分解的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
凋落物分解是生态系统养分循环的重要过程, 直接影响着生态系统功能。植物根系作为重要的生物因子调控着凋落物分解过程, 然而这一重要作用却在凋落物分解的研究中长期被忽视。凋落物中下层养分充足、保水能力强, 为根系生长提供了良好环境; 同时, 生长进入凋落物层的根系通过激发效应、共生真菌、N吸收等方式对分解过程产生了重要影响。该文针对根系生长及其影响因素、根系对凋落物分解的影响及其内在机制等关键方面进行了综述, 并提出了根系生长与凋落物分解之间关系的概念模型, 以期引起大家对这个领域的关注, 并为根系与凋落物分解之间关系的研究提供良好的借鉴。  相似文献   

20.
凋落物分解是生态系统营养物质循环的核心过程,而土壤微生物群落在凋落物分解过程中扮演着极其重要且不可替代的角色。随着生物多样性的丧失日益严峻,探讨凋落物多样性及组成对凋落物分解和土壤微生物群落的影响,不仅有助于了解凋落物分解的内在机制,而且可为退化草原生态系统的恢复提供参考。以内蒙古呼伦贝尔草原退化恢复群落中的草本植物为研究对象,依据植物多度、盖度、频度和物种的重要值及其在群落中的恢复程度筛选出排序前4的羊草(Leymus chinensis)、茵陈蒿(Artemisia capillaris)、麻花头(Serratula centauroides)、二裂委陵菜(Potentilla bifurca)的凋落物为实验材料,通过设置3种凋落物多样性水平(1,2,4),包括11种凋落物组合(单物种凋落物共4种,两物种凋落物混合共6种,四物种凋落物混合共1种),利用磷脂脂肪酸(PLFA)方法来研究分解60 d后凋落物多样性及组成对凋落物分解和土壤微生物群落的影响。结果表明:(1)凋落物物种多样性仅对C残余率具有显著影响,表现在两物种混合凋落物C残余率显著低于单物种凋落物,而凋落物组成对所观测的4个凋落物分解参数(质量、C、N残余率以及C/N)均具有显著影响;(2)凋落物物种多样性对细菌(B)含量具有显著影响,而凋落物组成对真菌(F)含量具有显著影响,两者对F/B以及微生物总量均无显著影响;(3)冗余分析结果表明凋落物组成与凋落物分解相关指标(凋落物质量、C、N残余率及C/N)和土壤微生物(真菌、细菌含量)的相关关系高于凋落物多样性。(4)进一步建立结构方程模型(Structural Equation Model,SEM)发现,凋落物初始C含量对凋落物质量、C、N残余率及C/N有显著正的直接影响;凋落物木质素含量对凋落物质量、C、N残余率有显著正的直接影响;凋落物初始N含量对N残余率有显著正的直接影响,而对C残余率及C/N有显著负的直接影响;凋落物初始C/N对凋落物质量、N残余率有显著正的直接影响,而对C/N有显著负的直接影响。此外,凋落物初始C、N、木质素含量及C/N均对真菌含量具有显著正影响,并可通过真菌对凋落物质量分解产生显著负的间接影响。以上结果表明该退化恢复区域优势种凋落物分解以初始C、木质素为主导,主要通过土壤真菌影响凋落物的分解进程,这将减缓凋落物的分解速率进而减慢草原生态系统的进程。这些结果为凋落物多样性及组成对自身分解和土壤微生物群落的影响提供了实验依据,也为进一步分析凋落物分解内在机制以及草原生态系统的恢复提供了数据参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号