首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This article describes a simple and rapid method for efficient production of chimeric products by polymerase chain reaction (PCR). This protocol is amenable to site-directed mutagenesis strategies and can be done without the time-consuming gel purification step. The PCR products generated can also be directly used for direct gene transfer into plant cells without further subcloning to test construction strategies. An erratum to this article is available at .  相似文献   

2.
The "megaprimer" method of site-directed mutagenesis   总被引:121,自引:0,他引:121  
We describe a simple and efficient method of mutagenesis which we term the "megaprimer" method. The method utilizes three oligonucleotide primers to perform two rounds of polymerase chain reaction. In the method, the product of the first polymerase chain reaction is used as one of the polymerase chain reaction primers (a "megaprimer") for the second polymerase chain reaction. When a phage promoter and a translational initiation signal are attached to the appropriate oligonucleotide primer, the mutant protein can be generated without any in vivo manipulations. To illustrate the method, two mutations in the catalytic domain of the human factor IX gene have been generated. The substitution of megaprimers for oligonucleotide primers may have utility in other polymerase chain reaction-based methods.  相似文献   

3.
Wan H  Li Y  Fan Y  Meng F  Chen C  Zhou Q 《Analytical biochemistry》2012,420(2):163-170
Site-directed mutagenesis has become routine in molecular biology. However, many mutants can still be very difficult to create. Complicated chimerical mutations, tandem repeats, inverted sequences, GC-rich regions, and/or heavy secondary structures can cause inefficient or incorrect binding of the mutagenic primer to the target sequence and affect the subsequent amplification. In theory, these problems can be avoided by introducing the mutations into the target sequence using mutagenic fragments and so removing the need for primer-template annealing. The cassette mutagenesis uses the mutagenic fragment in its protocol; however, in most cases it needs to perform two rounds of mutagenic primer-based mutagenesis to introduce suitable restriction enzyme sites into templates and is not suitable for routine mutagenesis. Here we describe a highly efficient method in which the template except the region to be mutated is amplified by polymerase chain reaction (PCR) and the type IIs restriction enzyme-digested PCR product is directly ligated with the mutagenic fragment. Our method requires no assistance of mutagenic primers. We have used this method to create various types of difficult-to-make mutants with mutagenic frequencies of nearly 100%. Our protocol has many advantages over the prevalent QuikChange method and is a valuable tool for studies on gene structure and function.  相似文献   

4.
The effects of photocaged nucleosides on the DNA polymerization reaction was investigated, finding that most polymerases are unable to recognize and read through the presence of a single caging group on the DNA template. Based on this discovery, a new method of introducing mutations into plasmid DNA via a light-mediated mutagenesis protocol was developed. This methodology is advantageous over several common approaches in that it requires the use of only two polymerase chain reaction primers, and does not require any restriction sites or use of restriction enzymes. Additionally, this approach enables not only site-directed mutations, but also the insertion of DNA strands of any length into plasmids and the deletion of entire genes from plasmids.  相似文献   

5.
W Ito  H Ishiguro  Y Kurosawa 《Gene》1991,102(1):67-70
A simple and fast method for introducing a series of mutations in cloned DNA has been developed. The polymerase chain reaction (PCR) has been used for site-directed mutagenesis. Because mutations can be introduced only within the primer sequences used for PCR, a suitable restriction site in the vicinity of the mutated nucleotide is required to permit recloning. Several methods have been devised to overcome this limitation. Our present method is a modification of the overlap extension method [Ho et al., Gene 77 (1989) 51-57], and has some advantages over this and other published methods. In our method, three common primers and a series of primers specific for various mutations are chemically synthesized. Once the proper oligodeoxyribonucleotides are selected as common primers, each mutation requires only one additional primer. Therefore, this method is very useful for introducing many mutations in various sites of the target DNA. We describe our protocol for the site-directed mutagenesis and an example of the introduction of several mutations in the hen egg-white lysozyme-encoding gene.  相似文献   

6.
We have developed a novel polymerase chain reaction (PCR) method that permits the rapid generation of site-specific mutants and recombinant DNA constructs with a minimum number of steps and primers. DNA segments are modified by using amplifying primers that add homologous ends to the polymerase chain reaction product(s). These homologous ends undergo recombination in vivo following transformation of recA-E. coli strains used routinely in cloning. In vivo circularization of PCR products containing plasmid sequences with a selective marker permits the rapid cloning of the desired mutant or recombinant. In the mutagenesis protocol, 7 of the 12 clones contained the product of interest, and 6 of these clones had no detected error (50% of the clones without detected errors). In each of several recombination protocols, at least 50% of the clones tested contained the insert of interest without detected errors.  相似文献   

7.
A simple procedure is described for the efficient deletion of large DNA sequences. The method involves a combination of oligonucleotide-directed mutagenesis in bacteriophage M13 and amplification of the mutagenized product by polymerase chain reaction. In contrast to other protocols employing polymerase chain reaction, synthesis of only one specific primer is required. The efficiency of heteroduplex formation between mutagenic primers directing large deletions and single-stranded template is discussed.  相似文献   

8.
Bacterial cells can be differentially separated from soil colloids on the basis of their buoyant densities. By using this principle, a modified sucrose gradient centrifugation protocol has been developed for separating bacterial cells from most of the soil colloids. Since the bacterial cell suspension still contained some colloidal soil particles, which inhibited polymerase chain reaction amplification, a new "double" polymerase chain reaction method of analysis was adopted for amplification of Tn5-specific gene sequences. This new protocol allowed rapid detection of small numbers (1 to 10 CFU/g) of bacterial cells present in soil samples.  相似文献   

9.
Bacterial cells can be differentially separated from soil colloids on the basis of their buoyant densities. By using this principle, a modified sucrose gradient centrifugation protocol has been developed for separating bacterial cells from most of the soil colloids. Since the bacterial cell suspension still contained some colloidal soil particles, which inhibited polymerase chain reaction amplification, a new "double" polymerase chain reaction method of analysis was adopted for amplification of Tn5-specific gene sequences. This new protocol allowed rapid detection of small numbers (1 to 10 CFU/g) of bacterial cells present in soil samples.  相似文献   

10.
Site-specific mutagenesis and directional subcloning were accomplished by using the polymerase chain reaction to generate products that can recombine to form circular DNA. This DNA was transfected into E. coli without phosphorylation of primers, restriction enzyme digestion or ligation. Specifically, the polymerase chain reaction was used to generate products that when combined, denatured and reannealed, form double-stranded DNA with discrete, cohesive single-stranded ends. The generation of these cohesive ends of DNA permits the formation of precise, directional DNA joints without dependence on enzyme restriction sites. The primers were designed such that these cohesive single-stranded ends annealed to form circular DNA. The recombinant of interest was generated following only 14 amplification cycles. These recombinant circles of DNA were directly transfected into E. coli. In the mutagenesis protocol, the desired mutant was obtained at 83%-100% efficiency. Unwanted mutations were not detected, indicating a less than 0.025% nucleotide misincorporation frequency. In the directional subcloning protocol, inserts were positioned precisely in the recipient plasmid and were in the correct orientation. One unwanted mutation was detected after sequencing 900 bases, indicating a 0.11% nucleotide misincorporation frequency. Each manipulation, from setting up for the DNA amplification to transfection into E. coli. can easily be accomplished in one day.  相似文献   

11.
Site-directed mutagenesis is a powerful tool to explore the structure-function relationship of proteins, but most traditional methods rely on the mutation of only one site at a time and efficiencies drop drastically when more than three sites are targeted simultaneously. Many applications in functional proteomics and genetic engineering, including codon optimization for heterologous expression, generation of cysteine-less proteins, and alanine-scanning mutagenesis, would greatly benefit from a multiple-site mutagenesis method with high efficiency. Here we describe the development of a simple and rapid method for site-directed mutagenesis of more than 10 sites simultaneously with up to 100% efficiency. The method uses two terminal tailed primers with a unique 25-nucleotide tail each that are simultaneously annealed to template DNA together with the set of mutagenic primers in between. Following synthesis of the mutant strand by primer extension and ligation with T4 DNA polymerase and ligase, the unique mutant strand-specific tails of the terminal primers are used as anchors to specifically amplify the mutant strand by high-fidelity polymerase chain reaction. We have employed this novel method to mutate simultaneously all 9 and 11 CUG leucine codons of the Hyg and Neo resistance genes, respectively, to the Candida albicans-friendly UUG leucine codon at 100% efficiency.  相似文献   

12.
Site-directed mutagenesis (SDM) has been widely used for studying the structure and function of proteins. A one-step polymerase chain reaction (PCR)-based multiple site-directed plasmid mutagenesis method with extended non-overlapping sequence at the 3′ end of the primer increases the PCR amplification efficiency and the capacity of multi-site mutagenesis. Here, we introduced silent restriction sites in the primers used in this PCR-based SDM method by utilizing SDM-Assist software to generate mutants of Helicobacter pylori neutrophil-activating protein (HP-NAP), whose gene has low GC content. The HP-NAP mutants were efficiently generated by this modified mutagenesis method and quickly identified by a simple restriction digest due to the presence of the silent restriction site. This modified PCR-based SDM method with the introduction of a silent restriction site on the primer is efficient for generation and identification of mutations in the gene of interest.  相似文献   

13.
A novel random mutagenesis strategy was developed by combining sodium bisulfite modification with polymerase chain reaction (PCR). This method introduced the predominant substitution of GC to AT, meaning that it was more suitable for mutagenesis of GC-rich genes and helped to decrease the GC content of target DNA. Mutation efficiency correlated with modification time and different mutation frequency could easily be obtained by controlling modification time. The results indicated that this method could yield a desired and adequate frequency of random mutation to the DNA of interest, especially GC-rich genes, and provided a powerful tool for directed molecular evolution.  相似文献   

14.
In order to analyze the role of the pro-sequence in folding of the alkaline serine protease subtilisin, localized random mutagenesis using the polymerase chain reaction with Taq DNA polymerase was employed to obtain mutations in the pro-sequence which prevent production of active protease. The unique aspect of this procedure is that random mutations can be easily generated in vitro over large but defined regions of a specific gene. The method was applied to a 458-base pair fragment encompassing the coding region of the pro-sequence of subtilisin, a region of the protein which has been shown to be required for proper folding. Protease-deficient mutants containing a variety of amino acid substitutions were isolated with a frequency of 4.3%. From analysis of these mutants, four independent amino acid substitution mutations in the pro-sequence were identified. The present results demonstrate that polymerase chain reaction is an efficient and simple method for obtaining random mutations within a localized region of a given gene.  相似文献   

15.
Solid phase in vitro mutagenesis using plasmid DNA template.   总被引:4,自引:0,他引:4       下载免费PDF全文
T Hultman  M Murby  S Sthl  E Hornes    M Uhln 《Nucleic acids research》1990,18(17):5107-5112
Site-specific mutagenesis was accomplished using a solid support to generate single stranded vector and insert fragments which can be used to form gap-duplex plasmids through flanking, complementary double stranded regions. More than 80% mutants were obtained in both a single and a double primer approach. No special vectors or strains are needed and mismatch repair is avoided as the mutagenesis region is in a single stranded form when transformed into the Escherichia coli host cell. The fragments to be immobilized can be produced either by a polymerase chain reaction using general primers or by a site-specific restriction followed by a fill-in reaction. This novel method is rapid, simple and flexible and well suited for both manual and semi-automated in vitro mutagenesis protocols.  相似文献   

16.
Li X  Qiu Y  Shen Y  Ding C  Liu P  Zhou J  Ma Z 《Analytical biochemistry》2008,373(2):398-400
A modified polymerase chain reaction (PCR)-based site-directed mutagenesis method used to splice together different regions of a gene by deleting hundreds of nucleotides of undesired sequences is described. This method was inspired by a PCR-based site-directed mutagenesis method developed by Stratagene (La Jolla, CA, USA); the procedure and primer design were modified to enable the method to generate deletions several hundreds of nucleotides in length with an efficiency of 80-100%, and to delete two DNA fragments simultaneously in a single PCR. This method should be useful for deletion of large DNA fragments from a gene.  相似文献   

17.
Transposon mutagenesis is a very useful tool for gene identification in bacteria. Once the transposon mutants of interest are isolated, it is often necessary to identify the sequences that flank the transposon insertions. We devised an efficient method for specific amplification of transposon-flanking sequences that requires the sequence information of only transposon-specific sequences. The basic steps for this method consists of (1) digestion with a restriction enzyme, (2) ligation with a Y-shaped linker and (3) polymerase chain reaction amplification using a transposon-specific primer and a primer specific to the Y-shaped linker. The feasibility of this method was demonstrated with mini-Tn5 mutants of Salmonella typhimurium. We also found that this method can be used for simultaneous amplification of multiple transposon-flanking sequences.  相似文献   

18.

Background  

Site-directed mutagenesis is an efficient method to alter the structure and function of genes. Here we report a rapid and efficient megaprimer-based polymerase chain reaction (PCR) mutagenesis strategy that by-passes any intermediate purification of DNA between two rounds of PCR.  相似文献   

19.
N Kusukawa  T Uemori  K Asada  I Kato 《BioTechniques》1990,9(1):66-8, 70, 72
A simple and reliable method is described for direct sequencing of material generated by the polymerase chain reaction. The protocol is based on the purification of the amplified double-stranded product by polyethylene glycol precipitation, annealing of primer with template by a "snap-cooling" procedure and sequencing by the dideoxy chain termination method with the use of Klenow fragment or Taq polymerase. The limit of the size of PCR products that can be sequenced is also discussed.  相似文献   

20.
A new reverse genetics method has been developed to identify and isolate deletion mutants for targeted plant genes. Deletion mutant libraries are generated using fast neutron bombardment. DNA samples extracted from the deletion libraries are used to screen for deletion mutants by polymerase chain reaction (PCR) using specific primers flanking the targeted genes. By adjusting PCR conditions to preferentially amplify the deletion alleles, deletion mutants were identified in pools of DNA samples, each pool containing DNA from 2592 mutant lines. Deletion mutants were obtained for 84% of targeted loci from an Arabidopsis population of 51 840 lines. Using a similar approach, a deletion mutant for a rice gene was identified. Thus we demonstrate that it is possible to apply this method to plant species other than Arabidopsis. As fast neutron mutagenesis is highly efficient, it is practical to develop deletion mutant populations with more complete coverage of the genome than obtained with methods based on insertional mutagenesis. Because fast neutron mutagenesis is applicable to all plant genetic systems, this method has the potential to enable reverse genetics for a wide range of plant species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号