首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pleiotropy, in which one mutation causes multiple phenotypes, has traditionally been seen as a deviation from the conventional observation in which one gene affects one phenotype. Epistasis, or gene–gene interaction, has also been treated as an exception to the Mendelian one gene–one phenotype paradigm. This simplified perspective belies the pervasive complexity of biology and hinders progress toward a deeper understanding of biological systems. We assert that epistasis and pleiotropy are not isolated occurrences, but ubiquitous and inherent properties of biomolecular networks. These phenomena should not be treated as exceptions, but rather as fundamental components of genetic analyses. A systems level understanding of epistasis and pleiotropy is, therefore, critical to furthering our understanding of human genetics and its contribution to common human disease. Finally, graph theory offers an intuitive and powerful set of tools with which to study the network bases of these important genetic phenomena.  相似文献   

2.
Pleiotropy is one of the most commonly observed attributes of genes. Yet the extent and influence of pleiotropy have been underexplored in population genetics models. In this paper, I quantify the extent to which pleiotropy inhibits the spread of alleles in response to directional selection on a focal trait. Under the assumption that pleiotropic effects are extensive and deleterious, the fraction of alleles that are beneficial overall is severely limited by pleiotropy and rises nearly linearly with the strength of directional selection on the focal trait. Over a broad class of distribution of pleiotropic effects, the mean selective effect of those alleles that are beneficial overall is halved, on average, by pleiotropy. The fraction of new mutant alleles that are beneficial overall and that succeed in fixing within a population is even more severely limited when directional selection is weak, but it rises quadratically with the strength of directional selection. Finally, the mean selective effect of mutant alleles that are beneficial and succeed in fixing is reduced by one-third, on average, by pleiotropy. These results help to shape our understanding of the evolutionary inertia caused by pleiotropy.  相似文献   

3.
Toward a molecular understanding of pleiotropy   总被引:1,自引:0,他引:1  
He X  Zhang J 《Genetics》2006,173(4):1885-1891
Pleiotropy refers to the observation of a single gene influencing multiple phenotypic traits. Although pleiotropy is a common phenomenon with broad implications, its molecular basis is unclear. Using functional genomic data of the yeast Saccharomyces cerevisiae, here we show that, compared with genes of low pleiotropy, highly pleiotropic genes participate in more biological processes through distribution of the protein products in more cellular components and involvement in more protein-protein interactions. However, the two groups of genes do not differ in the number of molecular functions or the number of protein domains per gene. Thus, pleiotropy is generally caused by a single molecular function involved in multiple biological processes. We also provide genomewide evidence that the evolutionary conservation of genes and gene sequences positively correlates with the level of gene pleiotropy.  相似文献   

4.
Pleiotropy refers to the phenomenon in which a single gene controls several distinct, and seemingly unrelated, phenotypic effects. We use C. elegans early embryogenesis as a model to conduct systematic studies of pleiotropy. We analyze high-throughput RNA interference (RNAi) data from C. elegans and identify "phenotypic signatures", which are sets of cellular defects indicative of certain biological functions. By matching phenotypic profiles to our identified signatures, we assign genes with complex phenotypic profiles to multiple functional classes. Overall, we observe that pleiotropy occurs extensively among genes involved in early embryogenesis, and a small proportion of these genes are highly pleiotropic. We hypothesize that genes involved in early embryogenesis are organized into partially overlapping functional modules, and that pleiotropic genes represent "connectors" between these modules. In support of this hypothesis, we find that highly pleiotropic genes tend to reside in central positions in protein-protein interaction networks, suggesting that pleiotropic genes act as connecting points between different protein complexes or pathways.  相似文献   

5.
Pleiotropy has played an important role in understanding quantitative traits. However, the extensiveness of this effect in the genome and its consequences for plant improvement have not been fully elucidated. The aim of this study was to identify pleiotropic quantitative trait loci (QTLs) in maize using Bayesian multiple interval mapping. Additionally, we sought to obtain a better understanding of the inheritance, extent and distribution of pleiotropic effects of several components in maize production. The design III procedure was used from a population derived from the cross of the inbred lines L-14-04B and L-08-05F. Two hundred and fifty plants were genotyped with 177 microsatellite markers and backcrossed to both parents giving rise to 500 backcrossed progenies, which were evaluated in six environments for grain yield and its components. The results of this study suggest that mapping isolated traits limits our understanding of the genetic architecture of quantitative traits. This architecture can be better understood by using pleiotropic networks that facilitate the visualization of the complexity of quantitative inheritance, and this characterization will help to develop new selection strategies. It was also possible to confront the idea that it is feasible to identify QTLs for complex traits such as grain yield, as pleiotropy acts prominently on its subtraits and as this "trait" can be broken down and predicted almost completely by the QTLs of its components. Additionally, pleiotropic QTLs do not necessarily signify pleiotropy of allelic interactions, and this indicates that the pervasive pleiotropy does not limit the genetic adaptability of plants.  相似文献   

6.
The mechanisms translating genetic to phenotypic variation determine the distribution of heritable phenotypic variance available to selection. Pleiotropy is an aspect of this structure that limits independent variation of characters. Modularization of pleiotropy has been suggested to promote evolvability by restricting genetic covariance among unrelated characters and reducing constraints due to correlated response. However, modularity may also reduce total genetic variation of characters. We study the properties of genotype-phenotype maps that maximize average conditional evolvability, measured as the amount of unconstrained genetic variation in random directions of phenotypic space. In general, maximal evolvability occurs by maximizing genetic variance and minimizing genetic covariance. This does not necessarily require modularity, only patterns of pleiotropy that cancel on average. The detailed structure of the most evolvable genotype-phenotype maps depends on the distribution of molecular variance. When molecular variance is determined by mutation-selection equilibrium either highly pleiotropic or highly modular genotype-phenotype maps can be optimal, depending on the mutation rate and the relative strengths of stabilizing selection on the characters.  相似文献   

7.
Klaus Reinhardt 《Genetica》2010,138(1):119-127
Male genitalia are more variable between species (and populations) than other organs, and are more morphologically complex in polygamous compared to monogamous species. Therefore, sexual selection has been put forward as the major explanation of genital variation and complexity, in particular cryptic female choice for male copulatory courtship. As cryptic female choice is based on differences between males it is somewhat paradoxical that there is such low within-species variation in male genitalia that they are a prime morphological identification character for animal species. Processes other than sexual selection may also lead to genitalia variation but they have recently become neglected. Here I focus on pleiotropy and natural selection and provide examples how they link genitalia morphology with genital environments. Pleiotropy appears to be important because most studies that specifically tested for pleiotropic effects on genital morphology found them. Natural selection likely favours certain genital morphology over others in various environments, as well as by reducing re-infection with sexually transmitted diseases or reducing the likelihood of fertilisation with aged sperm. Both pleiotropy and natural selection differ locally and between species so may contribute to local variation in genitalia and sometimes variation between monogamous and polygamous species. Furthermore, the multitude of genital environments will lead to a multitude of genital functions via natural selection and pleiotropy, and may also contribute to explaining the complexity of genitalia.  相似文献   

8.
We examined gene models for two traits with and without antagonistic pleiotropy using a locus-based simulation model to investigate the effects of different population sizes, heritabilities and economic weights, using index selection, and index selection with optimum selection (OS), over 10 generations. Gene models included additive and dominance gene action, with equal and varying initial allele frequencies with and without pleiotropy for a fixed level of resources (i.e. founder sizes each generation of 40, 80 and 160 with progeny arrays that totaled 800 per generation). Pleiotropy (with an initial r g of −0.5), reduced gain by ~8–10% when heritabilities for both traits were the same (0.2), relative to non-pleiotropic cases. When traits had different heritabilities (i.e. 0.2 and 0.4), gains in the lower heritability trait were substantially lower, especially with pleiotropy present. In general, OS with slightly larger population sizes could offset losses in gain, but rarely overrode the large effects of different heritabilities or economic weights. Pleiotropy increased response variance among traits, which was magnified when heritabilities were different. Identifying an appropriate weight on relatedness in the OS process is important to manage coancestry expectations around the loss of alleles (or fixation of recessive alleles) and to minimise response variance. The dynamics of selection intensity, drift, rate of coancestry build-up, response variance, etc. are complex for multi-trait selection; however, a few economically viable strategies could reduce the adverse effects of selecting against genetic correlations without drastically impairing gain.  相似文献   

9.
Multi‐tasking is in our DNA. Many genes perform more than one function, and the question is how well it can do them all. Pleiotropy is frequently considered to be an adaptive constraint that prevents optimal phenotypes from evolving because of antagonistic indirect selection acting on genetically correlated traits. However, as geneticists increasingly study the effects of genes under more realistic natural environments, even the most well studied genes are expressing fascinating pleiotropic effects. Pleiotropy appears to be utterly common. The genes involved in the regulation of flowering time in Arabidopsis thaliana, such as FLOWERING LOCUS C (FLC), offer case examples of such pleiotropy. Studying an ortholog of FLC in Arabis alpina, PERPETUAL FLOWERING 1 (PEP1), Hughes, Soppe and Albani (2019) present evidence that such pleiotropy in flowering‐time genes persists through taxonomic diversification, albeit the precise function of the genes has evolved in response to taxon‐specific natural selection. Their observation that trait‐specific function can evolve even in highly pleiotropic genes suggests that pleiotropy may not constrain adaptation as much as is commonly assumed.  相似文献   

10.
Mutations that alter the morphology of floral displays (e.g., flower size) or plant development can change multiple functions simultaneously, such as pollen export and selfing rate. Given the effect of these various traits on fitness, pleiotropy may alter the evolution of both mating systems and floral displays, two characters with high diversity among angiosperms. The influence of viability selection on mating system evolution has not been studied theoretically. We model plant mating system evolution when a single locus simultaneously affects the selfing rate, pollen export, and viability. We assume frequency-independent mating, so our model characterizes prior selfing. Pleiotropy between increased viability and selfing rate reduces opportunities for the evolution of pure outcrossing, can favor complete selfing despite high inbreeding depression, and notably, can cause the evolution of mixed mating despite very high inbreeding depression. These results highlight the importance of pleiotropy for mating system evolution and suggest that selection by nonpollinating agents may help explain mixed mating, particularly in species with very high inbreeding depression.  相似文献   

11.
Genetic theories of adaptation generally overlook the genes in which beneficial substitutions occur, and the likely variation in their mutational effects. We investigate the consequences of heterogeneous mutational effects among loci on the genetics of adaptation. We use a generalization of Fisher's geometrical model, which assumes multivariate Gaussian stabilizing selection on multiple characters. In our model, mutation has a distinct variance–covariance matrix of phenotypic effects for each locus. Consequently, the distribution of selection coefficients s varies across loci. We assume each locus can only affect a limited number of independent linear combinations of phenotypic traits (restricted pleiotropy), which differ among loci, an effect we term “orientation heterogeneity.” Restricted pleiotropy can sharply reduce the overall proportion of beneficial mutations. Orientation heterogeneity has little impact on the shape of the genomic distribution, but can substantially increase the probability of parallel evolution (the repeated fixation of beneficial mutations at the same gene in independent populations), which is highest with low pleiotropy. We also consider variation in the degree of pleiotropy and in the mean s across loci. The latter impacts the genomic distribution of s, but has a much milder effect on parallel evolution. We discuss these results in the light of evolution experiments.  相似文献   

12.
Pleiotropy is an aspect of genetic architecture underlying the phenotypic covariance structure. The presence of genetic variation in pleiotropy is necessary for natural selection to shape patterns of covariation between traits. We examined the contribution of differential epistasis to variation in the intertrait relationship and the nature of this variation. Genetic variation in pleiotropy was revealed by mapping quantitative trait loci (QTLs) affecting the allometry of mouse limb and tail length relative to body weight in the mouse-inbred strain LG/J by SM/J intercross. These relationship QTLs (rQTLs) modify relationships between the traits affected by a common pleiotropic locus. We detected 11 rQTLs, mostly affecting allometry of multiple bones. We further identified epistatic interactions responsible for the observed allometric variation. Forty loci that interact epistatically with the detected rQTLs were identified. We demonstrate how these epistatic interactions differentially affect the body size variance and the covariance of traits with body size. We conclude that epistasis, by differentially affecting both the canalization and mean values of the traits of a pleiotropic domain, causes variation in the covariance structure. Variation in pleiotropy maintains evolvability of the genetic architecture, in particular the evolvability of its modular organization.  相似文献   

13.
张凡  林爱华  林美华  丁元林  饶绍奇 《遗传》2013,35(3):333-342
基因多效性是癌症遗传机制中的普遍现象, 但罕见系统性的分析。文章提出采用双聚类挖掘基因功能模块的新思路探索癌症的共享分子机制和不同癌症间的关系。获取20种癌症的基因表达数据, 应用改良t检验和倍数法筛选出至少在两种癌症中差异表达的基因, 得到10417×20的数据矩阵; 采用双聚类方法获得22个癌症共享的基因簇; 进一步富集分析得到17个基因功能模块(Bonferroni校正后P<0.05), 主要参与有丝分裂染色单体分离的调控、细胞分化、免疫和炎症反应、胶原纤维组织等生物过程; 主要执行ATP结合和微管活动、MHCⅡ类受体活性、肽链内切酶抑制活性等分子功能; 活动区域主要在细胞骨架、染色体、MHCⅡ蛋白质复合体、中间丝蛋白、胶原纤维等。基于模块构建癌症相关网络, 显示胃癌、卵巢腺癌、宫颈鳞癌和间皮瘤等之间相关程度较高, 而两种血液系统癌症(急性髓细胞性白血病与多发性骨髓瘤)分子机制与其他癌症存在较大差异。可见癌症共享的基因功能模块与多种生物机制有关, 癌症之间相似性可能与组织起源、共同的致癌机制等有关。文章提出的基因多效性分析方法有助于解释人类复杂性疾病的共享分子机制。  相似文献   

14.
It is generally thought that random mutations will, on average, reduce an organism's fitness because resulting phenotypic changes are likely to be maladaptive. This relationship leads to the prediction that mutations that alter more phenotypic traits, that is, are more pleiotropic, will impose larger fitness costs than mutations that affect fewer traits. Here we present a systems approach to test this expectation. Previous studies have independently estimated fitness and morphological effects of deleting all nonessential genes in Saccharomyces cerevisiae. Using datasets generated by these studies, we examined the relationship between the pleiotropic effect of each deletion mutation, measured as the number of morphological traits differing from the parental strain, and its effect on fitness. Pleiotropy explained approximately 18% of variation in fitness among the mutants even once we controlled for correlations between morphological traits. This relationship was robust to consideration of other explanatory factors, including the number of protein-protein interactions and the network position of the deleted genes. These results are consistent with pleiotropy having a direct role in affecting fitness.  相似文献   

15.
Contemporary genetic studies are revealing the genetic complexity of many traits in humans and model organisms. Two hallmarks of this complexity are epistasis, meaning gene-gene interaction, and pleiotropy, in which one gene affects multiple phenotypes. Understanding the genetic architecture of complex traits requires addressing these phenomena, but interpreting the biological significance of epistasis and pleiotropy is often difficult. While epistasis reveals dependencies between genetic variants, it is often unclear how the activity of one variant is specifically modifying the other. Epistasis found in one phenotypic context may disappear in another context, rendering the genetic interaction ambiguous. Pleiotropy can suggest either redundant phenotype measures or gene variants that affect multiple biological processes. Here we present an R package, R/cape, which addresses these interpretation ambiguities by implementing a novel method to generate predictive and interpretable genetic networks that influence quantitative phenotypes. R/cape integrates information from multiple related phenotypes to constrain models of epistasis, thereby enhancing the detection of interactions that simultaneously describe all phenotypes. The networks inferred by R/cape are readily interpretable in terms of directed influences that indicate suppressive and enhancing effects of individual genetic variants on other variants, which in turn account for the variance in quantitative traits. We demonstrate the utility of R/cape by analyzing a mouse backcross, thereby discovering novel epistatic interactions influencing phenotypes related to obesity and diabetes. R/cape is an easy-to-use, platform-independent R package and can be applied to data from both genetic screens and a variety of segregating populations including backcrosses, intercrosses, and natural populations. The package is freely available under the GPL-3 license at http://cran.r-project.org/web/packages/cape.
This is a PLOS Computational Biology Software Article
  相似文献   

16.
The concept of modularity provides a useful tool for exploring the relationship between genotype and phenotype. Here, we use quantitative genetics to identify modularity within the mammalian dentition, connecting the genetics of organogenesis to the genetics of population-level variation for a phenotype well represented in the fossil record. We estimated the correlations between dental traits owing to the shared additive effects of genes (pleiotropy) and compared the pleiotropic relationships among homologous traits in two evolutionary distant taxa-mice and baboons. We find that in both mice and baboons, who shared a common ancestor >65 Ma, incisor size variation is genetically independent of molar size variation. Furthermore, baboon premolars show independent genetic variation from incisors, suggesting that a modular genetic architecture separates incisors from these posterior teeth as well. Such genetic independence between modules provides an explanation for the extensive diversity of incisor size variation seen throughout mammalian evolution-variation uncorrelated with equivalent levels of postcanine tooth size variation. The modularity identified here is supported by the odontogenic homeobox code proposed for the patterning of the rodent dentition. The baboon postcanine pattern of incomplete pleiotropy is also consistent with predictions from the morphogenetic field model.  相似文献   

17.
Cytokines are considered to be involved in obesity-related metabolic diseases. Study objectives are to determine the heritability of circulating cytokine levels, to investigate pleiotropy between cytokines and obesity traits, and to present genome scan results for cytokines in 1030 Hispanic children enrolled in VIVA LA FAMILIA Study. Cytokine phenotypes included monocyte chemoattractant protein-1 (MCP-1), tumor necrosis factor-alpha (TNF-alpha), leptin, adiponectin, soluble intercellular adhesion molecule-1 (sICAM-1), transforming growth factor beta 1 (TGF-beta1), C-reactive protein (CRP), regulated upon activation, normal T-cell expressed and secreted (RANTES) and eotaxin. Obesity-related phenotypes included body mass index (BMI), fat mass (FM), truncal FM and fasting serum insulin. Heritabilities ranged from 0.33 to 0.97. Pleiotropy was observed between cytokines and obesity traits. Positive genetic correlations were seen between CRP, leptin, MCP-1 and obesity traits, and negative genetic correlations with adiponectin, ICAM-1 and TGF-beta1. Genome-wide scan of sICAM-1 mapped to chromosome 3 (LOD=3.74) between markers D3S1580 and D3S1601, which flanks the adiponectin gene (ADIPOQ). Suggestive linkage signals were found in other chromosomal regions for other cytokines. In summary, significant heritabilities for circulating cytokines, pleiotropy between cytokines and obesity traits, and linkage for sICAM-1 on chromosome 3q substantiate a genetic contribution to circulating cytokine levels in Hispanic children.  相似文献   

18.
Griswold CK  Whitlock MC 《Genetics》2003,165(4):2181-2192
Pleiotropy allows for the deterministic fixation of bidirectional mutations: mutations with effects both in the direction of selection and opposite to selection for the same character. Mutations with deleterious effects on some characters can fix because of beneficial effects on other characters. This study analytically quantifies the expected frequency of mutations that fix with negative and positive effects on a character and the average size of a fixed effect on a character when a mutation pleiotropically affects from very few to many characters. The analysis allows for mutational distributions that vary in shape and provides a framework that would allow for varying the frequency at which mutations arise with deleterious and positive effects on characters. The results show that a large fraction of fixed mutations will have deleterious pleiotropic effects even when mutation affects as little as two characters and only directional selection is occurring, and, not surprisingly, as the degree of pleiotropy increases the frequency of fixed deleterious effects increases. As a point of comparison, we show how stabilizing selection and random genetic drift affect the bidirectional distribution of fixed mutational effects. The results are then applied to QTL studies that seek to find loci that contribute to phenotypic differences between populations or species. It is shown that QTL studies are biased against detecting chromosome regions that have deleterious pleiotropic effects on characters.  相似文献   

19.

Background

Quantitative traits often underlie risk for complex diseases. For example, weight and body mass index (BMI) underlie the human abdominal obesity-metabolic syndrome. Many attempts have been made to identify quantitative trait loci (QTL) over the past decade, including association studies. However, a single QTL is often capable of affecting multiple traits, a quality known as gene pleiotropy. Gene pleiotropy may therefore cause a loss of power in association studies focused only on a single trait, whether based on single or multiple markers.

Results

We propose using principal-component-based multivariate regression (PCBMR) to test for gene pleiotropy with comprehensive evaluation. This method generates one or more independent canonical variables based on the principal components of original traits and conducts a multivariate regression to test for association with these new variables. Systematic simulation studies have shown that PCBMR has great power. PCBMR-based pleiotropic association studies of abdominal obesity-metabolic syndrome and its possible linkage to chromosomal band 3q27 identified 11 susceptibility genes with significant associations. Whereas some of these genes had been previously reported to be associated with metabolic traits, others had never been identified as metabolism-associated genes.

Conclusions

PCBMR is a computationally efficient and powerful test for gene pleiotropy. Application of PCBMR to abdominal obesity-metabolic syndrome indicated the existence of gene pleiotropy affecting this syndrome.  相似文献   

20.
Results from Genome-Wide Association Studies (GWAS) have shown that complex diseases are often affected by many genetic variants with small or moderate effects. Identifications of these risk variants remain a very challenging problem. There is a need to develop more powerful statistical methods to leverage available information to improve upon traditional approaches that focus on a single GWAS dataset without incorporating additional data. In this paper, we propose a novel statistical approach, GPA (Genetic analysis incorporating Pleiotropy and Annotation), to increase statistical power to identify risk variants through joint analysis of multiple GWAS data sets and annotation information because: (1) accumulating evidence suggests that different complex diseases share common risk bases, i.e., pleiotropy; and (2) functionally annotated variants have been consistently demonstrated to be enriched among GWAS hits. GPA can integrate multiple GWAS datasets and functional annotations to seek association signals, and it can also perform hypothesis testing to test the presence of pleiotropy and enrichment of functional annotation. Statistical inference of the model parameters and SNP ranking is achieved through an EM algorithm that can handle genome-wide markers efficiently. When we applied GPA to jointly analyze five psychiatric disorders with annotation information, not only did GPA identify many weak signals missed by the traditional single phenotype analysis, but it also revealed relationships in the genetic architecture of these disorders. Using our hypothesis testing framework, statistically significant pleiotropic effects were detected among these psychiatric disorders, and the markers annotated in the central nervous system genes and eQTLs from the Genotype-Tissue Expression (GTEx) database were significantly enriched. We also applied GPA to a bladder cancer GWAS data set with the ENCODE DNase-seq data from 125 cell lines. GPA was able to detect cell lines that are biologically more relevant to bladder cancer. The R implementation of GPA is currently available at http://dongjunchung.github.io/GPA/.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号