首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Progesterone (PROG) provides neuroprotection to the injured central and peripheral nervous system. These effects may be due to regulation of myelin synthesis in glial cells and also to direct actions on neuronal function. Both types of cells express classical intracellular PROG receptors (PR), while neurons additionally express the PROG membrane-binding site called 25-Dx. In motoneurons from rats with spinal cord injury (SCI), PROG restores to normal the deficient levels of choline acetyl-transferase and of alpha3 subunit Na,K-ATPase mRNA, while levels of the growth associated protein GAP-43 mRNA are further stimulated. Recent studies suggest that neurotrophins are possible mediators of hormone action, and in agreement with this assumption, PROG treatment of rats with SCI increases the expression of brain-derived neurotrophic factor (BDNF) at both the mRNA and protein levels in ventral horn motoneurons. In situ hybridization (ISH) has shown that SCI reduces BDNF mRNA levels by 50% in spinal motoneurons, while PROG administration to injured rats (4mg/kg/day during 3 days, s.c.) elicits a three-fold increase in grain density. In addition to enhancement of mRNA levels, PROG increases BDNF immunoreactivity in perikaryon and cell processes of motoneurons of the lesioned spinal cord, and also prevents the lesion-induced chromatolytic degeneration of spinal cord motoneurons as determined by Nissl staining. Our findings strongly indicate that motoneurons of the spinal cord are targets of PROG, as confirmed by the expression of PR and the regulation of molecular parameters. PROG enhancement of endogenous neuronal BDNF could provide a trophic environment within the lesioned spinal cord and might be part of the PROG activated-pathways to provide neuroprotection. Thus, PROG treatment constitutes a new approach to sustain neuronal function after injury.  相似文献   

4.
5.
Here we present a technique to label the trajectories of small groups of DRG neurons into the embryonic spinal cord by diffusive staining using the lipophilic tracer 1,1''-dioctadecyl-3,3,3'',3''-tetramethylindocarbocyanine perchlorate (DiI)1. The comparison of axonal pathways of wild-type with those of mouse lines in which genes are mutated allows testing for a functional role of candidate proteins in the control of axonal branching which is an essential mechanism in the wiring of the nervous system. Axonal branching enables an individual neuron to connect with multiple targets, thereby providing the physical basis for the parallel processing of information. Ramifications at intermediate target regions of axonal growth may be distinguished from terminal arborization. Furthermore, different modes of axonal branch formation may be classified depending on whether branching results from the activities of the growth cone (splitting or delayed branching) or from the budding of collaterals from the axon shaft in a process called interstitial branching2 (Fig. 1).The central projections of neurons from the DRG offer a useful experimental system to study both types of axonal branching: when their afferent axons reach the dorsal root entry zone (DREZ) of the spinal cord between embryonic days 10 to 13 (E10 - E13) they display a stereotyped pattern of T- or Y-shaped bifurcation. The two resulting daughter axons then proceed in rostral or caudal directions, respectively, at the dorsolateral margin of the cord and only after a waiting period collaterals sprout from these stem axons to penetrate the gray matter (interstitial branching) and project to relay neurons in specific laminae of the spinal cord where they further arborize (terminal branching)3. DiI tracings have revealed growth cones at the dorsal root entry zone of the spinal cord that appeared to be in the process of splitting suggesting that bifurcation is caused by splitting of the growth cone itself4 (Fig. 2), however, other options have been discussed as well5.This video demonstrates first how to dissect the spinal cord of E12.5 mice leaving the DRG attached. Following fixation of the specimen tiny amounts of DiI are applied to DRG using glass needles pulled from capillary tubes. After an incubation step, the labeled spinal cord is mounted as an inverted open-book preparation to analyze individual axons using fluorescence microscopy.  相似文献   

6.
Sensory axons from dorsal root ganglia neurons are guided to spinal targets by molecules differentially expressed along the dorso-ventral axis of the neural tube. NT-3-responsive muscle afferents project ventrally, cease extending, and branch upon contact with motoneurons (MNs), their synaptic partners. We have identified WNT-3 as a candidate molecule that regulates this process. Wnt-3 is expressed by MNs of the lateral motor column at the time when MNs form synapses with sensory neurons. WNT-3 increases branching and growth cone size while inhibiting axonal extension in NT-3- but not NGF-responsive axons. Ventral spinal cord secretes factors with axonal remodeling activity for NT-3-responsive neurons. This activity is present at limb levels and is blocked by a WNT antagonist. We propose that WNT-3, expressed by MNs, acts as a retrograde signal that controls terminal arborization of muscle afferents.  相似文献   

7.
During the development of a given organ or tissue within a multicellular organism, growth and patterning are controlled in a coordinated manner by the activity of a discrete number of signalling molecules and their corresponding pathways to give rise to a well formed structure with a particular size, shape and pattern. Understanding how cells of different tissues or organs translate in a context dependent manner the activity of these pathways into an activation or repression of the cell cycle machinery is one of the most intriguing questions in developmental and cancer biology nowadays. Here we revise the different roles of the signalling molecules Notch and Wingless in the regulation of cell cycle progression in the developing eye and wing imaginal discs of Drosophila and propose that depending on how growth regulators are regulated in a context dependent manner by the activity of these pathways, signalling molecules might have tumour suppressor or oncogene activity.  相似文献   

8.
The pattern of retrograde axonal transport of the target-derived neurotrophic molecule, nerve growth factor (NGF), correlates with its trophic actions in adult neurons. We have determined that the NGF-related neurotrophins, brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3), are also retrogradely transported by distinct populations of peripheral and central nervous system neurons in the adult. All three 125I-labeled neurotrophins are retrogradely transported to sites previously shown to contain neurotrophin-responsive neurons as assessed in vitro, such as dorsal root ganglion and basal forebrain neurons. The patterns of transport also indicate the existence of neuronal populations that selectively transport NT-3 and/or BDNF, but not NGF, such as spinal cord motor neurons, neurons in the entorhinal cortex, thalamus, and neurons within the hippocampus itself. Our observations suggest that neurotrophins are transported by overlapping as well as distinct populations of neurons when injected into a given target field. Retrograde transport may thus be predictive of neuronal types selectively responsive to either BDNF or NT-3 in the adult, as first demonstrated for NGF.  相似文献   

9.
The kidney is a classic model for studying mechanisms of inductive tissue interactions associated with the epithelial branching common to many embryonic organs, but the molecular mechanisms are still poorly known. Sprouty proteins antagonize tyrosine kinases in the Egf and Fgf receptors and are candidate components of inductive signalling in the kidney as well. We have addressed the function of sprouty proteins in vivo by targeted expression of human sprouty 2 (SPRY2) in the ureteric bud, which normally expresses inductive signals and mouse sprouty 2 (Spry2). Ectopic SPRY2 expression led to postnatal death resulting from kidney failure, manifested as unilateral agenesis, lobularization of the organ or reduction in organ size because of inhibition of ureteric branching. The experimentally induced dysmorphology associated with deregulated expression of Wnt11, Gdnf and Fgf7 genes in the early stages of organogenesis indicated a crucial role for sprouty function in coordination of epithelial-mesenchymal and stromal signalling, the sites of expression of these genes. Moreover, Fgf7 induced Spry2 gene expression in vitro and led with Gdnf to a partial rescue of the SPRY2-mediated defect in ureteric branching. Remarkably, it also led to supernumerary epithelial bud formation from the Wolffian duct. Together, these data suggest that Spry genes contribute to reciprocal epithelial-mesenchymal and stromal signalling controlling ureteric branching, which involves the coordination of Ffg/Wnt11/Gdnf pathways.  相似文献   

10.
The innervation of the myotomal muscles in the trunk region of Xenopus embryos has been examined to see how the path taken by motoneurons within the spinal cord is formed. The growth of motor axons has been studied by retrograde labeling with horseradish peroxidase and the growth of the spinal cord and myotomes has been studied by labeling with fluorescent beads. Results show that motoneurons initially innervate the nearest muscles. Then through a process of differential growth whereby the muscles elongate more than the spinal cord, the axonal terminals in the muscles become displaced caudally relative to their cell bodies. In this manner the central pathway taken by the motor axons develops after initial innervation of their peripheral targets.  相似文献   

11.
Neuronal nitric oxide synthase (nNOS) is induced after axonal injury. The role of induced nNOS in injured neurons is not well established. In the present study, we investigated the co-expression of nNOS with GAP-43 in spinal motoneurons following axonal injury. The role of induced nNOS was discussed and evaluated. In normal rats, spinal motoneurons do not express nNOS or GAP-43. Following spinal root avulsion, expression of nNOS and GAP-43 were induced and colocalized in avulsed motoneurons. Reimplantation of avulsed roots resulted in a remarkable decrease of GAP-43- and nNOS-IR in the soma of the injured motoneurons. A number of GAP-43-IR regenerating motor axons were found in the reimplanted nerve. In contrast, the nNOS-IR was absent in reimplanted nerve. These results suggest that expression of GAP-43 in avulsed motoneurons is related to axonal regeneration whereas nNOS is not.  相似文献   

12.
K Hatta 《Neuron》1992,9(4):629-642
To determine the role of the floor plate (FP) in CNS development, I have used labeling techniques, including immunolabeling, to analyze cyclops mutant embryos, which lack the FP. Except for the anterior brain, the mutant phenotype is almost exclusively confined to the vicinity of the ventral CNS midline. In the midbrain, the number of ventral neurons is reduced and cell patterning is disturbed. In contrast, the neuronal arrangement in the spinal cord is almost normal, including in particular both primary and secondary motoneurons. Longitudinal axonal bundles are disorganized in both the brain and spinal cord. Laser ablating the FP in wild-type embryos locally phenocopies cyclops axonal disturbances, and transplanting wild-type FP precursor cells into mutants locally rescues the disturbances. These results demonstrate a significant role for the FP in pathfinding and fasciculation by axons in situ, especially during their longitudinal courses.  相似文献   

13.
Fibroblast growth factor (FGF) signalling has important roles in the development of the embryonic pharyngeal (branchial) arches, but its effects on innervation of the arches and associated structures have not been studied extensively. We investigated the consequences of deleting two receptor tyrosine kinase (RTK) antagonists of the Sprouty (Spry) gene family on the early development of the branchial nerves. The morphology of the facial, glossopharyngeal and vagus nerves are abnormal in Spry1−/−;Spry2−/− embryos. We identify specific defects in the epibranchial placodes and neural crest, which contribute sensory neurons and glia to these nerves. A dissection of the tissue-specific roles of these genes in branchial nerve development shows that Sprouty gene deletion in the pharyngeal epithelia can affect both placode formation and neural crest fate. However, epithelial-specific gene deletion only results in defects in the facial nerve and not the glossopharyngeal and vagus nerves, suggesting that the facial nerve is most sensitive to perturbations in RTK signalling. Reducing the Fgf8 gene dosage only partially rescued defects in the glossopharyngeal nerve and was not sufficient to rescue facial nerve defects, suggesting that FGF8 is functionally redundant with other RTK ligands during facial nerve development.  相似文献   

14.
One of the earliest guidance decisions for spinal cord motoneurons occurs when pools of motoneurons orient their growth cones towards a common, segmental exit point. In contrast to later events, remarkably little is known about the molecular mechanisms underlying intraspinal motor axon guidance. In zebrafish sidetracked (set) mutants, motor axons exit from the spinal cord at ectopic positions. By single-cell labeling and time-lapse analysis we show that motoneurons with cell bodies adjacent to the segmental exit point properly exit from the spinal cord, whereas those farther away display pathfinding errors. Misguided growth cones either orient away from the endogenous exit point, extend towards the endogenous exit point but bypass it or exit at non-segmental, ectopic locations. Furthermore, we show that sidetracked acts cell autonomously in motoneurons. Positional cloning reveals that sidetracked encodes Plexin A3, a semaphorin guidance receptor for repulsive guidance. Finally, we show that sidetracked (plexin A3) plays an additional role in motor axonal morphogenesis. Together, our data genetically identify the first guidance receptor required for intraspinal migration of pioneering motor axons and implicate the well-described semaphorin/plexin signaling pathway in this poorly understood process. We propose that axonal repulsion via Plexin A3 is a major driving force for intraspinal motor growth cone guidance.  相似文献   

15.
Zhao T  Li Y  Dai X  Wang J  Qi Y  Wang J  Xu K 《Molecular biology reports》2012,39(8):8045-8051
Recovery after spinal cord injury (SCI) is rare in humans and experimental animals. Following SCI in adults, changes in gene expression and the regulation of these genes are associated with the pathological development of the injury. High levels of brain-derived neurotrophic factor (BDNF) in the injury area during the post-injury period contribute to enhanced neuroprotection and axonal regeneration. Intervention at the level of gene regulation has the potential to promote SCI repair. In this study, the injection of adenovirus-mediated BDNF in the lesion area (rostral spinal cord) up-regulated the expression of BDNF in the injury zone of a compression model in rat, thereby protecting neurons and enhancing behavioral function.  相似文献   

16.
17.
神经营养素3(NT-3)和脑源性神经生长因子(BDNF)是神经生长因子(NGF)的同源物,体外实验表明NT-3和BDNF能促进感觉神经元和交感神经元的存活,但是NT-3和BDNF在脊髓中的生物学作用和定位分布还不十分清楚。本用免疫组化ABC法观察了NT-3和BDNF的免疫阳性反应物在大鼠脊髓中的分布。结果表明:呈NT-3样免疫阳性反应的胶质细胞分布于脊髓的后索、侧索和前索中;免疫反应阳性的神经元主要见于脊髓前角,少数见于脊髓后角。BDNF位于大鼠的脊髓前角动物神经元;在脊髓Ⅱ板层中还可见较多的BDNF免疫反应阳性的神经终末。提示NT-3和BDNF在维持脊髓神经元和胶质细胞的生理功能中可能起重要作用。  相似文献   

18.
大鼠脊髓挤压伤后NT-3、NT-4在腹角运动神经元表达的变化   总被引:1,自引:0,他引:1  
我们前面的研究已证实,神经生长因子和脑源性神经营养因子与成年大鼠挤压性脊髓损伤修复有关。在本研究中,通过免疫组织化学ABC法,我们探讨了挤压伤后不同时间脊髓腹角神经元NT-3和NT-4的表达。结果显示,在对照组,NT-3和NT-4的阳性反应主要分布在脊髓腹角神经元,挤压性脊髓损伤后7天和21天,NT-3阳性神经元的数量较对照组和24小时组明显增加,比较之,损伤后24小时和7天,NT-4阳性神经元的数量已较正常者增多,且NT-T的反应强度21天者较24小时和7天者有增多。结果表明NT-3和NT-4的表达在挤压性损伤后的脊髓腹角神经元被不同程度地上调,提示NT-3和NT-4可能与挤压性脊髓损伤修复有关。  相似文献   

19.
The neuroanatomy of an amphibian embryo spinal cord   总被引:6,自引:0,他引:6  
Horseradish peroxidase has been used to stain spinal cord neurons in late embryos of the clawed toad (Xenopus laevis). It has shown clearly the soma, dendrites and axonal projections of spinal sensory, motor and interneurons. On the basis of light microscopy we describe nine differentiated spinal cord neuron classes. These include the Rohon-Beard cells and extramedullary cells which are both primary sensory neurons, one class of motoneurons that innervate the segmental myotomes, two classes of interneurons with decussating axons, three classes of interneurons with ipsilateral axons and a previously undescribed class of ciliated ependymal cells with axons projecting ipsilaterally to the brain. We believe that all differentiated neuron classes are described and that this anatomical account is the most complete for any vertebrate spinal cord.  相似文献   

20.
Chick embryo spinal cord motoneurons develop a trophic response to some neurotrophins when they are maintained in culture in the presence of muscle extract. Thus, after 2 days in culture, brain-derived neurotrophic factor (BDNF) promotes motoneuron survival. In the present study we have analyzed the intracellular pathways that may be involved in the BDNF-induced motoneuron survival. We have observed that BDNF activated the extracellular-regulated kinase (ERK) mitogen-activated protein (MAP) kinase and the phosphatidylinositol (PI) 3-kinase pathways. To examine the contribution of these pathways to the survival effect triggered by BDNF, we used PD 98059, a specific inhibitor of MAP kinase kinase, and LY 294002, a selective inhibitor of PI 3-kinase. PD 98059, at doses that significantly reduced the phosphorylation of ERKs, did not show any prominent effect on neuronal survival. However, LY 294002 at doses that inhibited the phosphorylation of Akt, a down-stream element of the PI 3-kinase, completely abolished the motoneuron survival effects of BDNF. Moreover, cell death triggered by LY 294002 treatment exhibited features similar to those observed after muscle extract deprivation. Our results suggest that the PI 3-kinase pathway plays an important role in the survival effect triggered by BDNF on motoneurons, whereas activation of the ERK MAP kinase pathway is not relevant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号