首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Planar cell polarity (PCP) signaling controls the global orientation of surface structures, such as hairs and bristles, in both vertebrates and invertebrates. In Frizzled6 -/- (Fz6 -/-) mice, hair follicle orientations on the head and back are nearly random at birth, but reorient during early postnatal development to eventually generate a nearly parallel anterior-to-posterior array. We report the identification of a naturally occurring exon 5 deletion in Astrotactin2 (Astn2) that acts as a recessive genetic modifier of the Fz6 -/- hair patterning phenotype. A genetically engineered Astn2 exon 5 deletion recapitulates the modifier phenotype. In Fz6 -/- ;Astn2 ex5del/del mice, hair orientation on the back is subtly biased from posterior-to-anterior, leading to a 180-degree orientation reversal in mature mice. These experiments suggest that Astn2, an endosomal membrane protein, modulates PCP signaling.  相似文献   

2.
This paper is the third in a series examining the role of a reaction-diffusion (RD) system as the principal mechanism providing spatial information for cell differentiation during hair follicle initiation and development and hair fibre formation. A theoretical mechanism is described by which the RD system supplies positional information during hair follicle development. Solutions of the RD system within the primordial follicle are described as well as the sequence of spatial patterns provides the follicle/epidermis boundary conditions required to account for the density and grouping of follicles during initiation. At the same time the spatial patterns are also shown to be capable of providing the positional information which determines various geometrical aspects of follicle development; in particular the development of follicles at an angle to the skin surface and the initiation and location of sweat glands and sebaceous glands on the follicle.  相似文献   

3.
The murine genome is known to have two keratin 6 (K6) genes, mouse K6 (MK6)a and MK6b. These genes display a complex expression pattern with constitutive expression in the epithelia of oral mucosa, hair follicles, and nail beds. We generated mice deficient for both genes through embryonic stem cell technology. The majority of MK6a/b-/- mice die of starvation within the first two weeks of life. This is due to a localized disintegration of the dorsal tongue epithelium, which results in the build up of a plaque of cell debris that severely impairs feeding. However, approximately 25% of MK6a/b-/- mice survive to adulthood. Remarkably, the surviving MK6a/b-/- mice have normal hair and nails. To our surprise, we discovered MK6 staining both in the hair follicle and the nail bed of MK6a/b-/- mice, indicating the presence of a third MK6 gene. We cloned this previously unknown murine keratin gene and found it to be highly homologous to human K6hf, which is expressed in hair follicles. We therefore termed this gene MK6 hair follicle (MK6hf). The presence of MK6hf in the MK6a/b-/- follicles and nails offers an explanation for the absence of hair and nail defects in MK6a/b-/- animals.  相似文献   

4.
Human scalp hair consists of a set of about 10(5)follicles which progress independently through developmental cycles. Each hair follicle successively goes through the anagen (A), catagen (C), telogen (T) and latency (L) phases that correspond, respectively, to growth, arrest and hair shedding before a new anagen phase is initiated. Long-term experimental observations in a group of ten male, alopecic and non-alopecic volunteers allowed determination of the characteristics of hair follicle cycles. On the basis of these observations, we previously proposed a follicular automaton model to simulate the dynamics of human hair cycles and the development of different patterns of alopecia [Halloy et al. (2000) Proc. Natl Acad. Sci. U.S.A.97, 8328-8333]. The automaton model is defined by a set of rules that govern the stochastic transitions of each follicle between the successive states A, T, L and the subsequent return to A. These transitions occur independently for each follicle, after time intervals given stochastically by a distribution characterized by a mean and a standard deviation. The follicular automaton model was shown to account both for the dynamical transitions observed in a single follicle, and for the behaviour of an ensemble of independently cycling follicles. Here, we extend these results and investigate additional properties of the model. We present a deterministic version of the follicular automaton. We show that numerical simulations of the stochastic version of the automaton yield steady-state level of follicles in the different phases which approach the levels predicted by the deterministic equations as the number of follicles progressively increases. Only the stochastic version can successfully reproduce the fluctuations of the fractions of follicles in each of the three phases, observed in small follicle populations. When the standard deviation is reduced or when the follicles become otherwise synchronized, e.g. by a periodic external signal inducing the transition of anagen follicles into telogen phase, large-amplitude oscillations occur in the fractions of follicles in the three phases. These oscillations are not observed in humans but are reminiscent of the phenomenon of moulting observed in a number of mammalian species.  相似文献   

5.
In mammals, hair follicles produce hairs that fulfill a number of functions including thermoregulation, collecting sensory information, protection against environmental trauma, social communication, and mimicry. Hair follicles develop as a result of epithelial-mesenchymal interactions between epidermal keratinocytes committed to hair-specific differentiation and cluster of dermal fibroblasts that form follicular papilla. During postnatal life, hair follicles show patterns of cyclic activity with periods of active growth and hair production (anagen), apoptosis-driven involution (catagen), and relative resting (telogen). During last decade, substantial progress has been achieved in delineating molecular mechanisms that control hair follicle development and cyclic activity. In this review, we summarize the data demonstrating that regulation of hair follicle development in the embryo and control of hair follicle growth during postnatal life are highly conserved and both require involvement of similar molecular mechanisms. Since many of the molecules that control hair follicle development and cycling are also involved in regulating morphogenesis and postnatal biology of other ectodermal derivatives, such as teeth, feathers, and mammary glands, basic principles and molecular mechanisms that govern hair follicle development and growth may also be applicable for other developmental systems.  相似文献   

6.
A mechanism based on a reaction-diffusion system is proposed for the initiation of hair follicles in the epidermis during fetal development. It is demonstrated that initiation of primary follicles in a series of waves, within the proposed mechanism, is a consequence of the size and shape dependent properties of the reaction-diffusion system without the need for the propagation of signals through the skin. The observed trio grouping of follicles and variation of primary follicle density per unit skin area during development are also correctly predicted. An explanation, based on the reaction-diffusion system and the variation of its characteristic spatial wavelength with time during development, is suggested for the termination of both primary and secondary follicle initiation as well as follicle neogenesis. The proposed initiation mechanism is basically the same as that used to explain various spatial patterns observed in hair fibre formation (Nagorcka & Mooney, 1982).  相似文献   

7.
Hair follicle histophysiology importance isn't limited by hair role in psychosocial consequences. More scientists consider the hair follicle as an attractive system for studying major biological phenomena because the hair follicle is a regenerating system. In this review we revisit the current information about histophysiology and control of hair follicle cycling. All mature follicles undergo a growth cycle consisting of following phases: growth (anagen), regression (catagen) and rest (telogen). We attempt to integrate the morphology with the physiology and molecular biology. Hair follicles are influenced by environmental, systemic and local factors. The most interesting point of this problem is discussed--an integral regulation of hair follicle cycle by systemic, intertissue and intercellular interactions.  相似文献   

8.
GABA-T (4-aminobutyrate-2-ketoglutarate aminotransferase) has been found in human hair follicle. Kinetics experiments with hair follicle homogenate supported a ping-pong type of enzymatic mechanism. Extrapolated Km values were 1.02 mmol/l for GABA and 0.45 mmol/l for alpha-ketoglutarate. Hair follicle GABA-T activity was completely inhibited by preincubation of the samples with either 5 x 10(-8) mol/l aminooxyacetic acid or 5 x 10(-4) mol/l gamma-vinyl GABA. The radioenzymatic assay presented is both sensitive enough (only 10 hair follicles are needed for one assay) and economical, making it suitable for clinical practice. Hair follicle GABA-T activity determination could be useful in the study of GABA deficiency diseases (such as epilepsy), congenital GABA-T deficiencies or the control of GABA-T inhibitors treatment.  相似文献   

9.
The hair follicle or its differentiated product, the hair, which represents the linear historical record of the follicular proliferative activity, could provide a biological dosimeter of value for dose distribution determinations after accidental exposure. Here we present some further studies on irradiated mouse hair follicles and hair, and discuss the difficulties in obtaining similar data for humans. The incidence of cell death in the follicles has been shown elsewhere to be maximum 12 h after irradiation, and it increases with dose. Here we confirm that doses of 0.2-0.4 Gy can be readily detected. We show here that there is only a little more cell death in the larger follicles even though they contain many more cells and mitotic figures. About one-third of all the dead cell fragments in a follicle can be seen in a good longitudinal follicle section. Mitotic activity declines progressively with dose in the large follicles, which start with more mitotic cells, showing the dose-dependent changes most readily. The dead cells are morphologically identical to apoptotic cells at the level of the light microscope, and they fragment into several bodies, the number of which increases with dose. The total number of apoptotic bodies or fragments in whole large follicles increases almost 100-fold over a range of 1.3 Gy (from 0.2 to 1.5 Gy) and about tenfold over the range 0.2-0.5 Gy. The estimated number of dead (apoptotic) cells increases about sevenfold over the same 1.3-Gy range. The width of the middle portion of the broadest, awl, hairs measured 12 days after irradiation decreases with increasing dose. About 80% of the hairs show an obvious reduction in width after 2 Gy and the effects of a dose of about 1 Gy can be detected. The width of the hair is reduced by 10-14% per Gy. A comparison has been made between BDF1 (black) and BALB-c (albino) mice. The large follicles contain similar numbers of mitotic cells, but the BALB-c mice are more sensitive both in terms of the radiation-induced apoptosis and in terms of a reduction in awl hair width.  相似文献   

10.
miRNA在调控皮肤和毛囊发育中的作用   总被引:3,自引:0,他引:3  
表皮发生和毛囊的周期性再生涉及一系列基因的激活和沉默。近年来的研究表明, miRNA的表达谱在表皮和毛囊组织中存在组织特异性, 在毛囊周期性发育中存在阶段特异性。大量miRNA参与表皮和毛囊的发生, 色素的沉着以及毛囊的周期性发育过程, 不同类型细胞中的miRNA通过与信号通路和调控因子相互作用形成了一个全方位、多层次的网络调控系统。文章综述了miRNA调控表皮内稳态和毛囊周期性发育的一些研究 进展, 旨在丰富miRNA参与的基因调控网路的研究, 进而为人工调控miRNA进行疾病治疗和分子育种提供 帮助。  相似文献   

11.
12.
Involucrin is a structural component of the keratinocyte cornified envelope that is expressed early in the keratinocyte differentiation process. It is a component of the initial envelope scaffolding and considered as a marker for keratinocyte terminal differentiation. The expression pattern of involucrin in human scalp skin and hair follicle cycle stages is not fully explored. This study addresses this issue and tests the hypothesis that "the expression of involucrin undergoes hair follicle cycle-dependent changes". A total of 50 normal human scalp skin biopsies were examined (healthy females, 51-62?years) using immunofluorescence staining methods and real-time PCR analysis. In each case, 50 hair follicles were analyzed (35, 10 and 5 follicles in anagen, catagen and telogen, respectively). Involucrin was prominently expressed in the human scalp skin and hair follicles, on both gene and protein levels. The protein expression showed hair follicle cycle-associated changes i.e. a very strong expression during early and mature anagen, intermediate to strong expression during catagen and prominent decline in the telogen phase. The expression value of involucrin in both anagen and catagen was statistically significantly higher than that of telogen hair follicles (p?相似文献   

13.
A two-follicle model was used to study the nature of selection of the dominant follicle in mares by ablating neither or one of the two follicles on the day the larger follicle reached >/= 20 mm (Day 0). The larger follicle became the dominant follicle in all mares in which both follicles (n = 8) or only the larger follicle (n = 10) was retained. When only the smaller follicle (n = 9) was retained, it became dominant and ovulated in six mares and became atretic in three mares; the difference in diameter between the two follicles on Day 0 was less (p < 0.01) in mares in which the retained smaller follicle grew and ovulated (2.2 +/- 0.6 mm) than in the mares in which the follicle became atretic (5.9 +/- 1.2 mm). A decline (p < 0. 0001) in FSH concentrations occurred over Days -4 (8.4 +/- 0.7 ng/ml) to 0 (5.9 +/- 0.3 ng/ml), averaged over all groups, and the decline continued for several more days in the groups with both follicles or with only the larger follicle retained. In the group with only the smaller follicle retained, compared to the group with both follicles retained, FSH concentrations and diameter of the smaller follicle increased between Days 0 and 1 (significant interaction for each end point). After Day 1, FSH concentrations continued to increase when the smaller retained follicle became atretic; concentrations decreased when the smaller retained follicle became dominant. An increase (p < 0.0001) in LH concentrations occurred over Days -4 (12.2 +/- 1.1 pg/ml) to 0 (21.1 +/- 2.0 pg/ml), averaged over the three groups. In 23 of 27 mares, a transient peak in LH concentrations occurred within 2 days of Day 0. In the groups with both follicles or with only the larger follicle retained, an increase (p < 0.0001) in systemic estradiol concentrations occurred between Day 0 (5.3 +/- 0.6 pg/ml) and Day 2 (7.5 +/- 0.4 pg/ml). When only the smaller follicle was retained, estradiol did not begin to increase until Day 2, and it increased only when the retained follicle grew and became dominant. The beginning of an increase in estradiol and continued decrease in FSH at the expected beginning of deviation were attributable to the future dominant follicle; there was no indication that the smaller follicle was involved.  相似文献   

14.
We have previously studied mouse whisker follicles in Gelfoam® histoculture to determine the role of nestin-expressing plutipotent stem cells, located within the follicle, in the growth of the follicular sensory nerve. Long-term Gelfoam® whisker histoculture enabled hair follicle nestin-expressing stem cells to promote the extensive elongation of the whisker sensory nerve, which contained axon fibers. Transgenic mice in which the nestin promoter drives green fluorescent protein (ND-GFP) were used as the source of the whiskers allowing imaging of the nestin-expressing stem cells as they formed the follicular sensory nerve. In the present report, we show that Gelfoam®-histocultured whisker follicles produced growing pigmented and unpigmented hair shafts. Hair-shaft length increased rapidly by day-4 and continued growing until at least day-12 after which the hair-shaft length was constant. By day-63 in histoculture, the number of ND-GFP hair follicle stem cells increased significantly and the follicles were intact. The present study shows that Gelfoam® histoculture can support extensive hair-shaft growth as well as hair follicle sensory-nerve growth from isolated hair follicles which were maintained over very long periods of time. Gelfoam® histoculture of hair follicles can provide a very long-term period for evaluating novel agents to promote hair growth.  相似文献   

15.
Skin is a highly heterogeneous tissue. Intra-dermal structures include hair follicles, arrector pili muscles, epidermal specializations (such as Merkel cell clusters), sebaceous glands, nerves and nerve endings, and capillaries. The spatial arrangement of these structures is tightly controlled on a microscopic scale - as seen, for example, in the orderly arrangement of cell types within a single hair follicle - and on a macroscopic scale - as seen by the nearly identical orientations of thousands of hair follicles within a local region of skin. Visualizing these structures without physically sectioning the skin is possible because of the 2-dimensional geometry of this organ. In this protocol, we show that mouse skin can be dissected, fixed, permeabilized, stained, and clarified as an intact two dimensional object, a flat mount. The protocol allows for easy visualization of skin structures in their entirety through the full thickness of large areas of skin by optical sectioning and reconstruction. Images of these structures can also be integrated with information about position and orientation relative to the body axes.  相似文献   

16.
A new technique has been used for culturing human keratinocytes. The cells grow on the basement membrane-like capsules of bovine lenses. Lens cells were removed from the capsules by rigid trypsinization. In order to exclude any contamination with remaining living cells the isolated capsules were irradiated with X-rays at a dose of 10,000 rad. In this way human epithelial cells can be brought in culture from individual hair follicles. Since feeder cells are not used in this culture technique, the biosynthesis of keratinocyte proteins can be studied in these cultures. The newly synthesized proteins can be separated into a water-soluble, a urea-soluble, and a urea-insoluble fraction. Product analysis has been performed on the first two fractions revealing protein patterns identical to those of intact hair follicles. Product analysis of the urea-soluble fractions of microdissected hair follicles shows that the protein pattern of the cultured keratinocytes resembles the protein pattern of the hair follicle sheath. Studies on the metabolism of benzo(a)pyrene revealed that the enzyme aryl hydrocarbon hydroxylase (AHH) is present in cultured hair follicle cells. A possible use of our culture system for eventual detection of inherited predisposition for smoking-dependent lung cancer is discussed.  相似文献   

17.
Multiple roles for elastic fibers in the skin.   总被引:4,自引:0,他引:4  
Dermal elastic fibers are believed to have a primary role in providing elastic stretch and recoil to the skin. Here we compare the structural arrangement of dermal elastic fibers of chick skin and different animal species. Most elastic fibers in chick skin are derived from cells that line the feather follicle and/or smooth muscle that connects the pterial and apterial muscle bundles to feather follicles. Elastic fibers in the dermis of animals with single, primary hair follicles are derived from cells lining the hair follicle or from the ends of the pili muscle, which anchors the muscle to the matrix or to the hair follicle. Each follicle is interconnected with elastic fibers. Follicles of animals with primary and secondary (wool) hair follicles are also interconnected by elastic fibers, yet only the elastic fibers derived from the primary follicle are connected to each primary follicle. Only the primary hair follicles are connected to the pili muscle. Human skin, but not the skin of other primates, is significantly different from other animals with respect to elastic fiber organization and probably cell of origin. The data suggest that the primary role for elastic fibers in animals, with the possible exception of humans, is movement and/or placement of feathers or hair.  相似文献   

18.
19.
小鼠皮肤及其毛囊早期发育的组织学观察   总被引:1,自引:0,他引:1  
目的探讨小鼠皮肤及其毛囊的早期发育规律。方法采用常规石蜡切片和H-E染色技术,观察昆明系小鼠出生前后皮肤及其毛囊的形态发育。结果(1)孕龄16 d胎鼠的皮肤表面形成凹凸不平的深褶皱,但在生后3 d~5 d不仅皱褶的数量减少,而且凹陷变浅;(2)胎鼠孕龄16 d至19 d,其皮肤的表皮、真皮及皮肤总厚度呈现平稳增厚。但是,出生后,其表皮、真皮和皮肤总厚度急剧降低;在生后第1天至第9天,表皮呈现平稳增厚,而真皮则在生后快速厚度,第7天达到最高值(1861.50μm);(3)孕龄16 d的胎鼠皮肤中可观察到初级毛囊,至生后第7天其密度呈现平稳增长;与其相比,次级毛囊从18 d胎鼠开始出现,其密度增长非常迅速,出生后第7天达到1257.14/mm;毛囊的总密度与次级毛囊呈现相似的变化趋势。出生第7天后,由于毛囊的数量急剧增加,无法观察初级毛囊和次级毛囊的变化规律;(4)初级毛囊和次级毛囊的长度与深度变化在出生前后的相对缓慢,与其相比在第3天以后至第7天呈现迅速变化趋势。结论小鼠皮肤及其毛囊的生长性发育发生在胎儿晚期和生后的早期,而其周期性变化可能从出生后的第9天以后开始出现;在孕期16 d至生后第7天可能是检测毛囊特异性基因表达的最佳期。  相似文献   

20.
Hair differentiation and growth are controlled by complex reciprocal signaling between epithelial and mesenchymal cells. To better understand the requirement and molecular mechanism of BMP signaling in hair follicle development, we performed genetic analyses of bone morphogenetic protein receptor 1A (BMPR-IA) function during hair follicle development by using a conditional knockout approach. The conditional mutation of Bmpr1a in ventral limb ectoderm and its derivatives (epidermis and hair follicles) resulted in a lack of hair outgrowth from the affected skin regions. Mutant hair follicles exhibited abnormal morphology and lacked hair formation and pigment deposition during anagen. The timing of the hair cycle and the proliferation of hair matrix cells were also affected in the mutant follicles. We demonstrate that signaling via epithelial BMPR-IA is required for differentiation of both hair shaft and inner root sheath from hair matrix precursor cells in anagen hair follicles but is dispensable for embryonic hair follicle induction. Surprisingly, aberrant de novo hair follicle morphogenesis together with hair matrix cell hyperplasia was observed in the absence of BMPR-IA signaling within the affected skin of adult mutants. They developed hair follicle tumors from 3 months of age, indicating that inactivation of epidermal BMPR-IA signaling can lead to hair tumor formation. Taken together, our data provide genetic evidence that BMPR-IA signaling plays critical and multiple roles in controlling cell fate decisions or maintenance, proliferation, and differentiation during hair morphogenesis and growth, and implicate Bmpr1a as a tumor suppressor in skin tumorigenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号