首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Friedreich's ataxia (FRDA) is a common hereditary degenerative neuro-muscular disorder caused by expansions of the (GAA)n repeat in the first intron of the frataxin gene. The expanded repeats from parents frequently undergo further significant length changes as they are passed on to progeny. Expanded repeats also show an age-dependent instability in somatic cells, albeit on a smaller scale than during intergenerational transmissions. Here we studied the effects of (GAA)n repeats of varying lengths and orientations on the episomal DNA replication in mammalian cells. We have recently shown that the very first round of the transfected DNA replication occurs in the lack of the mature chromatin, does not depend on the episomal replication origin and initiates at multiple single-stranded regions of plasmid DNA. We now found that expanded GAA repeats severely block this first replication round post plasmid transfection, while the subsequent replication cycles are only mildly affected. The fact that GAA repeats affect various replication modes in a different way might shed light on their differential expansions characteristic for FRDA.  相似文献   

2.
Cdt1 is a conserved replication factor required in licensing the chromosome for a single round of DNA synthesis. The activity of Cdt1 is inhibited by geminin. The mechanism by which geminin interferes with Cdt1 activity is unknown. It is thought that geminin binds to and sequestrate Cdt1. We show that geminin does not interfere with the chromatin association of Cdt1 and that inhibition of DNA synthesis by geminin is observed following its accumulation on chromatin. The binding of geminin to chromatin has been investigated during S phase. We demonstrate that loading of geminin onto chromatin requires Cdt1, suggesting that geminin is targeted at replication origins. We also show that geminin binds chromatin at the transition from the pre-replication to pre-initiation complexes, which overlaps with the release of Cdt1. This regulation is strikingly different from that observed in somatic cells where the chromatin binding of these proteins is mutually exclusive. In contrast to somatic cells, we further show that geminin is stable during the early embryonic cell cycles. These results suggest a specific regulation of origin firing adapted to the rapid cell cycles of Xenopus and indicate that periodic degradation of geminin is not relevant to licensing during embryonic development.  相似文献   

3.
Mitotic remodeling of the replicon and chromosome structure   总被引:8,自引:0,他引:8  
Lemaitre JM  Danis E  Pasero P  Vassetzky Y  Méchali M 《Cell》2005,123(5):787-801
Animal cloning by nuclear-transfer experiments frequently fails due to the inability of transplanted nuclei to support normal embryonic development. We show here that the formation of mitotic chromosomes in the egg context is crucial for adapting differentiated nuclei for early development. Differentiated erythrocyte nuclei replicate inefficiently in Xenopus eggs but do so as rapidly as sperm nuclei if a prior single mitosis is permitted. This mitotic remodeling involves a topoisomerase II-dependent shortening of chromatin loop domains and an increased recruitment of replication initiation factors onto chromatin, leading to a short interorigin spacing characteristic of early developmental stages. It also occurs within each early embryonic cell cycle and dominantly regulates initiation of DNA replication for the subsequent S phase. These results indicate that mitotic conditioning is crucial to reset the chromatin structure of differentiated adult donor cells for embryonic DNA replication and suggest that it is an important step in nuclear cloning.  相似文献   

4.
An extrachromosomally replicating plasmid was used to investigate the specificity by which the origin recognition complex (ORC) interacts with DNA sequences in mammalian cells in vivo. We first showed that the plasmid pEPI-1 replicates semiconservatively in a once-per-cell-cycle manner and is stably transmitted over many cell generations in culture without selection. Chromatin immunoprecipitations and quantitative polymerase chain reaction analysis revealed that, in G1-phase cells, Orc1 and Orc2, as well as Mcm3, another component of the prereplication complex, are bound to multiple sites on the plasmid. These binding sites are functional because they show the S-phase-dependent dissociation of Orc1 and Mcm3 known to be characteristic for prereplication complexes in mammalian cells. In addition, we identified replicative nascent strands and showed that they correspond to many plasmid DNA regions. This work has implications for current models of replication origins in mammalian systems. It indicates that specific DNA sequences are not required for the chromatin binding of ORC in vivo. The conclusion is that epigenetic mechanisms determine the sites where mammalian DNA replication is initiated.  相似文献   

5.
6.
Five distinct patterns of DNA replication have been identified during S-phase in asynchronous and synchronous cultures of mammalian cells by conventional fluorescence microscopy, confocal laser scanning microscopy, and immunoelectron microscopy. During early S-phase, replicating DNA (as identified by 5-bromodeoxyuridine incorporation) appears to be distributed at sites throughout the nucleoplasm, excluding the nucleolus. In CHO cells, this pattern of replication peaks at 30 min into S-phase and is consistent with the localization of euchromatin. As S-phase continues, replication of euchromatin decreases and the peripheral regions of heterochromatin begin to replicate. This pattern of replication peaks at 2 h into S-phase. At 5 h, perinucleolar chromatin as well as peripheral areas of heterochromatin peak in replication. 7 h into S-phase interconnecting patches of electron-dense chromatin replicate. At the end of S-phase (9 h), replication occurs at a few large regions of electron-dense chromatin. Similar or identical patterns have been identified in a variety of mammalian cell types. The replication of specific chromosomal regions within the context of the BrdU-labeling patterns has been examined on an hourly basis in synchronized HeLa cells. Double labeling of DNA replication sites and chromosome-specific alpha-satellite DNA sequences indicates that the alpha-satellite DNA replicates during mid S-phase (characterized by the third pattern of replication) in a variety of human cell types. Our data demonstrates that specific DNA sequences replicate at spatially and temporally defined points during the cell cycle and supports a spatially dynamic model of DNA replication.  相似文献   

7.
8.
9.
Genome-wide replication timing studies have suggested that mammalian chromosomes consist of megabase-scale domains of coordinated origin firing separated by large originless transition regions. Here, we report a quantitative genome-wide analysis of DNA replication kinetics in several human cell types that contradicts this view. DNA combing in HeLa cells sorted into four temporal compartments of S phase shows that replication origins are spaced at 40 kb intervals and fire as small clusters whose synchrony increases during S phase and that replication fork velocity (mean 0.7 kb/min, maximum 2.0 kb/min) remains constant and narrowly distributed through S phase. However, multi-scale analysis of a genome-wide replication timing profile shows a broad distribution of replication timing gradients with practically no regions larger than 100 kb replicating at less than 2 kb/min. Therefore, HeLa cells lack large regions of unidirectional fork progression. Temporal transition regions are replicated by sequential activation of origins at a rate that increases during S phase and replication timing gradients are set by the delay and the spacing between successive origin firings rather than by the velocity of single forks. Activation of internal origins in a specific temporal transition region is directly demonstrated by DNA combing of the IGH locus in HeLa cells. Analysis of published origin maps in HeLa cells and published replication timing and DNA combing data in several other cell types corroborate these findings, with the interesting exception of embryonic stem cells where regions of unidirectional fork progression seem more abundant. These results can be explained if origins fire independently of each other but under the control of long-range chromatin structure, or if replication forks progressing from early origins stimulate initiation in nearby unreplicated DNA. These findings shed a new light on the replication timing program of mammalian genomes and provide a general model for their replication kinetics.  相似文献   

10.
When DNA replication is slowed down, normally dormant replication origins are activated. Recent work demonstrates that cells adapt by changing the organization of chromatin loops and maintaining the new pattern of origin use in subsequent cell cycles.  相似文献   

11.
Bloom's syndrome (BS), a disorder associated with genomic instability and cancer predisposition, results from defects in the Bloom's helicase (BLM) protein. In BS cells, chromosomal abnormalities such as sister chromatid exchanges occur at highly elevated rates. Using Xenopus egg extracts, we have studied Xenopus BLM (Xblm) during both unperturbed and disrupted DNA replication cycles. Xblm binds to replicating chromatin and becomes highly phosphorylated in the presence of DNA replication blocks. This phosphorylation depends on Xenopus ATR (Xatr) and Xenopus Rad17 (Xrad17), but not Claspin. Xblm and Xenopus topoisomerase IIIalpha (Xtop3alpha) interact in a regulated manner and associate with replicating chromatin interdependently. Immunodepletion of Xblm from egg extracts results in accumulation of chromosomal DNA breaks during both normal and perturbed DNA replication cycles. Disruption of the interaction between Xblm and Xtop3alpha has similar effects. The occurrence of DNA damage in the absence of Xblm, even without any exogenous insult to the DNA, may help to explain the genesis of chromosomal defects in BS cells.  相似文献   

12.
For DNA replication to occur, chromatin must be remodeled. Yet, we know very little about which proteins alter nucleosome occupancy at origins and replication forks and for what aspects of replication they are required. Here, we demonstrate that the BRG1 catalytic subunit of mammalian SWI/SNF-related complexes co-localizes with origin recognition complexes, GINS complexes, and proliferating cell nuclear antigen at sites of DNA replication on extended chromatin fibers. The specific pattern of BRG1 occupancy suggests it does not participate in origin selection but is involved in the firing of origins and the process of replication elongation. This latter function is confirmed by the fact that Brg1 mutant mouse embryos and RNAi knockdown cells exhibit a 50% reduction in replication fork progression rates, which is associated with decreased cell proliferation. This novel function of BRG1 is consistent with its requirement during embryogenesis and its role as a tumor suppressor to maintain genome stability and prevent cancer.  相似文献   

13.
In a human HeLa derived-cell line carrying permanently a single integrated copy of an SV40 shuttle vector, the transient expression of the SV40 T-antigen led to the production of heterogeneous populations of circular DNA molecules which retained both integrated vector and its surrounding cellular sequences. Comparison between the integrated copy and the linear maps of 80 different plasmids rescued in bacteria suggested that the formation of circular DNA was the result of bidirectional replication from the SV40 origin of replication followed by a single intramolecular joining leading to the cyclization of the replicated molecules. Sequence analysis of 45 recombinational junctions demonstrated that the cyclization occurred via illegitimate recombination process which did not require preferential nucleotide sequence at the joining sites. However, extensive characterization of recombination junctions revealed that the sequences involved in the recombination at each side of the SV40 origin of replication were not randomly distributed, suggesting the presence of regions which were more prone to be involved in the illegitimate recombination process in human cells. Search of common features usually implied in illegitimate recombination in mammalian cells revealed some association of these regions with palindromes, A + T-rich DNA segments, alternating purine/pyrimidine sequences and Alu family repeats.  相似文献   

14.
The model of in situ DNA replication provided by immunofluorescence and confocal imaging is compared with observations obtained by electron microscopic studies. Discrepancies between both types of observations call into question the replication focus as a persistent nuclear structure and as a replication entity where DNA replication takes place. Most electron microscopic analyses reveal that replication sites are confined to dispersed chromatin areas at the periphery of condensed chromatin, and the distribution of replication factors exhibits the same localization pattern. Moreover, rapid migration of newly synthesized DNA from the replication sites towards the interior of condensed chromatin regions obviously takes place during S-phase. It implies modifications of replication domains, hardly detectable by fluorescence microscopy. The confrontation of different observations carried out at light microscopic or electron microscopic levels of resolution lead to a conclusion that a combination of in vivo fluorescence analysis with a subsequent ultrastructural investigation performed on the same cells will represent an optimal approach in future studies of nuclear functions in situ.  相似文献   

15.
Several recent studies have examined different aspects of mammalian higher order chromatin structure – replication timing, lamina association and Hi-C inter-locus interactions — and have suggested that most of these features of genome organisation are conserved over evolution. However, the extent of evolutionary divergence in higher order structure has not been rigorously measured across the mammalian genome, and until now little has been known about the characteristics of any divergent loci present. Here, we generate a dataset combining multiple measurements of chromatin structure and organisation over many embryonic cell types for both human and mouse that, for the first time, allows a comprehensive assessment of the extent of structural divergence between mammalian genomes. Comparison of orthologous regions confirms that all measurable facets of higher order structure are conserved between human and mouse, across the vast majority of the detectably orthologous genome. This broad similarity is observed in spite of many loci possessing cell type specific structures. However, we also identify hundreds of regions (from 100 Kb to 2.7 Mb in size) showing consistent evidence of divergence between these species, constituting at least 10% of the orthologous mammalian genome and encompassing many hundreds of human and mouse genes. These regions show unusual shifts in human GC content, are unevenly distributed across both genomes, and are enriched in human subtelomeric regions. Divergent regions are also relatively enriched for genes showing divergent expression patterns between human and mouse ES cells, implying these regions cause divergent regulation. Particular divergent loci are strikingly enriched in genes implicated in vertebrate development, suggesting important roles for structural divergence in the evolution of mammalian developmental programmes. These data suggest that, though relatively rare in the mammalian genome, divergence in higher order chromatin structure has played important roles during evolution.  相似文献   

16.
A growing body of evidence suggests that establishment of sister chromatid cohesion is dependent on replication fork passage over a precohesion area. In Saccharomyces cerevisiae, this process involves an alternative replication factor C (RFC) complex that contains the four small RFC subunits as well as CTF18, CTF8, and DCC1. Here, we show that an evolutionarily conserved homologous complex exists in the nucleus of human cells. We demonstrate that hCTF18, hCTF8, and hDCC1 interact with each other as well as with the p38 subunit of RFC. This alternative RFC-containing complex interacts with proliferating cell nuclear antigen but not with the Rad9/Rad1/Hus1 complex, a proliferating cell nuclear antigen-like clamp involved in the DNA damage response. hCTF18 preferentially binds chromatin during S phase, suggesting a role during replication. Our data provide evidence for the existence of an alternative RFC complex with a probable role in mammalian sister chromatid cohesion establishment.  相似文献   

17.
Origin recognition complex (ORC) plays critical roles in the initiation of DNA replication and cell-cycle progression. In metazoans, ORC associates with origin DNA during G1 and with heterochromatin in postreplicated cells. However, what regulates the binding of ORC to chromatin is not understood. We have identified a highly conserved, leucine-rich repeats and WD40 repeat domain-containing protein 1 (LRWD1) or ORC-associated (ORCA) in human cells that interacts with ORC and modulates chromatin association of ORC. ORCA colocalizes with ORC and shows similar cell-cycle dynamics. We demonstrate that ORCA efficiently recruits ORC to chromatin. Depletion of ORCA in human primary cells and embryonic stem cells results in loss of ORC association to chromatin, concomitant reduction of MCM binding, and a subsequent accumulation in G1 phase. Our results suggest ORCA-mediated association of ORC to chromatin is critical to initiate preRC assembly in G1 and chromatin organization in post-G1 cells.  相似文献   

18.
Human Mcm proteins at a replication origin during the G1 to S phase transition   总被引:11,自引:1,他引:10  
Previous work with yeast cells and with Xenopus egg extracts had shown that eukaryotic pre-replication complexes assemble on chromatin in a step-wise manner whereby specific loading factors promote the recruitment of essential Mcm proteins at pre-bound origin recognition complexes (ORC with proteins Orc1p–Orc6p). While the order of assembly—Mcm binding follows ORC binding—seems to be conserved in cycling mammalian cells in culture, it has not been determined whether mammalian Mcm proteins associate with ORC-bearing chromatin sites. We have used a chromatin immunoprecipitation approach to investigate the site of Mcm binding in a genomic region that has previously been shown to contain an ORC-binding site and an origin of replication. Using chromatin from HeLa cells in G1 phase, antibodies against Orc2p as well as antibodies against Mcm proteins specifically immunoprecipitate chromatin enriched for a DNA region that includes a replication origin. However, with chromatin from cells in S phase, only Orc2p-specific antibodies immunoprecipitate the origin-containing DNA region while Mcm-specific antibodies immunoprecipitate chromatin with DNA from all parts of the genomic region investigated. Thus, human Mcm proteins first assemble at or adjacent to bound ORC and move to other sites during genome replication.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号