首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of this study was to investigate the role of dietary macronutrient content on adiposity parameters and adipocyte hypertrophy/hyperplasia in subcutaneous and visceral fat depots from Wistar rats using combined histological and computational approaches. For this purpose, male Wistar rats were distributed into 4 groups and were assigned to different nutritional interventions: Control group (chow diet); high-fat group, HF (60% E from fat); high-fat-sucrose group, HFS (45% E from fat and 17% from sucrose); and high-sucrose group, HS (42% E from sucrose). At day 35, rats were sacrificed, blood was collected, tissues were weighed and fragments of different fat depots were kept for histological analyses with the new softwareAdiposoft. Rats fed with HF, HFS and HS diets increased significantly body weight and total body fat against Control rats, being metabolic impairments more pronounced on HS rats than in the other groups. Cellularity analyses usingAdiposoft revealed that retroperitoneal adipose tissue is histologically different than mesenteric and subcutaneous ones, in relation to bigger adipocytes. The subcutaneous fat pad was the most sensitive to the diet, presenting adipocyte hypertrophy induced by HF diet and adipocyte hyperplasia induced by HS diet. The mesenteric fat pad had a similar but attenuated response in comparison to the subcutaneous adipose tissue, while retroperitoneal fat pad only presented adipocyte hyperplasia induced by the HS diet intake after 35 days of intervention. These findings provide new insights into the role of macronutrients in the development of hyperplastic obesity, which is characterized by the severity of the clinical features. Finally, a new tool for analyzing histological adipose samples is presented.  相似文献   

2.
Aquaporin-7 (AQP7) is a water/glycerol transporting protein expressed in adipocyte plasma membranes. We report here remarkable age-dependent hypertrophy in adipocytes in AQP7-deficient mice. Wild type and AQP7 null mice had similar growth at 0-16 weeks as assessed by body weight; however, by 16 weeks AQP7 null mice had 3.7-fold increased body fat mass. Adipocytes from AQP7 null mice of age 16 weeks were greatly enlarged (diameter 118 mum) compared with wild type mice (39 mum). Adipocytes from AQP7 null mice also accumulated excess glycerol (251 versus 86 nmol/mg of protein) and triglycerides (3.4 versus 1.7 mumol/mg of protein). In contrast, at age 4 weeks, adipocyte volume and body fat mass were comparable in wild type and AQP7 null mice. To investigate the mechanism(s) responsible for the progressive adipocyte hypertrophy, glycerol permeability and fat metabolism were studied in adipocytes isolated from the younger mice. Plasma membrane glycerol permeability measured by [(14)C]glycerol uptake was 3-fold reduced in AQP7-deficient adipocytes. However, adipocyte lipolysis, measured by free fatty acid release and hormone-sensitive lipase activity, and lipogenesis, measured by [(14)C]glucose incorporation into triglycerides, were not affected by AQP7 deletion. These data suggest that adipocyte hypertrophy in AQP7 deficiency results from defective glycerol exit and consequent accumulation of glycerol and triglycerides. Increasing AQP7 expression/function in adipocytes may reduce adipocyte volume and fat mass in obesity.  相似文献   

3.
In support of leptin's physiological role as humoral signal of fat mass, we have shown that adipocyte volume is a predominant determinant of leptin mRNA levels in anatomically distinct fat depots in lean young mice in the postabsorptive state. In this report, we investigated how obesity may affect the relationship between leptin mRNA levels and adipocyte volume in anatomically distinct fat depots in mice with genetic (Lep(ob)/Lep(ob) and A(y)/+), diet-induced, and aging-related obesity. In all of the obese mice examined, tissue leptin mRNA levels relative to the average adipocyte volume were lower in the perigonadal and/or retroperitoneal than in the inguinal fat depots and were lower than those of the lean young mice in the perigonadal fat depot. A close, positive correlation between leptin mRNA level and adipocyte volume was present from small to hypertrophic adipocytes within each perigonadal and inguinal fat pad in the obese mice, but the slopes of the regression lines relating leptin mRNA level to adipocyte volume were significantly lower in the perigonadal than in the inguinal fat pads of the same mice. These results suggest that obesity per se is associated with a decreased leptin gene expression per unit of fat mass in mice and that the positive correlation between leptin mRNA level and adipocyte volume is an intrinsic property of adipocytes that is not disrupted by adipocyte hypertrophy in obese mice.  相似文献   

4.
Resistin has been linked to components of the metabolic syndrome, including obesity, insulin resistance, and hyperlipidemia. We hypothesized that resistin deficiency would reverse hyperlipidemia in genetic obesity. C57Bl/6J mice lacking resistin [resistin knockout (RKO)] had similar body weight and fat as wild-type mice when fed standard rodent chow or a high-fat diet. Nonetheless, hepatic steatosis, serum cholesterol, and very low-density lipoprotein (VLDL) secretion were decreased in diet-induced obese RKO mice. Resistin deficiency exacerbated obesity in ob/ob mice, but hepatic steatosis was drastically attenuated. Moreover, the levels of triglycerides, cholesterol, insulin, and glucose were reduced in ob/ob-RKO mice. The antisteatotic effect of resistin deficiency was related to reductions in the expression of genes involved in hepatic lipogenesis and VLDL export. Together, these results demonstrate a crucial role of resistin in promoting hepatic steatosis and hyperlipidemia in obese mice.  相似文献   

5.
Both adipocyte hyperplasia and hypertrophy are determinant factors for adipocyte differentiation during the development of obesity. p21(WAF1/CIP1), a cyclin-dependent kinase inhibitor, is induced during adipocyte differentiation; however, its precise contribution to this process is unknown. Using both in vitro and in vivo systems, we show that p21 is crucial for maintaining adipocyte hypertrophy and obesity-induced insulin resistance. The absence of p21 in 3T3-L1 fibroblasts by RNA-mediated interference knockdown or in embryonic fibroblasts from p21(-/-) mice impaired adipocyte differentiation, resulting in smaller adipocytes. Despite normal adipose tissue mass on a normal diet, p21(-/-) mice fed high energy diets had reduced adipose tissue mass and adipocyte size accompanied by a marked improvement in insulin sensitivity. Knockdown of p21 in enlarged epididymal fat of diet-induced obese mice and also in fully differentiated 3T3-L1 adipocytes caused vigorous apoptosis by activating p53. Thus, p21 is involved in both adipocyte differentiation and in protecting hypertrophied adipocytes against apoptosis. Via both of these mechanisms, p21 promotes adipose tissue expansion during high fat diet feeding, leading to increased downstream pathophysiological consequences such as insulin resistance.  相似文献   

6.
Excessive body fat accumulation can result in obesity, which is a serious health concern. Kefir, a probiotic, has recently shown possible health benefits in fighting obesity. This study investigated the inhibitory effects of 0.1 and 0.2% kefir powder on fat accumulation in adipose and liver tissues of high-fat diet (HFD)-induced obese mice. Kefir reduced body weight and epididymal fat pad weight and decreased adipocyte diameters in HFD-induced obese mice. This was supported by decreased expression of genes related to adipogenesis and lipogenesis as well as reduced proinflammatory marker levels in epididymal fat. Along with reduced hepatic triacylglycerol concentrations and serum alanine transaminase and aspartate transaminase activities, genes related to lipogenesis and fatty acid oxidation were downregulated and upregulated, respectively, in liver tissue. Kefir also decreased serum triacylglycerol, total cholesterol, and low-density lipoprotein–cholesterol concentrations. Overall, kefir has the potential to prevent obesity.  相似文献   

7.
A new strain of obese mouse, the PBB/Ld, has been studied in terms of fat pad cellularity, serum insulin and blood glucose levels, and response to gold thioglucose injections. Age-matched C57B1/6J mice were used as controls. Adipocyte size and number in the major fat depots were determined at various ages from weanling to maturity in the PBB/Ld and C57B1/6J strains. Results indicated that obesity in the PBB/Ld was due to hypertrophy of adipocytes in retroperitoneal and subcutaneous fat depots and to hypertrophy and hyperplasia in the epididymal fat pad. PBB/Ld mice also developed hyperinsulinemia and hyperglycemia and these findings have been discussed in terms of the developmental changes in fat pad cellularity. The injection of gold thioglucose led to increased food intake in both PBB/Ld and C57B1/6J mice. Hyperphagia was also present in the PBB/LD control group, but increased efficiency of converting calories to body weight was not observed in this group when compared to control C57B1/6J mice. The characteristics of obesity seen in the PBB/Ld mouse are discussed and comparisons are made to similar studies in other rodent models of obesity.  相似文献   

8.
Aromatase-deficient (ArKO) mice accumulate excess adipose tissue   总被引:2,自引:0,他引:2  
Aromatase is the enzyme which catalyses the conversion of C19 steroids into C18 estrogens. We have generated a mouse model wherein the Cyp19 gene, which encodes aromatase, has been disrupted, and hence, the aromatase knockout (ArKO) mouse cannot synthesise endogenous estrogens. We examined the consequences of estrogen deficiency on accumulation of adipose depots in male and female ArKO mice, observing that these animals progressively accrue significantly more intra-abdominal adipose tissue than their wildtype (WT) litter mates, reflected in increased adipocyte volume and number. This increased adiposity was not due to hyperphagia or reduced resting energy expenditure, but was associated with reduced spontaneous physical activity levels, reduced glucose oxidation, and a decrease in lean body mass. Elevated circulating levels of leptin and cholesterol were present in 1-year-old ArKO mice compared to WT controls, as were elevated insulin levels, although blood glucose was unchanged. Associated with these changes, the livers of ArKO animals were characterised by a striking accumulation of lipid droplets. Our findings demonstrate an important role for estrogen in the maintenance of lipid homeostasis in both males and females.  相似文献   

9.
Rodents tend to compensate for experimental obesity in which both adipocyte size and number are increased. In contrast, it was recently reported that Siberian hamsters do not compensate for dorsal subcutaneous transplants of fat, which increase body fat without changing the size of adipocytes. In the first experiment described here we tested whether mice changed the size of their endogenous fat stores 2 or 5 wk after donor fat was added as subcutaneous transplants. Each epididymal fat pad from donor mice was cut in half and placed ventrally in recipient mice, increasing body fat by approximately 10%. After 2 wk, there was no effect of the transplants on the size of endogenous fat depots or the size of adipocytes in epididymal fat depots. There was a substantial decrease in mass and adipocyte size in transplanted fat. Five weeks after surgery the endogenous epididymal and retroperitoneal fat depots of recipient mice were significantly decreased, serum leptin was reduced, and the size of adipocytes in endogenous epididymal fat was significantly reduced, although cell number had not changed. The size of transplanted cells was the same as at 2 wk. In a second experiment, epididymal fat was placed as either dorsal or ventral subcutaneous fat transplants. Five weeks after surgery the endogenous fat depots were decreased in all recipient mice but none of the differences reached statistical significance. These results suggest that mice have mechanisms to maintain total body fat mass that respond to an increase in the number of fat cells present.  相似文献   

10.
White and brown adipocytes are believed to occupy different sites in the body. We studied the anatomical features and quantitative histology of the fat depots in obesity and type 2 diabetes-prone C57BL/6J mice acclimated to warm or cold temperatures. Most of the fat tissue was contained in depots with discrete anatomical features, and most depots contained both white and brown adipocytes. Quantitative analysis showed that cold acclimation induced an increase in brown adipocytes and an almost equal reduction in white adipocytes; however, there were no significant differences in total adipocyte count or any signs of apoptosis or mitosis, in line with the hypothesis of the direct transformation of white into brown adipocytes. The brown adipocyte increase was accompanied by enhanced density of noradrenergic parenchymal nerve fibers, with a significant correlation between the density of these fibers and the number of brown adipocytes. Comparison with data from obesity-resistant Sv129 mice disclosed a significantly different brown adipocyte content in C57BL/6J mice, suggesting that this feature could underpin the propensity of the latter strain to develop obesity. However, the greater C57BL/6J browning capacity can hopefully be harnessed to curb obesity and type 2 diabetes in patients with constitutively low amounts of brown adipose tissue.  相似文献   

11.
Synthetic cannabinoid receptor agonists activate lipoprotein lipase and the formation of lipid droplets in cultured adipocytes. Here we extend this work by examining whether Δ(9)-tetrahydrocannabinol (THC), a major plant-derived cannabinoid, increases adipocyte size in vivo. Further, possibly as a consequence of hypertrophy, we hypothesize that THC exposure promotes macrophage infiltration into adipose tissue, an inflammatory state observed in obese individuals. Rats repeatedly exposed to THC in vivo had reduced body weight, fat pad weight, and ingested less food over the drug injection period. However, THC promoted adipocyte hypertrophy that was accompanied by a significant increase in cytosolic phosphoenolpyruvate carboxykinase (PEPCK-C) expression, an enzyme important in packaging triglycerides. We also showed that THC induced macrophage infiltration and increased expression of the inflammatory cytokine tumor necrosis factor alpha (TNF-α) in adipose tissue but did not induce apoptosis as measured by TUNEL staining. That THC increased adipocyte cell size in the absence of greater food intake, body weight and fat provides a unique model to explore mechanisms underlying changes in adipocyte size associated with a mild inflammatory state in fat tissue.  相似文献   

12.
Catecholamines play an important role in controlling white adipose tissue function and development. beta- and alpha 2-adrenergic receptors (ARs) couple positively and negatively, respectively, to adenylyl cyclase and are co-expressed in human adipocytes. Previous studies have demonstrated increased adipocyte alpha 2/beta-AR balance in obesity, and it has been proposed that increased alpha 2-ARs in adipose tissue with or without decreased beta-ARs may contribute mechanistically to the development of increased fat mass. To critically test this hypothesis, adipocyte alpha 2/beta-AR balance was genetically manipulated in mice. Human alpha 2A-ARs were transgenically expressed in the adipose tissue of mice that were either homozygous (-/-) or heterozygous (+/-) for a disrupted beta 3-AR allele. Mice expressing alpha 2-ARs in fat, in the absence of beta 3-ARs (beta 3-AR -/- background), developed high fat diet-induced obesity. Strikingly, this effect was due entirely to adipocyte hyperplasia and required the presence of alpha2-ARs, the absence of beta 3-ARs, and a high fat diet. Of note, obese alpha 2-transgenic beta 3 -/- mice failed to develop insulin resistance, which may reflect the fact that expanded fat mass was due to adipocyte hyperplasia and not adipocyte hypertrophy. In summary, we have demonstrated that increased alpha 2/beta-AR balance in adipocytes promotes obesity by stimulating adipocyte hyperplasia. This study also demonstrates one way in which two genes (alpha 2 and beta 3-AR) and diet interact to influence fat mass.  相似文献   

13.
Adipose triglyceride lipase (ATGL) catalyzes the first step of triacylglycerol hydrolysis in adipocytes. Abhydrolase domain 5 (ABHD5) increases ATGL activity by an unknown mechanism. Prior studies have suggested that the expression of ABHD5 is limiting for lipolysis in adipocytes, as addition of recombinant ABHD5 increases in vitro TAG hydrolase activity of adipocyte lysates. To test this hypothesis in vivo, we generated transgenic mice that express 6-fold higher ABHD5 in adipose tissue relative to wild-type (WT) mice. In vivo lipolysis increased to a similar extent in ABHD5 transgenic and WT mice following an overnight fast or injection of either a β-adrenergic receptor agonist or lipopolysaccharide. Similarly, basal and β-adrenergic-stimulated lipolysis was comparable in adipocytes isolated from ABHD5 transgenic and WT mice. Although ABHD5 expression was elevated in thioglycolate-elicited macrophages from ABHD5 transgenic mice, Toll-like receptor 4 (TLR4) signaling was comparable in macrophages isolated from ABHD5 transgenic and WT mice. Overexpression of ABHD5 did not prevent the development of obesity in mice fed a high-fat diet, as shown by comparison of body weight, body fat percentage, and adipocyte hypertrophy of ABHD5 transgenic to WT mice. The expression of ABHD5 in mouse adipose tissue is not limiting for either basal or stimulated lipolysis.  相似文献   

14.
Adipose tissue is an important retinoid depot and retinoids are known to influence white and brown adipocyte metabolism. Identifying nutrients that can affect the biological activity of the adipose organ would be of great medical interest in the light of the current obesity epidemic and related disorders in developed countries. The vast majority of mammal studies of chronic administration of oral beta-carotene have used murine models, while few have employed mammals exhibiting uptake and processing of intestinal beta-carotene similar to those of humans. While rodents transform practically all ingested beta-carotene into retinol, in ferrets, as in humans, part of the beta-carotene is absorbed and released into the circulation intact. We studied the effects of 6-month daily administration of two doses of oral beta-carotene (0.8 or 3.2 mg/kg/day) on ferret body weight, size of body fat depots, and, using morphological and morphometric methods, on subcutaneous (inguinal) white adipose tissue (WAT). Because of the oral mode of administration, liver, stomach, and small and large intestine were also studied. Control animals received the vehicle. Data show that at the end of treatment the higher dose induced significantly higher body weight compared with controls and significantly higher inguinal fat depot compared with animals treated with the lower dose. In addition, chronic treatment with beta-carotene induced a dose-dependent hypertrophy of white adipocytes and increased neoangiogenesis in subcutaneous WAT in all treated ferrets. Vasculogenesis was independent of adipocyte hypertrophy. We also found focally evident liver steatosis in the ferrets treated with the higher dose of beta-carotene. The other gastrointestinal tract organs studied were not significantly different from those of control animals.  相似文献   

15.
Enlarged fat cells exhibit modified metabolic capacities, which could be involved in the metabolic complications of obesity at the whole body level. We show here that sterol regulatory element-binding protein 2 (SREBP-2) and its target genes are induced in the adipose tissue of several models of rodent obesity, suggesting cholesterol imbalance in enlarged adipocytes. Within a particular fat pad, larger adipocytes have reduced membrane cholesterol concentrations compared with smaller fat cells, demonstrating that altered cholesterol distribution is characteristic of adipocyte hypertrophy per se. We show that treatment with methyl-beta-cyclodextrin, which mimics the membrane cholesterol reduction of hypertrophied adipocytes, induces insulin resistance. We also produced cholesterol depletion by mevastatin treatment, which activates SREBP-2 and its target genes. The analysis of 40 adipocyte genes showed that the response to cholesterol depletion implicated genes involved in cholesterol traffic (caveolin 2, scavenger receptor BI, and ATP binding cassette 1 genes) but also adipocyte-derived secretion products (tumor necrosis factor alpha, angiotensinogen, and interleukin-6) and proteins involved in energy metabolism (fatty acid synthase, GLUT 4, and UCP3). These data demonstrate that altering cholesterol balance profoundly modifies adipocyte metabolism in a way resembling that seen in hypertrophied fat cells from obese rodents or humans. This is the first evidence that intracellular cholesterol might serve as a link between fat cell size and adipocyte metabolic activity.  相似文献   

16.
BackgroundPine nut oil (PNO), a standardized and well-defined extract of Pinus koraiensis (Korean pine), has beneficial effects on wound healing, inflammatory diseases, and cancer. However, the explanation for the mechanism by which PNO reduces body fat remains uncertain. We performed a protein-protein interaction network (PPIN) analysis to explore the genes associated with pinolenic acid using the MEDILINE database from PubChem and PubMed. It was concluded through the PPIN analysis that PNO was involved in a neutral lipid biosynthetic process.PurposeThis study evaluated the effects of PNO predicted by the network analysis of fat accumulation in chronic obesity mouse models established by feeding a high fat diet (HFD) to C57BL/6J mice and explored potential mechanisms.MethodsHFD mice were fed only HFD or HFD with PNO at 822 and 1644 mg/kg. After an oral administration of 7 weeks, several body weight and body fat-related parameters were examined, including the following: adipose weight, adipocyte size, serum lipid profiles, adipocyte expression of PPAR-γ, sterol regulatory element binding protein (SREBP)-1c, lipoprotein lipase (LPL) and leptin.ResultsWe showed that oral administration of PNO to HFD mice reduces body fat weight, fat in tissue, white adipose tissue weight, and adipocyte size. The serum cholesterol was improved in the HFD mice treated with PNO. Additionally, PNO has significantly attenuated the HFD-induced changes in the adipose tissue expression of PPAR-γ, SREBP-1c, LPL, and leptin.ConclusionsThe findings from this study based on the PPIN analysis suggest that PNO has potential as drug to reduce body fat through fat regulatory mechanisms by PPAR-γ and SREBP-1c.  相似文献   

17.
We generated aromatase gene knockout mice (ArKO mice) by targeting disruption of Cyp19, which encodes an enzyme responsible for conversion of androgens to estrogens. We found that ArKO males developed hepatic steatosis spontaneously with aging, indicating that the function of Cyp19 is required to maintain constitutive lipid metabolism in male mice. Plasma lipoprotein analysis using a gel permeation chromatography revealed that high density lipoprotein (HDL)-cholesterol levels were slightly higher in ArKO males than in wild-type males, whereas no other obvious alternations in the profiles were detected. Nevertheless, analysis of lipoprotein compositions by SDS-polyacrylamide gel electrophoresis demonstrated apparent reduction in the amounts of apolipoprotein E, functioning in receptor-mediated clearance of lipoproteins in the liver, in the IDL/LDL fraction of ArKO males as compared with that of wild-type males. Biochemical analysis on the ArKO livers revealed suppression of mRNA expression and activity of enzymes involved in fatty acid beta-oxidation. The impairment was reversed to the wild-type levels by treatment with 17beta-estradiol or bezafibrate, the latter is a synthetic peroxisome proliferator. These findings indicated a pivotal role of estrogen in supporting constitutive hepatic expression of genes involved in fatty acid beta-oxidation and in maintaining lipid homeostasis.  相似文献   

18.
Caveolae organelles and caveolin-1 protein expression are most abundant in adipocytes and endothelial cells. Our initial report on mice lacking caveolin-1 (Cav-1) demonstrated a loss of caveolae and perturbations in endothelial cell function. More recently, however, observation of the Cav-1-deficient cohorts into old age revealed significantly lower body weights, as compared with wild-type controls. These results suggest that Cav-1 null mice may have problems with lipid metabolism and/or adipocyte functioning. To test this hypothesis directly, we placed a cohort of wild-type and Cav-1 null mice on a high fat diet. Interestingly, despite being hyperphagic, Cav-1 null mice show overt resistance to diet-induced obesity. As predicted, adipocytes from Cav-1 null null mice lack caveolae membranes. Early on, a lack of caveolin-1 selectively affects only the female mammary gland fat pad and results in a near complete ablation of the hypo-dermal fat layer. There are also indications of generalized adipose tissue pathology. With increasing age, a systemic decompensation in lipid accumulation occurs resulting in dramatically smaller fat pads, histologically reduced adipocyte cell diameter, and a poorly differentiated/hypercellular white adipose parenchyma. To gain mechanistic insights into this phenotype, we show that, although serum insulin, glucose, and cholesterol levels are entirely normal, Cav-1 null mice have severely elevated triglyceride and free fatty acid levels, especially in the post-prandial state. However, this build-up of triglyceride-rich chylomicrons/very low density lipoproteins is not due to perturbed lipoprotein lipase activity, a major culprit of isolated hypertriglyceridemia. The lean body phenotype and metabolic defects observed in Cav-1 null mice are consistent with the previously proposed functions of caveolin-1 and caveolae in adipocytes. Our results show for the first time a clear role for caveolins in systemic lipid homeostasis in vivo and place caveolin-1/caveolae as major factors in hyperlipidemias and obesity.  相似文献   

19.
Scavenger receptor BI (SR-BI) has been suggested to modulate adipocyte function. To uncover the potential relevance of SR-BI for the development of obesity and associated metabolic complications, we compared the metabolic phenotype of wild-type and SR-BI deficient mice fed an obesogenic diet enriched in fat. Both male and female SR-BI knockout mice gained significantly more weight as compared to their wild-type counterparts in response to 12 weeks high fat diet feeding (1.5-fold; P < .01 for genotype). Plasma free cholesterol levels were ~2-fold higher (P < .001) in SR-BI knockout mice of both genders, whilst plasma cholesteryl ester and triglyceride concentrations were only significantly elevated in males. Strikingly, the exacerbated obesity in SR-BI knockout mice was paralleled by a better glucose handling. In contrast, only SR-BI knockout mice developed atherosclerotic lesions in the aortic root, with a higher predisposition in females. Biochemical and histological studies in male mice revealed that SR-BI deficiency was associated with a reduced hepatic steatosis degree as evident from the 29% lower (P < .05) liver triglyceride levels. Relative mRNA expression levels of the glucose uptake transporter GLUT4 were increased (+47%; P < .05), whilst expression levels of the metabolic PPARgamma target genes CD36, HSL, ADIPOQ and ATGL were reduced 39%–58% (P < .01) in the context of unchanged PPARgamma expression levels in SR-BI knockout gonadal white adipose tissue. In conclusion, we have shown that SR-BI deficiency is associated with a decrease in adipocyte PPARgamma activity and a concomitant uncoupling of obesity development from hepatic steatosis and glucose intolerance development in high fat diet-fed mice.  相似文献   

20.
Aging is often associated with weight gain caused by metabolic changes including an increase of body fat. In this study we assessed the impact of age on estrogen responsiveness in the uterus and adipose tissue (AT) in aromatase-knockout (ArKO) mice. ArKO mice at the age of three or twelve months respectively were treated s.c. with vehicle, E(2) (10 μg/kg BW/d) or genistein (15 mg/kg BW/d) for three days. In the ArKO mouse model we were able to demonstrate that estrogen treatment resulted in an age specific response pattern both on a physiological and molecular level. Assessment of basal gene expression levels revealed significant age dependent differences only for elevated Esr1 levels in the uterus and leptin levels in infrarenal fat as well as lower levels of Pparg in the gonadal fat tissue. Investigating age dependency of estrogen responsiveness we were able to show that the E(2) and genistein resulted in age related pattern of regulation of expression of Esr1 and Lep in infrarenal and gonadal AT as well as the uterine expression of Pgr, Ltf and Pparg. In conclusion, evidence is provided that aging has an impact on the effectiveness of estrogen regulated processes in uterus and AT of ArKO mice. It remains to be elucidated whether or not this is associated with weight gain caused by an increase in body fat mass.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号