首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A panel of seven SR1 tobacco mutants (ATER1 to ATER7) derived via T‐DNA activation tagging and screening for resistance to a microtubule assembly inhibitor, ethyl phenyl carbamate, were used to study the role of microtubules during infection and spread of tobacco mosaic virus (TMV). In one of these lines, ATER2, α‐tubulin is shifted from the tyrosinylated into the detyrosinated form, and the microtubule plus‐end marker GFP–EB1 moves significantly slower when expressed in the background of the ATER2 mutant as compared with the SR1 wild type. The efficiency of cell‐to‐cell movement of TMV encoding GFP‐tagged movement protein (MP‐GFP) is reduced in ATER2 accompanied by a reduced association of MP‐GFP with plasmodesmata. This mutant is also more tolerant to viral infection as compared with the SR1 wild type, implying that reduced microtubule dynamics confer a comparative advantage in face of TMV infection.  相似文献   

2.
EB1 is a microtubule tip-associated protein that interacts with the APC tumor suppressor protein and components of the dynein/dynactin complex. We have found that the C-terminal 50 and 84 amino acids (aa) of EB1 were sufficient to mediate the interactions with APC and dynactin, respectively. EB1 formed mutually exclusive complexes with APC and dynactin, and a direct interaction between EB1 and p150(Glued) was identified. EB1-GFP deletion mutants demonstrated a role for the N-terminus in mediating the EB1-microtubule interaction, whereas C-terminal regions contributed to both its microtubule tip localization and a centrosomal localization. Cells expressing the last 84 aa of EB1 fused to GFP (EB1-C84-GFP) displayed profound defects in microtubule organization and centrosomal anchoring. EB1-C84-GFP expression severely inhibited microtubule regrowth, focusing, and anchoring in transfected cells during recovery from nocodazole treatment. The recruitment of gamma-tubulin and p150(Glued) to centrosomes was also inhibited. None of these effects were seen in cells expressing the last 50 aa of EB1 fused to GFP. Furthermore, EB1-C84-GFP expression did not induce Golgi apparatus fragmentation. We propose that a functional interaction between EB1 and p150(Glued) is required for microtubule minus end anchoring at centrosomes during the assembly and maintenance of a radial microtubule array.  相似文献   

3.
The cell-to-cell spread of Tobacco mosaic virus infection depends on virus-encoded movement protein (MP), which is believed to form a ribonucleoprotein complex with viral RNA (vRNA) and to participate in the intercellular spread of infectious particles through plasmodesmata. Previous studies in our laboratory have provided evidence that the vRNA movement process is correlated with the ability of the MP to interact with microtubules, although the exact role of this interaction during infection is not known. Here, we have used a variety of in vivo and in vitro assays to determine that the MP functions as a genuine microtubule-associated protein that binds microtubules directly and modulates microtubule stability. We demonstrate that, unlike MP in whole-cell extract, microtubule-associated MP is not ubiquitinated, which strongly argues against the hypothesis that microtubules target the MP for degradation. In addition, we found that MP interferes with kinesin motor activity in vitro, suggesting that microtubule-associated MP may interfere with kinesin-driven transport processes during infection.  相似文献   

4.
Gene I of cauliflower mosaic virus (CaMV) encodes a protein that is required for virus movement. The CaMV movement protein (MP) was used in a yeast 2-hybrid system to screen an Arabidopsis cDNA library for cDNAs encoding MP-interacting (MPI) proteins. Three different clones were found encoding proteins (MPI1, -2 and -7) that interact with the N-terminal third of the CaMV MP. The interaction in the 2-hybrid system between MPI7 and CaMV MP mutants correlated with the infectivity of the mutants. A non-infectious MP mutant, ER2A, with two amino acid changes in the N-terminal third of the MP failed to interact with MPI7, while an infectious second-site mutant, that differed from ER2A by only a single amino acid change, interacted in the 2-hybrid system. MPI7 is encoded by a member of a large, but diverse gene family in Arabidopsis. MPI7 is related in sequence, size and hydropathy profile to mammalian proteins (such as rat PRA1) described as a rab acceptor. The gene encoding MPI7 is expressed widely is Arabidopsis plants, and in transgenic plants the MPI7:GFP fusion protein is localized in the cytoplasm, concentrated in punctate spots. In protoplasts transfected with CFP:MP and MPI7:YFP, CFP:MP colocalized to some of the sites where MPI7:YFP is expressed. At these sites, fluorescence resonance energy transfer (FRET) between fluorophores was observed indicating an interaction in planta between the CaMV MP and MPI7.  相似文献   

5.
Microtubule plus ends are dynamic ends that interact with other cellular structures. Microtubule plus end tracking proteins are considered to play important roles in the regulation of microtubule plus ends. Recent studies revealed that EB1 is the central regulator for microtubule plus end tracking proteins by recruiting them to microtubule plus ends through direct interaction. Here we report the identification of a novel Drosophila protein, which we call Kebab (kinetochore and EB1 associated basic protein), through in vitro expression screening for EB1-interacting proteins. Kebab fused to GFP shows a novel pattern of dynamic localisation in mitosis. It localises to kinetochores weakly in metaphase and accumulates progressively during anaphase. In telophase, it associates with microtubules in central-spindle and centrosomal regions. The localisation to kinetochores depends on microtubules. The protein has a domain most similar to the atypical CH domain of Ndc80, and a coiled-coil domain. The interaction with EB1 is mediated by two SxIP motifs but is not required for the localisation. Depletion of Kebab in cultured cells by RNA interference did not show obvious defects in mitotic progression or microtubule organisation. Generation of mutants lacking the kebab gene indicated that Kebab is dispensable for viability and fertility.  相似文献   

6.
Mechanisms by which microtubule plus ends interact with regions of cell–cell contact during tissue development and morphogenesis are not fully understood. We characterize a previously unreported interaction between the microtubule binding protein end-binding 1 (EB1) and the desmosomal protein desmoplakin (DP), and demonstrate that DP–EB1 interactions enable DP to modify microtubule organization and dynamics near sites of cell–cell contact. EB1 interacts with a region of the DP N terminus containing a hotspot for pathogenic mutations associated with arrhythmogenic cardiomyopathy (AC). We show that a subset of AC mutations, in addition to a mutation associated with skin fragility/woolly hair syndrome, impair gap junction localization and function by misregulating DP–EB1 interactions and altering microtubule dynamics. This work identifies a novel function for a desmosomal protein in regulating microtubules that affect membrane targeting of gap junction components, and elucidates a mechanism by which DP mutations may contribute to the development of cardiac and cutaneous diseases.  相似文献   

7.
CLIP-170 is a "cytoplasmic linker protein" implicated in endosome-microtubule interactions and in control of microtubule dynamics. CLIP-170 localizes dynamically to growing microtubule plus ends, colocalizing with the dynein activator dynactin and the APC-binding protein EB1. This shared "plus-end tracking" behavior suggests that CLIP-170 might interact with dynactin and/or EB1. We have used site-specific mutagenesis of CLIP-170 and a transfection/colocalization assay to address this question in mammalian tissue culture cells. Our results indicate that CLIP-170 interacts, directly or indirectly, with both dynactin and EB1. We find that the CLIP-170/dynactin interaction is mediated by the second metal binding motif of the CLIP-170 tail. In contrast, the CLIP-170/EB1 interaction requires neither metal binding motif. In addition, our experiments suggest that the CLIP-170/dynactin interaction occurs via the shoulder/sidearm subcomplex of dynactin and can occur in the cytosol (i.e., it does not require microtubule binding). These results have implications for the targeting of both dynactin and EB1 to microtubule plus ends. Our data suggest that the CLIP-170/dynactin interaction can target dynactin complex to microtubule plus ends, although dynactin likely also targets MT plus ends directly via the microtubule binding motif of the p150(Glued) subunit. We find that CLIP-170 mutants alter p150(Glued) localization without affecting EB1, indicating that EB1 can target microtubule plus ends independently of dynactin.  相似文献   

8.
The Tobacco mosaic virus (TMV) movement protein (MPTMV) mediates cell-to-cell viral trafficking by altering properties of the plasmodesmata (Pd) in infected cells. During the infection cycle, MPTMV becomes transiently associated with endomembranes, microfilaments, and microtubules (MT). It has been shown that the cell-to-cell spread of TMV is reduced in plants expressing the dysfunctional MP mutant MPNT-1. To expand our understanding of the MP function, we analyzed events occurring during the intracellular and intercellular targeting of MPTMV and MPNT-1 when expressed as a fusion protein to green fluorescent protein (GFP), either by biolistic bombardment in a viral-free system or from a recombinant virus. The accumulation of MPTMV:GFP, when expressed in a viral-free system, is similar to MPTMV:GFP in TMV-infected tissues. Pd localization and cell-to-cell spread are late events, occurring only after accumulation of MP:GFP in aggregate bodies and on MT in the target cell. MPNT-1:GFP localizes to MT but does not target to Pd nor does it move cell to cell. The spread of transiently expressed MPTMV:GFP in leaves of transgenic plants that produce MPNT-1 is reduced, and targeting of the MPTMV:GFP to the cytoskeleton is inhibited. Although MPTMV:GFP targets to the Pd in these plants, it is partially impaired for movement. It has been suggested that MPNT-1 interferes with host-dependent processes that occur during the intracellular targeting program that makes MP movement competent.  相似文献   

9.
Adenomatous polyposis coli protein (APC) is a well-characterized tumor suppressor protein [1] [2] [3]. We previously showed that APC tagged with green fluorescent protein (GFP) in Xenopus A6 epithelial cells moves along a subset of microtubules and accumulates at their growing plus ends in cell extensions [4]. EB1, which was identified as an APC-binding protein by yeast two-hybrid analysis [5], was also reported to be associated with microtubules [6] [7] [8]. To examine the interaction between APC and EB1 within cells, we compared the dynamic behavior of EB1-GFP with that of APC-GFP in A6 transfectants. Time-lapse microscopy of live cells at interphase revealed that EB1-GFP was concentrated at all of the growing microtubule ends throughout the cytoplasm and abruptly disappeared from the ends when microtubules began to shorten. Therefore, EB1 appeared to be co-localized and interact with APC on the growing ends of a subset of microtubules. When APC-GFP was overexpressed, endogenous EB1 was recruited to APC-GFP, which accumulated in large amounts on microtubules. On the other hand, when microtubules were disassembled by nocodazole, EB1 was not co-localized with APC-GFP, which was concentrated along the basal plasma membrane. During mitosis, APC appeared to be dissociated from microtubules, whereas EB1-GFP continued to concentrate at microtubule growing ends. These findings showed that the APC-EB1 interaction is regulated within cells and is allowed near the ends of microtubules only under restricted conditions.  相似文献   

10.
A group of microtubule-associated proteins called +TIPs (plus end tracking proteins), including EB1 family proteins, label growing microtubule ends specifically in diverse organisms and are implicated in spindle dynamics, chromosome segregation, and directing microtubules toward cortical sites. Here, we report three new EB1-like proteins from Arabidopsis and provide the intracellular localization for AtEB1, which differs from all known EB1 proteins in having a very long acidic C-terminal tail. In marked contrast to other EB1 proteins, the GFP-AtEB1 fusion protein localizes not only to microtubule plus ends but also to motile, pleiomorphic tubulovesicular membrane networks that surround other organelles and frequently merge with the endoplasmic reticulum. AtEB1 behavior thus resembles that of +TIPs, such as the cytoplasmic linker protein CLIP-170, that are known to associate with and pull along membrane tubules in animal systems but for which homologs have not been identified in plants. In addition, though EB1 proteins are believed to stabilize microtubules, a different behavior is observed for AtEB1 where instead of stabilizing a microtubule it localizes to already stabilized regions on a microtubule. The dual localization pattern of AtEB1 suggests links between microtubule plus end dynamics and endomembrane organization during polarized growth of plant cells.  相似文献   

11.
The tobacco mosaic virus (TMV) movement protein (MP) required for the cell-to-cell spread of viral RNA interacts with the endoplasmic reticulum (ER) as well as with the cytoskeleton during infection. Whereas associations of MP with ER and microtubules have been intensely investigated, research on the role of actin has been rather scarce. We demonstrate that Nicotiana benthamiana plants transgenic for the actin-binding domain 2 of Arabidopsis (Arabidopsis thaliana) fimbrin (AtFIM1) fused to green fluorescent protein (ABD2:GFP) exhibit a dynamic ABD2:GFP-labeled actin cytoskeleton and myosin-dependent Golgi trafficking. These plants also support the movement of TMV. In contrast, both myosin-dependent Golgi trafficking and TMV movement are dominantly inhibited when ABD2:GFP is expressed transiently. Inhibition is mediated through binding of ABD2:GFP to actin filaments, since TMV movement is restored upon disruption of the ABD2:GFP-labeled actin network with latrunculin B. Latrunculin B shows no significant effect on the spread of TMV infection in either wild-type plants or ABD2:GFP transgenic plants under our treatment conditions. We did not observe any binding of MP along the length of actin filaments. Collectively, these observations demonstrate that TMV movement does not require an intact actomyosin system. Nevertheless, actin-binding proteins appear to have the potential to exert control over TMV movement through the inhibition of myosin-associated protein trafficking along the ER membrane.  相似文献   

12.
A group of diverse proteins reversibly binds to growing microtubule plus ends through interactions with end-binding proteins (EBs). These +TIPs control microtubule dynamics and microtubule interactions with other intracellular structures. Here, we use cytoplasmic linker-associated protein 2 (CLASP2) binding to EB1 to determine how multisite phosphorylation regulates interactions with EB1. The central, intrinsically disordered region of vertebrate CLASP proteins contains two SXIP EB1 binding motifs that are required for EB1-mediated plus-end-tracking in vitro. In cells, both EB1 binding motifs can be functional, but most of the binding free energy results from nearby electrostatic interactions. By employing molecular dynamics simulations of the EB1 interaction with a minimal CLASP2 plus-end-tracking module, we find that conserved arginine residues in CLASP2 form extensive hydrogen-bond networks with glutamate residues predominantly in the unstructured, acidic C-terminal tail of EB1. Multisite phosphorylation of glycogen synthase kinase 3 (GSK3) sites near the EB1 binding motifs disrupts this electrostatic "molecular Velcro." Molecular dynamics simulations and (31)P NMR spectroscopy indicate that phosphorylated serines participate in intramolecular interactions with and sequester arginine residues required for EB1 binding. Multisite phosphorylation of these GSK3 motifs requires priming phosphorylation by interphase or mitotic cyclin-dependent kinases (CDKs), and we find that CDK- and GSK3-dependent phosphorylation completely disrupts CLASP2 microtubule plus-end-tracking in mitosis.  相似文献   

13.
14.
Chen  Miao  Wang  Jian  Yang  Yang  Zhong  Tao  Zhou  Peng  Ma  Huixian  Li  Jingrui  Li  Dengwen  Zhou  Jun  Xie  Songbo  Liu  Min 《中国科学:生命科学英文版》2021,64(4):575-583
Cytoskeletal proteins are susceptible to glutathionylation under oxidizing conditions, and oxidative damage has been implicated in several neurodegenerative diseases. End-binding protein 1(EB1) is a master regulator of microtubule plus-end tracking proteins(+TIPs) and is critically involved in the control of microtubule dynamics and cellular processes. However, the impact of glutathionylation on EB1 functions remains unknown. Here we reveal that glutathionylation is important for controlling EB1 activity and protecting EB1 from irreversible oxidation. In vitro biochemical and cellular assays reveal that EB1 is glutathionylated. Diamide, a mild oxidizing reagent, reduces EB1 comet number and length in cells, indicating the impairment of microtubule dynamics. Three cysteine residues of EB1 are glutathionylated, with mutations of these three cysteines to serines attenuating microtubule dynamics but buffering diamide-induced decrease in microtubule dynamics. In addition, glutaredoxin 1(Grx1) deglutathionylates EB1, and Grx1 depletion suppresses microtubule dynamics and leads to defects in cell division orientation and cell migration, suggesting a critical role of Grx1-mediated deglutathionylation in maintaining EB1 activity.Collectively, these data reveal that EB1 glutathionylation is an important protective mechanism for the regulation of microtubule dynamics and microtubule-based cellular activities.  相似文献   

15.
Adenomatous polyposis coli (APC) protein is a large tumor suppressor that is truncated in most colorectal cancers. The carboxyl-terminal third of APC protein mediates direct interactions with microtubules and the microtubule plus-end tracking protein EB1. In addition, APC has been localized to actin-rich regions of cells, but the mechanism and functional significance of this localization have remained unclear. Here we show that purified carboxyl-terminal basic domain of human APC protein (APC-basic) bound directly to and bundled actin filaments and associated with actin stress fibers in microinjected cells. Actin filaments and microtubules competed for binding to APC-basic, but APC-basic also could cross-link actin filaments and microtubules at specific concentrations, suggesting a possible role in cytoskeletal cross-talk. APC interactions with actin in vitro were inhibited by its ligand EB1, and co-microinjection of EB1 prevented APC association with stress fibers. Point mutations in EB1 that disrupted APC binding relieved the inhibition in vitro and restored APC localization to stress fibers in vivo, demonstrating that EB1-APC regulation is direct. Because tumor formation and metastasis involve coordinated changes in the actin and microtubule cytoskeletons, this novel function for APC and its regulation by EB1 may have direct implications for understanding the molecular basis of tumor suppression.  相似文献   

16.
The phragmoplast separates daughter cells during cytokinesis by constructing the cell plate, which depends on interaction between cytoskeleton and membrane compartments. Proteins responsible for these interactions remain unknown, but formins can link cytoskeleton with membranes and several members of formin protein family localize to the cell plate. Progress in functional characterization of formins in cytokinesis is hindered by functional redundancies within the large formin gene family. We addressed this limitation by employing Small Molecular Inhibitor of Formin Homology 2 (SMIFH2), a small-molecule inhibitor of formins. Treatment of tobacco (Nicotiana tabacum) tissue culture cells with SMIFH2 perturbed localization of actin at the cell plate; slowed down both microtubule polymerization and phragmoplast expansion; diminished association of dynamin-related proteins with the cell plate independently of actin and microtubules; and caused cell plate swelling. Another impact of SMIFH2 was shortening of the END BINDING1b (EB1b) and EB1c comets on the growing microtubule plus ends in N. tabacum tissue culture cells and Arabidopsis thaliana cotyledon epidermis cells. The shape of the EB1 comets in the SMIFH2-treated cells resembled that of the knockdown mutant of plant Xenopus Microtubule-Associated protein of 215 kDa (XMAP215) homolog MICROTUBULE ORGANIZATION 1/GEMINI 1 (MOR1/GEM1). This outcome suggests that formins promote elongation of tubulin flares on the growing plus ends. Formins AtFH1 (A. thaliana Formin Homology 1) and AtFH8 can also interact with EB1. Besides cytokinesis, formins function in the mitotic spindle assembly and metaphase to anaphase transition. Our data suggest that during cytokinesis formins function in: (1) promoting microtubule polymerization; (2) nucleating F-actin at the cell plate; (3) retaining dynamin-related proteins at the cell plate; and (4) remodeling of the cell plate membrane.

Formins regulate phragmoplast expansion, microtubule turnover rate, actin nucleation, and cell plate membrane remodeling during cytokinesis.  相似文献   

17.
End binding 1 (EB1) is a plus-end-tracking protein (+TIP) that localizes to microtubule plus ends where it modulates their dynamics and interactions with intracellular organelles. Although the regulating activity of EB1 on microtubule dynamics has been studied in cells and purified systems, the molecular mechanisms involved in its specific activity are still unclear. Here, we describe how EB1 regulates the dynamics and structure of microtubules assembled from pure tubulin. We found that EB1 stimulates spontaneous nucleation and growth of microtubules, and promotes both catastrophes (transitions from growth to shrinkage) and rescues (reverse events). Electron cryomicroscopy showed that EB1 induces the initial formation of tubulin sheets, which rapidly close into the common 13-protofilament-microtubule architecture. Our results suggest that EB1 favours the lateral association of free tubulin at microtubule-sheet edges, thereby stimulating nucleation, sheet growth and closure. The reduction of sheet length at microtubule growing-ends together with the elimination of stressed microtubule lattices may account for catastrophes. Conversely, occasional binding of EB1 to the microtubule lattice may induce rescues.  相似文献   

18.
The end-binding protein 1 (EB1) family is a highly conserved group of proteins that localizes to the plus-ends of microtubules. EB1 has been shown to play an important role in regulating microtubule dynamics and chromosome segregation, but its regulation mechanism is poorly understood. We have determined the 1.45-A resolution crystal structure of the amino-terminal domain of EB1, which is essential for microtubule binding, and show that it forms a calponin homology (CH) domain fold that is found in many proteins involved in the actin cytoskeleton. The functional CH domain for actin binding is a tandem pair, whereas EB1 is the first example of a single CH domain that can associate with the microtubule filament. Although our biochemical study shows that microtubule binding of EB1 is electrostatic in part, our mutational analysis suggests that the hydrophobic network, which is partially exposed in our crystal structure, is also important for the association. We propose that, like other actin-binding CH domains, EB1 employs the hydrophobic interaction to bind to microtubules.  相似文献   

19.
Chan J  Calder G  Fox S  Lloyd C 《The Plant cell》2005,17(6):1737-1748
In a previous study on Arabidopsis thaliana suspension cells transiently infected with the microtubule end binding protein AtEB1a-green fluorescent protein (GFP), we reported that interphase microtubules grow from multiple sites dispersed over the cortex, with plus ends forming the characteristic comet-like pattern. In this study, AtEB1a-GFP was used to study the transitions of microtubule arrays throughout the division cycle of cells lacking a defined centrosome. During division, the dispersed origin of microtubules was replaced by a more focused pattern with the plus end comets growing away from sites associated with the nuclear periphery. The mitotic spindle then evolved in two quite distinct ways depending on the presence or absence of the preprophase band (PPB): the cells displaying outside-in as well as inside-out mitotic pathways. In those cells possessing a PPB, the fusion protein labeled material at the nuclear periphery that segregated into two polar caps, perpendicular to the PPB, before nuclear envelope breakdown (NEBD). These polar caps then marked the spindle poles upon NEBD. However, in the population of cells without PPBs, there was no prepolarization of material at the nuclear envelope before NEBD, and the bipolar spindle only emerged clearly after NEBD. Such cells had variable spindle orientations and enhanced phragmoplast mobility, suggesting that the PPB is involved in a polarization event that promotes early spindle pole morphogenesis and subsequent positional stability during division. Astral-like microtubules are not usually prominent in plant cells, but they are clearly seen in these Arabidopsis cells, and we hypothesize that they may be involved in orienting the division plane, particularly where the plane is not determined before division.  相似文献   

20.
The cylindrical inclusion (CI) protein of potyviruses is involved in virus replication and cell-to-cell movement. These two processes should rely on multiple plant-virus interactions; however, little is known about the host factors that are involved in, or that may interfere with, CI functions. By using a yeast two-hybrid system, the CI protein from Plum pox virus (PPV) was found to interact with the photosystem I PSI-K protein, the product of the gene psaK, of Nicotiana benthamiana. Coexpression of PPV CI was shown to cause a decrease in the accumulation level of PSI-K transiently expressed in N. benthamiana leaves. To test the biological relevance of this interaction, we have analyzed the infection of PPV in N. benthamiana plants in which psaK gene expression has been silenced by RNA interference, as well as in Arabidopsis thaliana psaK knockout plants. Our results show that downregulation of the psaK gene leads to higher PPV accumulation, suggesting a role for the CI-PSI-K interaction in PPV infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号