首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
2.
3.
We cloned two cDNAs denoted as RT-LBP/BPI-1 and RT-LBP/BPI-2, respectively, which were derived from the mRNA of head kidney from rainbow trout. They showed structural homology with LPS-binding protein (LBP) and bactericidal/permeability-increasing protein (BPI) in mammals. The full-length cDNA of RT-LBP/BPI-1 and RT-LBP/BPI-2 is 1666 and 1741 bp, respectively. Both cDNAs encoded 473 aa residues, including the amino acids conserved in mammalian LBP and BPI proteins that were assumed to be involved in LPS binding. The overall coding sequence of RT-LBP/BPI-1 has 33% amino acid homology to human LBP and 34% to human BPI, and RT-LBP/BPI-2 has 32% amino acid homology to human LBP and 33% to human BPI. Three-dimensional structure analysis by three-dimensional/one-dimensional (3D-1D) methods also demonstrated that RT-LBP/BPI-1 and RT-LBP/BPI-2 proteins showed significant similarity to human BPI, having a boomerang shape with N-terminal and C-terminal barrels. Phylogenetic analysis showed that the LBP and BPI genes seemed to be established after the divergence of mammals from teleosts. These results suggested that RT-LBP/BPI-1 and RT-LBP/BPI-2 may be a putative ortholog for mammalian LBP and/or BPI genes. This is the first study to identify the LBP family genes from nonmammalian vertebrates.  相似文献   

4.
5.
We have used our recently characterized human 3 beta-hydroxy-5-ene steroid dehydrogenase/delta 5-delta 4-isomerase (3 beta-HSD) cDNA as probe to isolate cDNAs encoding bovine 3 beta-HSD from a bovine ovary lambda gtll cDNA library. Nucleotide sequence analysis of two overlapping cDNA clones of 1362 bp and 1536 bp in length predicts a protein of 372 amino acids with a calculated molecular mass of 42,093 (excluding the first Met). The deduced amino acid sequence of bovine 3 beta-HSD displays 79% homology with human 3 beta-HSD while the nucleotide sequence of the coding region shares 82% interspecies similarity. Hybridization of cloned cDNAs to bovine ovary poly(A)+ RNA shows the presence of an approximately 1.7 kb mRNA species.  相似文献   

6.
Fish are the most important dietary source of the n-3 highly unsaturated fatty acids (HUFA), eicosapentaenoic (EPA) and docosahexaenoic acid (DHA), that have particularly important roles in human nutrition reflecting their roles in critical physiological processes. The objective of the study described here was to clone, functionally characterize and compare expressed fatty acid desaturase genes involved in the production of EPA and DHA in freshwater and marine teleost fish species. Putative fatty acid desaturase cDNAs were isolated and cloned from common carp (Cyprinus carpio) and turbot (Psetta maximus). The enzymic activities of the products of these cDNAs, together with those of cDNAs previously cloned from rainbow trout (Oncorhynchus mykiss) and gilthead sea bream (Sparus aurata), were determined by heterologous expression in the yeast Saccharomyces cerevisiae. The carp and turbot desaturase cDNAs included open reading frames (ORFs) of 1335 and 1338 base pairs, respectively, specifying proteins of 444 and 445 amino acids. The protein sequences possessed all the characteristic features of microsomal fatty acid desaturases, including three histidine boxes, two transmembrane regions, and N-terminal cytochrome b(5) domains containing the haem-binding motif, HPGG. Functional expression showed all four fish cDNAs encode basically unifunctional Delta6 fatty acid desaturase enzymes responsible for the first and rate-limiting step in the biosynthesis of HUFA from 18:3n-3 and 18:2n-6. All the fish desaturases were more active towards the n-3 substrate with 59.5%, 31.5%, 23.1% and 7.0% of 18:3n-3 being converted to 18:4n-3 in the case of turbot, trout, sea bream and carp, respectively. The enzymes also showed very low, probably physiologically insignificant, levels of Delta5 desaturase activity, but none of the products showed Delta4 desaturase activity. The cloning and characterization of desaturases from these fish is an important advance, as they are species in which there is a relative wealth of data on the nutritional regulation of fatty acid desaturation and HUFA synthesis, and between which substantive differences occur.  相似文献   

7.
Peptides homologous to mammalian cholecystokinin (CCK), and their corresponding cDNAs, have been isolated and sequenced from the rainbow trout, Oncorhynchus mykiss. Three cDNAs encoding CCK-like preprohormones were identified from the brain. The cDNAs encode three different putative CCK-8 peptides containing Asn, Leu or Thr, in position 6 (counting from the C-terminus). Hence, the trout CCKs are named CCK-N, CCK-L and CCK-T respectively. RT-PCR showed differential expression of the three mRNAs although all were detected in the brain and intestine, similar to the expression pattern of CCK in tetrapods. In situ hybridization on trout brain sections using (35)S-labeled gene-specific antisense oligonucleotides showed that the three mRNAs were present in different parts, suggesting that the three CCK peptides may have different functions in the brain. Purification of CCK-immunoreactive material from the trout brain resulted in two CCK octapeptides: DYNGWMDF(.)NH2 (CCK-N) and DYLGWMDF(.)NH2 (CCK-L) present in equal amounts. In the pyloric caeca, three forms of CCK-L were identified, consisting of 7, 8 and 21 residues, respectively. The last was dominating and had the sequence ASGPGPSHKIKDRDYLGWMDF(.)NH2. All isolated peptides were fully sulfated. The trout is the first species in which three different CCK-like cDNAs have been identified.  相似文献   

8.
9.
RTG-2 cells, a line of fibroblasts from rainbow trout (Salmo gairdnerii), are induced to synthesize a distinct set of heat-shock polypeptides after exposure to elevated temperature or to low concentrations of sodium arsenite. We isolated and characterized two cDNA sequences, THS70.7 and THS70.14, encoding partial information for two distinct species of 70-kilodalton heat shock polypeptide (hsp70) from these cells. These sequences are identical at 73.3% of the nucleotide positions in their regions of overlap, and their degree of sequence conservation at the polypeptide level is 88.1%. The two derived trout hsp70 polypeptide sequences show extensive homology with derived amino acid sequences for hsp70 polypeptides from Drosophila melanogaster and Saccharomyces cerevisiae. Northern blot analysis of RNA from arsenite-induced RTG-2 cells, with the trout hsp70 cDNAs as probes, revealed the presence of three hsp70 mRNA species. Southern blot analysis of trout testis DNA cleaved with various restriction endonucleases revealed a small number of bands hybridizing to the hsp70 cDNAs, suggesting the existence of a small family of hsp70 genes in this species. Finally, trout hsp70 cDNA sequences cross-hybridized with restriction fragments in genomic DNA from HeLa cells, bovine liver, Caenorhabditis elegans, and D. melanogaster.  相似文献   

10.
The membrane-bound enzyme 3 beta-hydroxysteroid dehydrogenase/delta 5 -delta 4 isomerase (3 beta-HSD) catalyzes the conversion of delta 5 -3 beta-hydroxysteroid precursors into delta 4-ketosteroids, thus representing an essential step in the biosynthesis of all classes of hormonal steroids. We have recently characterized two types of cDNA clones encoding rat 3 beta-HSD proteins, the rat type I protein being much more active than type II. In order to characterize further the functional difference between these two 3 beta-HSD types, transient expression of type I and type II 3 beta-HSD cDNAs was performed in HeLa human cervical carcinoma cells. The present study demonstrates that the type I 3 beta-HSD protein has a relative specificity 64- and 46-fold higher than type II protein for pregnenolone (PREG) and dehydroepiandrosterone (DHEA) as substrates, respectively. The Km values of type I and type II enzymes were calculated at 0.74 and 14.3 microM, respectively, using PREG as substrate whereas the respective Km values were 0.68 and 12.9 microM when DHEA was used, thus showing that their different relative specificity results largely from a different affinity for substrates. Since the change of 4 amino acid residues in type II could prevent the formation of a putative membrane-spanning domain (MSD) predicted between amino acid residues 75 and 91, chimeric cDNAs containing either type I MSD in type II (II + MSD) or an absence of this MSD in type I (I-MSD) were constructed and transiently expressed. The addition of MSD intype II 3 beta-HSD markedly increased the affinity leading to Km values similar to those found in type I 3 beta-HSD, namely 0.36 and 0.40 microM for PREG and DHEA, respectively. II + MSD chimera thus encodes a protein having a relative specificity for PREG and DHEA of 58 and 73%, respectively, to that of native type I 3 beta-HSD. Moreover, removal of MSD in the type I protein (I-MSD chimera) decreased the relative specificity of type I 3 beta-HSD protein for PREG and DHEA to only 0.37 and 0.48%, with respective Km values of 11.7 and 11.0 microM, thus strongly indicating the functional importance of this putative MSD which is predicted in wild type rat type I as well as in macaque and human 3 beta-HSD proteins.  相似文献   

11.
Novel immune-type receptor ( NITR) genes that encode two extracellular immunoglobulin domains and cytoplasmic immunoreceptor tyrosine-based inhibition motifs (ITIMs) have been described previously in three lineages of bony fish. In the current study, four ITIM-containing NITR cDNAs are identified in the rainbow trout ( Oncorhynchus mykiss), and their expression patterns and genomic complexity are characterized. The ITIM-containing NITR2 gene maps 1.3 cM from an ITIM-containing C-type lectin receptor ( TCL-2) on linkage group XXI. A comprehensive, phylogenetic analysis of NITRs from rainbow trout and three other major lineages of bony fish defines conserved families of NITRs and suggests an ancient lineage of distinct groups of genes. Several probable scenarios that explain the origins of variant forms of NITRs are described.  相似文献   

12.
13.
14.
Pig testicular 20 beta-hydroxysteroid dehydrogenase (20 beta-HSD) has also 3 alpha- and 3 beta-HSD (3 alpha/beta-HSD) activities. The purified 20 beta-HSD preparation from neonatal pig testes could catalyze the conversion of 5 alpha-dihydrotestosterone (5 alpha-DHT) in the presence of beta-NADPH to 5 alpha-androstane-3 alpha,17 beta-diol and 5 alpha-androstane-3 beta,17 beta-diol at the ratio of 4:3, and the specific 3 alpha/beta-HSD activity of 20 beta-HSD for 5 alpha-DHT was about 10 or 15 times larger than the 20 beta-HSD activities for 17 alpha-hydroxypregn-4-ene-3,20-dione (17 alpha-hydroxyprogesterone) or progesterone, respectively. The result indicates that the testicular 20 beta-HSD has high 3 alpha(axial, 3R)- and 3 beta(equatorial, 3S)-HSD activity. The testicular 20 beta-HSD could catalyze the reversible conversion of various 5 alpha- or 5 beta-dihydrosteroids which have a 3-carbonyl or 3-hydroxyl group with beta-NADP(H) as the preferred cofactor. The enzyme transferred the 4-proS hydrogen of NADPH to the 5 alpha-DHT for both 3 alpha- and 3 beta-hydroxylation and it was the same as the 20 beta-hydroxylation of 17 alpha-hydroxyprogesterone. Although the 3 alpha/beta-HSD activity has been known to be present in 3 alpha,20 beta-HSD of Streptomyces hydrogenans, the enzymological properties for 3 alpha/beta-HSD activity catalyzed by testicular 20 beta-HSD were different from the properties for 3 alpha/beta-HSD activity catalyzed by prokaryotic 3 alpha, 20 beta-HSD with respect to the specificity of the catalytic reaction and the cofactor requirement.  相似文献   

15.
Hexose-6-phosphate dehydrogenase (H6PDH) has been shown to stimulate 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1)-dependent local regeneration of active glucocorticoids. Here, we show that coexpression with H6PDH results in a dramatic shift from 11beta-HSD1 oxidase to reductase activity without affecting the activity of the endoplasmic reticular enzyme 17beta-HSD2. Immunoprecipitation experiments revealed coprecipitation of H6PDH with 11beta-HSD1 but not with the related enzymes 11beta-HSD2 and 17beta-HSD2, suggesting a specific interaction between H6PDH and 11beta-HSD1. The use of the 11beta-HSD1/11beta-HSD2 chimera indicates that the N-terminal 39 residues of 11beta-HSD1 are sufficient for interaction with H6PDH. An important role of the N-terminus was indicated further by the significantly stronger interaction of 11beta-HSD1 mutant Y18-21A with H6PDH compared to wild-type 11beta-HSD1. The protein-protein interaction and the involvement of the N-terminus of 11beta-HSD1 were confirmed by Far-Western blotting. Finally, fluorescence resonance energy transfer (FRET) measurements of HEK-293 cells expressing fluorescently labeled proteins provided evidence for an interaction between 11beta-HSD1 and H6PDH in intact cells. Thus, using three different methods, we provide strong evidence that the functional coupling between 11beta-HSD1 and H6PDH involves a direct physical interaction of the two proteins.  相似文献   

16.
Eschscholzia californica produces various types of isoquinoline alkaloids. The structural diversity of these chemicals is often due to cytochrome P450 (P450) activities. Members of the CYP719A subfamily, which are found only in isoquinoline alkaloid-producing plant species, catalyze methylenedioxy bridge-forming reactions. In this study, we isolated four kinds of CYP719A genes from E. californica to characterize their functions. These four cDNAs encoded amino acid sequences that were highly homologous to Coptis japonica CYP719A1 and E. californica CYP719A2 and CYP719A3, which suggested that these gene products may be involved in isoquinoline alkaloid biosynthesis in E. californica, especially in methylenedioxy bridge-forming reactions. Expression analysis of these genes showed that two genes (CYP719A9 and CYP719A11) were preferentially expressed in plant leaf, where pavine-type alkaloids accumulate, whereas the other two showed higher expression in root than in other tissues. They were suggested to have distinct physiological functions in isoquinoline alkaloid biosynthesis. Enzyme assay analysis using recombinant proteins expressed in yeast showed that CYP719A5 had cheilanthifoline synthase activity, which was expected based on the similarity of its primary structure to that of Argemone mexicana cheilanthifoline synthase (deposited at DDBJ/GenBanktrade mark/EMBL). In addition, enzyme assay analysis of recombinant CYP719A9 suggested that it has methylenedioxy bridge-forming activity toward (R,S)-reticuline. CYP719A9 might be involved in the biosynthesis of pavine- and/or simple benzylisoquinoline-type alkaloids, which have a methylenedioxy bridge in an isoquinoline ring, in E. californica leaf.  相似文献   

17.
For regional insertional mutagenesis of Arabidopsis thaliana genes, we combined a cDNA scanning method (Hayashida et al. Gene 1995; 165:155-161) and an Ac/Ds transposon designed for local mutagenesis, and evaluated this approach with two overlapping yeast artificial chromosome (YAC) clones, CIC7E11 and CIC8B11, on A. thaliana chromosome 5. We applied a previously developed novel cDNA selection method using DNA latex particles (cDNA scanning method) to the two YAC clones and constructed two sub-libraries in which cDNAs for genes on each YAC DNA were concentrated. From each sub-library we isolated cDNAs for genes on each YAC DNA, partially sequenced them, and produced expressed sequence tags (ESTs). In total, 113 non-redundant groups of cDNAs were obtained. Forty-four per cent of these EST clones were novel, and 34% had significant homology to functional proteins from various organisms. In parallel, we transposed Ds from a donor Ds-GUS-T-DNA line, Ds4391-20, already mapped to the CIC7E11/8B11 region. We obtained Ds-transposed lines and recovered their Ds-flanking genomic DNAs by thermal asymmetric interlaced (TAIL) polymerase chain reaction (PCR). Dot-blot analysis indicated that 20% of the lines contained transposed Ds in the CIC7E11/8B11 region, suggesting that this Ac/Ds transposon system is effective for regional insertional mutagenesis. To isolate Ds insertion mutants in the genes identified from the CIC7E11/8B11 region, we carried out PCR screening from 800 Ds-containing lines using Ds-specific and gene-specific primers that were designed from the 113 cDNA sequences identified by the cDNA scanning method. We found that 49 lines contain Ds insertion mutations, and that five lines contain Ds mutations in genes that are mapped to the sequenced CIC7E11/8B11 genomic DNA region. These results indicate that combining the cDNA scanning method and the Ac/Ds transposon gives a powerful tool for regional insertional mutagenesis not only in Arabidopsis but also in other plants or crops whose genomes are not sequenced.  相似文献   

18.
Full-length cDNAs of four new genes encoding cytoplasmic ribosomal proteins L14 and L20 (large ribosomal subunit) and S1 and S27 (small ribosomal subunit) were isolated and sequenced during the analysis of the fission yeast Schizosaccharomyces pombe genome. One of the Sz. pombe genes encoding translation elongation factor EF-2 was also cloned and its precise position on chromosome I established. A unified nomenclature was proposed, and the list of all known genetic determinants encoding cytoplasmic ribosomal proteins of Sz. pombe was compiled. By now, 76 genes/cDNAs encoding different ribosomal proteins have been identified in the fission yeast genome. Among them, 35 genes are duplicated and three homologous genes are identified for each of the ribosomal proteins L2, L16, P1, and P2.  相似文献   

19.
20.
The cloning, expression in vitro, and characterization of two aminopeptidase Ns (APN5s and APN2s) isolated from the midgut of Cry1Ac-resistant (R) and susceptible (S) strains of Plutella xylostella larvae are presented in this paper. The deduced amino acid sequences of APN5s included C-terminal GPI-modification sites, the gluzincin aminopeptidase motif GATEN, and three N-glycosylated sites; those of APN2s had no GPI-modification sites, had gluzincin aminopeptidase motif GAMEN, and had four N-glycosylated sites. O-glycosylated sites were not predicted for either APN. Because APN2R and APN2S cDNAs contained the same nucleotides, only full-length cDNAs encoding APN5R and APN5S were expressed in Trichoplusia ni cells. Far-Western blotting showed that the expressed receptor APN5 bound to the Cry1Ac toxin. An enzyme-specific activity experiment also showed that APN5 genes were expressed in T. ni cells. ELISA revealed no differences in the binding of expression proteins from the resistant and susceptible strain with Cry1Ac.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号