首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lipase from Mucor miehei was immobilized in bis-(2-ethylhexyl)sulfosuccinate sodium salt (AOT) as well as lecithin water-in-oil (w/o) microemulsion-based organogels (MBGs) formulated with biopolymers such as agar and hydroxypropylmethyl cellulose (HPMC), respectively. These lipase-containing MBGs prove to be novel solid-phase catalysts for use in organic media. Using these organogels at 25°C, various esterification reactions in non-polar solvents as well as in solvent free systems were possible. Apparent lipase activity was influenced to some extent by the nature and the concentration of biopolymers used. Lipase stability in such MBGs is much higher than that observed in w/o microemulsions. MBGs containing lipase functioned effectively in repeated batch syntheses of fatty esters. Kinetic studies have shown that ester synthesis catalyzed by immobilized lipase occurs via the Ping-Pong bi-bi mechanism in which only inhibition by excess of alcohol has been identified. Values of all kinetic parameters were determined.  相似文献   

2.
脂肪酶在微乳液和微乳液凝胶中催化辛酸辛醇的酯化反应   总被引:4,自引:0,他引:4  
脂肪酶在合成反应中具有很高的区域选择性和立体选择性 ,已广泛用于食品工业和药物工业[1,2 ] ,在有机介质中的脂肪酶催化反应已有较多研究[3 ,4 ] 。微乳液一般由表面活性剂、助表面活性剂、油和水等组份组成 ,它是一种热力学稳定、光学透明、宏观均匀而微观不均匀的体系 ,能提供酶催化所需要的巨大油 /水界面[5] 。而将脂肪酶增溶于油包水(W /O)微乳液中的纳米级“水池”中 ,可使酶以分子水平分散[6] ,图 1(a) ,从而可用来模拟细胞微环境中的反应。油包水微乳液中的酶可通过加入明胶而制成固定化酶 ,含明胶的微乳液凝胶 (MBGs)最早…  相似文献   

3.
The use of water-in-ionic liquid microemulsion-based organogels (w/IL MBGs) as novel supports for the immobilization of lipase B from Candida antarctica and lipase from Chromobacterium viscosum was investigated. These novel lipase-containing w/IL MBGs can be effectively used as solid phase biocatalysts in various polar and non-polar organic solvents or ILs, exhibiting up to 4.4-fold higher esterification activity compared to water-in-oil microemulsion-based organogels. The immobilized lipases retain their activity for several hours at 70°C, while their half life time is up to 25-fold higher compared to that observed in w/IL microemulsions. Fourier-transform infrared spectroscopy data indicate that immobilized lipases adopt a more rigid structure, referring to the structure in aqueous solution, which is in correlation with their enhanced catalytic behavior observed.  相似文献   

4.
In our previous study, a surfactant-coated Candida rugosa lipase immobilized in microemulsion-based organogels was exploited for the synthesis of ethyl isovalerate. In the present study, we are focusing on the effective reuse of lipase immobilized in microemulsion-based organogels (MBGs) in terms of retainment of the catalytic activity. As water is one of the co-products in esterification reactions, the removal of water becomes a priority to allow the reaction to work in the forward direction and to prevent back hydrolysis. Taking this fact into consideration, the lipase-containing microemulsion-based organogels were given pretreatment and/or several intermittent treatments with dry reverse micellar solution of AOT in organic solvent during repeated cycles of ester synthesis. The pretreated MBGs with dry reverse micellar solution exhibited lower water content and higher initial rates of esterification in comparison with untreated freshly prepared MBGs. The esterification efficiency of untreated MBGs started decreasing after 5 cycles of reuse and was almost completely lost by the end of the 8th cycle. In contrast, pretreated MBGs exhibited a gradual decrease in esterification efficiency after 5 cycles and retained about 80% of the initial activity at the end of the 8th cycle. The intermittent treatment of MBGs after every 3 cycles resulted in enhanced reusability of immobilized lipase for up to 9 cycles without significant loss in esterification activity, after which it resulted in a slow decrease in activity with about 27% lower activity at the end of the 12th cycle. Furthermore, the treatment conditions such as concentration of AOT in liquid dessicant and time of treatment were optimized with respect to our system. The granulated MBGs proved to be better in terms of initial esterification rates (1.2- fold) as compared with the pelleted MBGs.  相似文献   

5.
Kinetic studies have shown that octyl decanoate synthesis by Chromobacterium viscosum (CV) lipase in sodium bis-2-(ethylhexyl) sulfosuccinate (AOT) water in oil (w/o) microemulsions occurs via the nonsequential (ping-pong) bi bi mechanism. There was evidence of single substrate inhibition by decanoic acid at high concentrations. Initial rate data yielded estimates for acid and alcohol Michaelis constants of ca. 10(-1) mol dm(-3) and a maximum rate under saturation conditions of ca. 10(-3) mol dm(-3) s(-1) for a lipase concentration of 0.36 mg cm(-3). CV lipase immobilized in AOT microemulsion-based organogels (MBGs) was also found to catalyze the synthesis of octyl decanoate according to the ping-pong bi bi mechanism. Reaction rates were similar in the free and immobilized systems under comparable conditions. Initial rates at saturating (but noninhibiting) substrate concentrations were first order with respect to CV lipase concentration in both w/o microemulsions and the MBG/oil systems. Gradients yielded an apparent k(cat) = 4.4 x 10(-4) mol g(-1) s(-1) in the case of w/o microemulsions, and 6.1 x 10(-4) mol g(-1) s(-1) for CV lipase immobilized in the MBGs. A third system comprising w/o microemulsions containing substrates and gelatin at concentrations comparable to those employed in the MBG formulations, provided a useful link between the conventional liquid microemulsion medium and the solid organogels. The nongelation of these intermediate systems stems from the early inclusion of substrate during a modified preparative protocol. The presence of substrate appears to prevent the development of a percolated microstructure that is thought to be a prerequisite for MBG formation. FT-NMR was employed as a semicontinuous in situ assay procedure. The apparent activity expressed by CV lipase in compositionally equivalent liquid and solid phase gelatin-containing systems was similar. An apparent activation energy of 24 +/- 2 kJ mol(-1) was determined by (1)H-NMR for esterification in gelatin-containing w/o microemulsions. This value agrees with previous determinations for CV lipase-catalyzed synthesis of octyl decanoate in "conventional" w/o microemulsions and MBG/oil systems. The similarities in lipase behavior are consistent with the claim, based largely on structural measurements, that the physico-chemical properties of the lipase-containing w/o microemulsion are to a large extent preserved on transformation to the daughter organogel. The close agreement of apparrent activation energies suggests that substrate mass transfer is not rate determining in the three studied systems. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 54:416-427, 1997.  相似文献   

6.
Chromobacterium viscosum (CV) lipase was immobilized in gelatin-containing Aerosol-OT (AOT) microemulsion-based organogels (MBGs). The behavior of this novel, predominantly hydrophobic matrix as an esterification catalyst has been examined. The biocatalyst was most effective when the MBG was granulated to yield gel particles of approximately 500 mum diameter, providing a total surface area of ca. 10(6) mm(2) per 10 cm(3) of gel. The gel was generally contacted with a solution of the substrate(s) in a hydrocarbon oil. Under most conditions reaction was not diffusion limited. Apparent lipase activity was influenced by certain compositional changes in the MBG, but most significantly when the R value, the mole ratio of water to surfactant, was altered. Higher activities were observed at lower R values. Although gels of lowest R value expressed the highest condensation activity, such formulations were physically unsuitable as immobilization matrices due to their proximity to the gel-solution phase boundary. MBGs of intermediate R values (between 60 and 80) were considered most suitable because they offer relatively high condensation activity and good physical stability. The gelatin concentration also exerted a small but measurable influence on the observed condensation rates. Apparent lipase activity was also influenced to some extent by the nature of the parent hydrocarbon used to prepare the MBG. Higher activities were obtained using formulations derived from isooctane and cyclohexane rather than the n-alkanes. Condensation activities expressed by CV lipase in the MBGs were broadly comparable to those expressed in the analogous parent water-in-oil (w/o) microemulsions. The MBGs functioned effectively in neat substrate solutions, but the condensation activity expressed by the MBGs in a series of successive batch syntheses was adversely affected by the formation and retention of the water coproduct. Selective removal of the water was achieved using a concentrated solution of dry reverse micelles, which resulted in recovery of lost activity. Pretreatment of lipase-containing MBGs resulted in the formation of MBGs with enhanced catalytic properties and modified composing the conventional procedure. (c) 1997 John Wiley & Sons, Inc.  相似文献   

7.
The reactivity of Rhizopus delemar lipase immobilized in sodium bis(2-ethylhexyl) sulfosuccinate microemulsion-based organogels (MBGs) was investigated as a function of the water content in the gel. Gelatin was used as the gelling component of the MBGs. The maximal reaction rate of 6.5 μM s-1 was obtained at a WG (molar ratio of water to AOT in the MBG phase) value of 100. In the experimental WG conditions, the reaction proceeded under an effectiveness factor of 0.02 to 0.04 giving the reaction-limiting regime.  相似文献   

8.
The reactivity of Rhizopus delemar lipase immobilized in sodium bis(2-ethylhexyl) sulfosuccinate microemulsion-based organogels (MBGs) was investigated as a function of the water content in the gel. Gelatin was used as the gelling component of the MBGs. The maximal reaction rate of 6.5 μM s?1 was obtained at a WG (molar ratio of water to AOT in the MBG phase) value of 100. In the experimental WG conditions, the reaction proceeded under an effectiveness factor of 0.02 to 0.04 giving the reaction-limiting regime.  相似文献   

9.
1-Propyl laurate synthesis should not be used as standard reaction test of immobilized enzymes in microemulsion-based organogels (MBGs) prepared using lecithin/1-propanol as surfactant when extremely active enzymes with high load are used. In these cases, an anomalous kinetic reaction constant value is observed over short reaction times. Such an anomalous profile is strongly dependent on the concentration of catalyst in the crude powder and, consequently, is not appreciated when either commercial or low activity lipase samples are employed.  相似文献   

10.
1-Propyl laurate synthesis should not be used as standard reaction test of immobilized enzymes in microemulsion-based organogels (MBGs) prepared using lecithin/1-propanol as surfactant when extremely active enzymes with high load are used. In these cases, an anomalous kinetic reaction constant value is observed over short reaction times. Such an anomalous profile is strongly dependent on the concentration of catalyst in the crude powder and, consequently, is not appreciated when either commercial or low activity lipase samples are employed.  相似文献   

11.
The efficacy of polyoxyethylene sorbitan trioleate (Tween 85) addition on the activity of Mucor javanicus lipase was investigated in sodium bis(2-ethylhexyl) sulfosuccinate (AOT) microemulsion-based organogels (MBGs). Gelatin was used as the gelling component of the MBGs. The maximal reaction rate was obtained at an AOT:Tween 85 molar ratio of 10:1. Under a fixed molar ratio system of AOT:Tween 85 = 10:1, the reaction rate also attained a maximum at a WG (=[H2O]/[AOT + Tween 85] in MBG phase) value of 100 and an AOT concentration of 150 mM. The reaction proceeded under a reaction-controlled regime, and the reaction rate for the AOT/Tween 85 mixed system was about 2-fold higher than that for the AOT single system. The lipase activity was well maintained for 10 days and recovered by contacting the MBGs with concentrated amphiphile solutions.  相似文献   

12.
Reverse enzyme synthesis in microemulsion-based organo-gels.   总被引:8,自引:0,他引:8  
Lipase from three different sources has been immobilised in microemulsion-based gels (MBGs) with retention of catalytic activity. Such lipase-containing MBGs prove to be novel solid-phase catalysts for use in apolar organic solvents such as n-heptane. Using these systems, preparative-scale synthesis of a wide variety of esters under mild conditions was possible with products easily isolated and obtained in high yield. Stereoselective esterification of octan-2-ol was observed for all three lipases with Chromobacterium viscosum (CV) lipase yielding product with an enantiomeric excess of 92%. Repeated usage of a CV lipase-containing MBG resulted in a visually unchanged gel whose activity was 75% of the initial value after 30 days. The sectioned MBGs were well suited for use in column flow reactors and were also found to be effective esterification catalysts at temperatures as low as -20 degrees C.  相似文献   

13.
Organogels based on water-in-oil microemulsions can be formed using various natural polymers such as gelatin, agar or cellulose derivatives. Enzymes entrapped in the water core of the microemulsion can keep their activity and enhance their stability within the gel matrix. The importance of the microemulsion based organogels (MBGs) leans on their numerous potential biotechnological applications. An important example is the use of various lipase microemulsion systems for hydrolytic or synthetic reactions. In this review, several MBGs are being evaluated as immobilization matrices for various enzymes. The main subject focuses on the parameters that affect the use of MBGs as media for bioorganic reactions using lipases as catalysts.  相似文献   

14.
Lipase (EC 3.1.1.3) is a versatile enzyme which has been widely used in ester-reaction industries. We have previously discovered that gigaporous polystyrene (PST) microspheres can be used as a novel immobilization carrier for lipase. In this work, a series of gigaporous microspheres with different densities of epoxy group including poly(glycidyl methacrylate) (PGMA) and poly(styrene-co-glycidyl methacrylate) [P(ST-GMA)] were evaluated as lipase immobilization carriers, which were also compared with gigaporous PST microspheres and the commercial immobilized lipase Novozym 435. Lipase immobilized in gigaporous PGMA microspheres showed the highest activity yield, reusability, and stability as well as the best affinity for the substrate. The characterizations of adsorption curves, the change of epoxy group amounts, and hydrophobic–hydrophilic properties of the microspheres were carried out to investigate the interaction between lipase molecules and carriers. It was found that covalent binding played a key role in improving the properties of lipase immobilized in gigaporous PGMA microspheres.  相似文献   

15.
《Process Biochemistry》2007,42(3):415-422
This work deals with the production of structured triacylglycerols (STAG) with caprylic acid (CA) located in positions 1 and 3 of the molecule of glycerol and docosahexaenoic acid (DHA) in position 2, by acidolysis of tuna oil and CA, catalyzed by several lipases. To this end several lipases and immobilization supports were tested with the aim of avoiding the acyl-migration observed in previous works. The determination of the best catalyst (i.e. the lipase and the immobilization support as a whole) was carried out by experiments of acidolysis of cod liver oil and CA in a bath reactor. The best results were obtained with the lipases from Rhizopus oryzae (Lipase D) and Rhizopus delemar (Lipase Rd), immobilized on Accurel MP1000 (a microporous polypropylene) with a lipase/support ratio 1:1.5 (w/w). The activity of these immobilized lipases was stable for a minimum of 5 days in the operational conditions (up to 40 °C).Lipase Rd was selected for the next step in which it was immobilized on Acurrel MP1000 to obtain STAG enriched in DHA by acidolysis of tuna oil (20% DHA) with CA. The experiments were carried out by recirculating the reaction mixture through an immobilized lipase packed bed reactor at different substrate/hexane ratios, as well as in absence of solvent. In the latter case, STAG with 51% CA and 13% DHA were obtained at 73 h. This result indicates that with this catalyst an acceptable reaction rate was attained in absence of solvent. A structural analysis by the pancreatic lipase method carried out to STAG with 45% CA and 16% DHA indicated that 91% of the CA incorporated is located in positions 1 and 3, and that 51% of the DHA is located in position 2 (MLM structure). This position is also rich in palmitic, eicosapentaenoic and oleic acids.After the acidolysis reaction a mixture of STAG and free fatty acids was obtained. The recovery of STAG from this reaction mixture is difficult because of the high content of free fatty acids. A separation method based on the neutralization of the free fatty acids with a KOH hydroalcoholic solution has been developed. By this procedure pure (100%) STAG were obtained with a recovery yield of 80%.  相似文献   

16.
以化学改性后的壳聚糖为载体固定假丝酵母99-125脂肪酶,研究了不同的活化剂对壳聚糖表面羟基基团的活化程度,及以活化后壳聚糖为载体采用不同固定化方法对假丝酵母脂肪酶固定效果的影响。结果表明1-乙基-3-(3-甲基氨基)丙基碳二亚胺可有效的活化壳聚糖表面羟基,活化后的壳聚糖表面氨基与戊二醛偶联后形成的壳聚糖为良好的脂肪酶固定化载体,其固定脂肪酶的水解活力可高达86.8U/g。此外,还对影响固定化进程中的各种因素进行了研究,确定最优条件,比较了固定化前后酶的热稳定性、有机溶剂稳定性及最适反应温度。并考察了该固定化脂肪酶催化合成棕榈酸十六酯的操作稳定性,结果表明,连续反应16批之后棕榈酸十六酯的转化率仍能达到85%以上。  相似文献   

17.
Lipase from Mucor miehei was immobilized covalently onto hydrolyzed poly(ethylene)-g.co-hydroxyethyl methacrylate (PE-HEMA). This hydrolysis of the copolymer was achieved using 0.1 M NaOH over different periods of time, under controlled conditions. The graft copolymers and their hydrolyzed equivalents were characterized by scanning electron microscopy (SEM) and by differential scanning calorimetry analysis (DSC). Water sorption studies were undertaken to provide a measure of relative hydrophobicity of the samples.

The lipase immobilization reaction was studied in order to assess the effects of controlling various important parameters. These include the nature of the buffering medium, the time over which the immobilization was allowed to occur, the concentration of the activating and coupling agent used (CMC) and the concentration of enzyme employed during attempts at effective immobilization. The immobilized lipase was used in the hydrolysis of triolein (glycerol trioleate). From this study, the apparent KM, the optimum pH for hydrolysis and the optimum temperature for hydrolysis were revealed.

The suitability of hydrolyzed poly(ethylene)-g.co-HEMA as a support in the immobilization of lipase was assessed by determination of the amount of lipase coupled to the support and by assessment of the retention of activity of the immobilized lipase after its exposure to the immobilization reagents, procedure and conditions.  相似文献   

18.
Lee DH  Kim JM  Kang SW  Lee JW  Kim SW 《Biotechnology letters》2006,28(23):1965-1969
Lipase was pretreated with soybean oil in order to allow fatty acids to bond to the active site before immobilization. This pretreated lipase exhibited steric hindrance around the active site such that during immobilization, covalent bonds were formed between the carrier and the lipase region far from the active site. The activity of the pretreated lipase immobilized covalently on a silica gel was 530 U/g-matrix, which is 16 times higher than that of the immobilized non-pretreated lipase. In addition, the immobilized lipase activity was maintained at levels exceeding 90% of its original activity after 10 reuses.  相似文献   

19.
Different methods for stabilization of Mucor circinelloides lipase, facilitating its application in organic solvents were tested. Lipase was either isolated from the mycelium and immobilized on solid carriers (derivatives of cellulose, diatomaceous earth, modified porous glass) or immobilized in situ in the mycelium pellets and stabilized. The immobilized enzyme preparations were used for synthesis of sucrose, glucose, butyl and propyl oleates and caprylates, carried out in petroleum and di-n-pentyl ethers. Immobilized preparations of either crude or purified lipase isolated from the mycelium were at least 4–6 times less effective in sucrose esters synthesis than mycelium-bound lipase preparations. Lipase preparation with the highest synthetic activity was obtained by cross-linking of M. circinelloides mycelium pellets with glutardialdehyde (operational stability in sucrose caprylate synthesis was 94% after 4 runs (24 h each), and caprylic acid conversion was 91–85%). The best method for production of mechanically durable biocatalyst, which efficiently catalyzed sucrose esters synthesis, was found to be entrapment of the mycelium-bound lipase in polyvinyl pyrrolidone-containing chitosan beads solidified with hexametapolyphosphate.  相似文献   

20.
Lipase PS from Burkholderia cepacia (formerly Pseudomonas cepacia) was successfully immobilized in sol–gels under low methanol conditions using lyophilization in order to dry the gel. The enzyme was also cross-linked with glutaraldehyde to CLEAs without any additives. These immobilized enzyme preparations were employed for the highly enantioselective acylations of 1-phenylethanol (1), 1-(2-furyl)ethanol (2) and N-acylated 1-amino-2-phenylethanol (3) with vinyl acetate in organic solvents. Enzymatic hydrolysis of the obtained ester product was observed as a side reaction of the acylation of 3 in the presence of lipase PS powder. Hydrolysis was suppressed when the immobilized preparations of lipase PS were used.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号