首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Alzheimer's disease (AD) is a progressive dementing neurologic illness, and the most frequent cause of dementia in the elderly. Neuritic plaques are one of the main neuropathological findings in AD, and the major protein component is the β-amyloid protein (Aβ). Another striking feature of neuritic plaques is the presence of activated microglia, cytokines, and complement components, suggestive of “inflammatory foci” within AD brain. In this review, we will examine the mechanisms by which microglia become activated in AD, emphasizing the role in the Aβ protein and proinflammatory cytokines. As well, pathways for suppression of microglial activation by immunosuppressive cytokines will be described. Inflammation mediated by activated microglia is an important component of AD pathophysiology, and strategies to control this response could provide new therapeutic approaches for the treatment of AD.  相似文献   

2.
Cholinergic neurons of the nucleus basalis (NB) are selectively vulnerable in Alzheimer's disease (AD), yet the molecular mechanisms associated with their dysfunction remain unknown. We used single cell RNA amplification and custom array technology to examine the expression of functional classes of mRNAs found in anterior NB neurons from normal aged and AD subjects. mRNAs encoding neurotrophin receptors, synaptic proteins, protein phosphatases, and amyloid-related proteins were evaluated. We found that trkB and trkC mRNAs were selectively down-regulated in NB neurons, whereas p75NTR mRNA levels remained stable in end stage AD. TrkA mRNA was reduced by approximately 28%, but did not reach statistical significance. There was a down-regulation of synaptophysin, synaptotagmin, and protein phosphatases PP1 and PP1 mRNAs in AD. In contrast, we found a selective up-regulation of cathepsin D mRNA in NB neurons in AD brain. Thus, anterior NB neurons undergo selective alterations in gene expression in AD. These results may provide clues to the molecular pathogenesis of NB neuronal degeneration during AD.  相似文献   

3.
Cholinesterase (ChE) activity was measured as a possible marker of cholinergic neurotransmission of the brain in CSF of 93 patients with probable Alzheimer's disease/senile dementia of the Alzheimer type (AD/SDAT) and of 29 control patients. ChE activity in CSF was decreased significantly in the AD/SDAT patients as compared to the controls. This reduction correlated significantly with the various measures of the severity of dementia. However, the reduction of ChE activity was only moderate (25–30%) even in patients with the most severe dementia and nonsignificant in patients with early symptoms of AD/SDAT. The significance of various confounding factors, which may interfere with CSF ChE measurements is discussed. Our findings seem to indicate that the deficiency of cholinergic neurons is not directly reflected in CSF and that the measurements of ChE activities in CSF are not helpful in diagnosing AD/SDAT. In the autopsy study the activities of cholineacetyltransferase (ChAT) and ChE were determined for ten brain areas of 20 AD/SDAT patients and of 14 controls. In AD/SDAT patients ChAT activity was profoundly decreased (50–85% decrease) in the cortical areas and hippocampus, but was unchanged or only mildly reduced in other subcortical brain areas. This study further confirms that the affection of cholinergic neurons is limited to projections from nucleus basalis to cortex and hippocampus, whereas other cholinergic neurons, like in striatum, seem to be relatively spared. In general, the activities of ChAT and ChE were lower in Alzheimer patients dying at younger age suggesting more severe disease process with these patients.  相似文献   

4.
As a disease model, the laboratory rat has contributed enormously to neuroscience research over the years. It has also been a popular animal model for Alzheimer's disease but its popularity has diminished during the last decade, as techniques for genetic manipulation in rats have lagged behind that of mice. In recent years, the rat has been making a comeback as an Alzheimer's disease model and the appearance of increasing numbers of transgenic rats will be a welcome and valuable complement to the existing mouse models. This review summarizes the contributions and current status of the rat as an animal model of Alzheimer's disease.  相似文献   

5.
Ts65Dn mice, trisomic for a portion of chromosome 16 segmentally homologous to human chromosome 21, are an animal model for Down's syndrome and related neurodegenerative diseases, such as dementia of the Alzheimer type. In these mice, cognitive deficits and alterations in number of basal forebrain cholinergic neurons have been described. We have measured in Ts65Dn mice the catalytic activity of the cholinergic marker, choline acetyltransferase (ChAT), as well as the activity of the acetylcholine-degrading enzyme acetylcholinesterase (AChE), in the hippocampus and in cortical targets of basal forebrain cholinergic neurons. In mice aged 10 months, ChAT activity was significantly higher in Ts65Dn mice, compared to 2N animals, in the hippocampus, olfactory bulb, olfactory cortex, pre-frontal cortex, but not in other neocortical regions. At 19 months of age, on the other hand, no differences in ChAT activity were found. Thus, alterations of ChAT activity in these forebrain areas seem to recapitulate those recently described in patients scored as cases of mild cognitive impairment or mild Alzheimer's disease. Other neurochemical markers putatively associated with the disease progression, such as those implicating astrocytic hyperactivity and overproduction of amyloid precursor protein family, were preferentially found altered in some brain regions at the oldest age examined (19 months).  相似文献   

6.
7.
Sera of normal controls and of patients with neurological diseases contain antineurofilament antibodies. Recent studies suggest that biochemically and immunologically distinct subclasses of neurofilaments occur in different types of neurons. Alzheimer's disease (AD), the major cause of dementia, is associated with a marked degeneration of brain cholinergic neurons. In the present work we characterized the repertoire and age dependence of antineurofilament antibodies in normal sera and examined whether the degeneration of cholinergic neurons in AD is associated with serum antibodies directed specifically against the neurofilaments of mammalian cholinergic neurons. This was performed by immunoblot assays utilizing neurofilaments from the purely cholinergic bovine ventral root neurons and from the chemically heterogeneous bovine dorsal root neurons. Antibodies to the heavy neurofilament protein NF-H were detected in normal control sera. Their levels were significantly higher in older (aged 70–79) than in younger (aged 40–59) subjects. These antibodies bound similarly to bovine ventral root and dorsal root NF-H and their NF-H specificity was unchanged during aging. In contrast, the levels of IgG in AD sera that are directed against ventral root cholinergic NF-H were higher than those directed against the chemically heterogeneous dorsal root NF-H. Immunoblot experiments utilizing dephosphorylated ventral root and dorsal root NF-H and chymotryptic fragments of these molecules revealed that AD sera contain a repertoire of antimamalian NF-H IgG. A subpopulation of these antibodies binds to phosphorylated epitopes that are specifically enriched in ventral root cholinergic NF-H and that are located on the carboxy terminal domain of this molecule. The level of these anticholinergic NF-H IgG are significantly higher in AD sera than in those of both normal controls and patients with multi-infarct dementia.  相似文献   

8.
The primary pathology in Alzheimer's disease (DAT) occurs in the basal forebrain cholinergic system (BFCS), which provides the major cholinergic innervation to the neocortex, hippocampus and amygdala. Consistent with the 'cholinergic hypothesis' of dementia in DAT, the most effective treatments so far developed for DAT are drugs which act to boost the functions of the BFCS. These include the centrally acting cholinesterase inhibitor tacrine, and the cholinergic agonist nicotine, acute administration of which leads to an improvement in attentional functions, in line with recent animal studies of the role of the BFCS in cognition. We conclude that future research should include the development of more potent, longer-lasting, less toxic cholinergic agents, which appear to be the best candidates for alleviating the cognitive symptomatology of DAT. Such drugs may also be useful in the treatment of a number of other cognitive disorders, including Lewy body dementia, attention deficit/hyperactivity disorder, and schizophrenia.  相似文献   

9.
Christelle Hureau  Peter Faller   《Biochimie》2009,91(10):1212-1217
Metal ions are involved in Alzheimer's disease (AD) via their ability to induce aggregation of amyloidogenic peptide and production of Reactive Oxygen Species (ROS), two key events in the development of the pathology. Here, we review very recent results concerning the coordination of Cu(I) and Cu(II) ion to the amyloid-β peptide, the one encountered in AD. Implications of these structural data for the redox chemistry of the Cu(I/II)–Aβ couple are discussed. The different pathways for the ROS generation by the Cu(I/II)–Aβ species are described. In the more relevant one, reduction of dioxygen is realized by a two-electron process involving two Cu(I) in close vicinity, while the production of the hydroxyl radical from hydrogen peroxide is less constrained. A brief summary of how the Aβ peptide is oxidised during the ROS production is also given. Lastly, the pro- vs. anti-oxidant properties of Aβ are commented on.  相似文献   

10.
Sex-specific incidence rates for Alzheimer's disease (AD) are higher in women than men. Many fundamental researches and some clinical investigations have reported therapeutic and preventive effects of estrogens on AD. But WHIMS [S.A. Shumaker, C. Legault, S.R. Rapp, L. Thal, R.B. Wallace, J.K. Ockene, S.L. Hendrix, B.N. Jones IIIrd, A.R. Assaf, R.D. Jackson, J.M. Kotchen, S. Wabertheil-Smoller, J. Wactawsk-Wende, WHIMS investigators, Estrogen plus progestin and the incidence of dementia and mild cognitive impairment in postmenopausal women. The women's health initiative memory study: a randomized controlled trial, JAMA 289 (2003) 2651–2662], which used daily continuous hormone replacement therapy (HRT), reported that the hazard ratio of the HRT for probable dementia was 2.05.

Effect of progestins, and continuous (not cyclically) HRT, even only with estrogen should be reconsidered.

In our clinical study, conjugated equine estrogen (CEE) alone showed good changes of psychiatric tests for AD on the 3rd week, but addition of medroxyprogesterone acetate (MPA) or norethindrone since 4th week suppressed these tests. Using human umbilical vein epithelial cell (HUVEC), levonorgestrel (LNG), norethindrone acetate (NETA), MPA increased intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion melocule-1 (VCAM-1) and E-secretin but dienogest (DNG) showed no effect. In vitro flow system, estradiol (E2), suppressed adhesion of white cell, but LNG, NETA, MPA increased the adhesions. DNG showed less effect.

Non-feminizing estrogen J 861, which has Δ8,9 double bond and straight in its structure and has less effect on sexual organs. J 861 has shown ameliorative effects on central nervous system (CNS) (increasing of cholineacetyltransferase immunoreactive cells in substantia innominata (SI), etc.) like E2.

More investigations about progestins and estrogens and AD should be done.  相似文献   


11.
12.
A delayed matching-to-position (DMP) T-maze task was used to examine the effects of estrogen replacement on spatial learning and memory, as well as the ability of estrogen replacement to reduce performance deficits produced by acute systemic and intrahippocampal muscarinic cholinergic inhibition. Two experiments were performed. In Experiment 1, ovariectomized animals were trained to criterion on the DMP task and then tested with increased intertrial delays and following systemic scopolamine administration. The animals then received either continuous estrogen replacement or sham surgery and were retested beginning 10 days later. In Experiment 2, ovariectomized animals received guide cannulae implanted bilaterally into the hippocampus. Half of these animals also began receiving continuous estrogen replacement. Two months later, the animals were trained on the DMP task and then tested with increased intertrial delays and following systemic as well as intrahippocampal scopolamine administration. Animals received the same test battery 8 months later and were then immediately trained on a reversal task. The results indicate that estrogen-treated animals acquired the DMP task at a significantly faster rate than the ovariectomized, non-estrogen-treated controls. In addition, estrogen replacement significantly reduced deficits in DMP performance produced by intrahippocampal, but not systemic, scopolamine administration. This occurred when animals were tested after 3.5 months, as well as after 12 months, of continuous estrogen replacement. No evidence for an effect of estrogen replacement on spatial working memory or reversal learning was detected. These findings demonstrate that estrogen replacement can enhance acquisition of a spatial memory task and reduce performance deficits associated with hippocampal cholinergic impairment.  相似文献   

13.
Technical and experimental advances in microaspiration techniques, RNA amplification, quantitative real-time polymerase chain reaction (qPCR), and cDNA microarray analysis have led to an increase in the number of studies of single-cell gene expression. In particular, the central nervous system (CNS) is an ideal structure to apply single-cell gene expression paradigms. Unlike an organ that is composed of one principal cell type, the brain contains a constellation of neuronal and noneuronal populations of cells. A goal is to sample gene expression from similar cell types within a defined region without potential contamination by expression profiles of adjacent neuronal subpopulations and noneuronal cells. The unprecedented resolution afforded by single-cell RNA analysis in combination with cDNA microarrays and qPCR-based analyses allows for relative gene expression level comparisons across cell types under different experimental conditions and disease states. The ability to analyze single cells is an important distinction from global and regional assessments of mRNA expression and can be applied to optimally prepared tissues from animal models as well as postmortem human brain tissues. This focused review illustrates the potential power of single-cell gene expression studies within the CNS in relation to neurodegenerative and neuropsychiatric disorders such as Alzheimer's disease (AD) and schizophrenia, respectively.  相似文献   

14.
Alzheimer's disease and estrogen   总被引:6,自引:0,他引:6  
The preventive effect of estrogen on Alzheimer's disease (AD) has become clear with epidemiological data. Therapeutic effects of estrogen have not yet been established. In this presentation, we report our new basic and clinical data. The estrogen receptor, (ER), and ERβ mRNA were investigated in rat brain. Estradiol-17β (E2) treatment following OVX reduced the levels of ER mRNA in the hypothalamus. In the substantia innominata (SI), the number of choline acetyltransferase immunoreacive cells increased significantly in the estrogen treatment rat. The neurons in SI projecting to the forebrain cortex contained ER. Increasing amounts of intracellular calcium, peroxidation, and apoptosis with amyloid β were suppressed in neuronal cells from rat pheochromocytoma (PC12) cells with E2. ER cDNA transfected PC 12 cells elaborated more neurite-like processes with E2. In clinics, we are currently preparing vaginal progesterone tablets, which essentially may concentrate in the endometrium to prevent endometrial cancer, with few general circulation of progesterone inviting less depression. The therapeutic effects of cyclic estrogen, such as its preventive effect, are suggested in these studies, at least on mild AD.  相似文献   

15.
Multiple genetic and environmental factors are likely to contribute to the development of Alzheimer's disease (AD). The most important known risk factor for AD is presence of the E4 isoform of apolipoprotein E (apoE). Epidemiological studies demonstrated that apoE4 carriers have a higher risk and develop the disease and an early onset. Moreover, apoE4 is the only molecule that has been associated with all the biochemical disturbances characteristic of the disease: amyloid-beta (Abeta) deposition, tangle formation, oxidative stress, lipid homeostasis deregulation, synaptic plasticity loss and cholinergic dysfunction. This large body of evidence suggest that apoE is a key player in the pathogenesis of AD. This short review examines the current facts and hypotheses of the association between apoE4 and AD, as well as the therapeutic possibilities that apoE might offer for the treatment of this disease.  相似文献   

16.
The basal forebrain cholinergic neurons (BFCN) provide the primary source of cholinergic innervation of the human cerebral cortex. They are involved in the cognitive processes of learning, memory, and attention. These neurons are differentially vulnerable in various neuropathologic entities that cause dementia. This review summarizes the relevance to BFCN of neuropathologic markers associated with dementias, including the plaques and tangles of Alzheimer's disease (AD), the Lewy bodies of diffuse Lewy body disease, the tauopathy of frontotemporal lobar degeneration (FTLD-TAU) and the TDP-43 proteinopathy of FTLD-TDP. Each of these proteinopathies has a different relationship to BFCN and their corticofugal axons. Available evidence points to early and substantial degeneration of the BFCN in AD and diffuse Lewy body disease. In AD, the major neurodegenerative correlate is accumulation of phosphotau in neurofibrillary tangles. However, these neurons are less vulnerable to the tauopathy of FTLD. An intriguing finding is that the intracellular tau of AD causes destruction of the BFCN, whereas that of FTLD does not. This observation has profound implications for exploring the impact of different species of tauopathy on neuronal survival. The proteinopathy of FTLD-TDP shows virtually no abnormal inclusions within the BFCN. Thus, the BFCN are highly vulnerable to the neurodegenerative effects of tauopathy in AD, resilient to the neurodegenerative effect of tauopathy in FTLD and apparently resistant to the emergence of proteinopathy in FTLD-TDP and perhaps also in Pick's disease. Investigations are beginning to shed light on the potential mechanisms of this differential vulnerability and their implications for therapeutic intervention.

  相似文献   

17.
Blood cadmium concentrations were studied in Alzheimer's disease (AD) and non-demented subjects. The 29 individuals were randomized from the ongoing population survey on ageing and dementia in Stockholm, the Kungsholmen Project. Smokers had, as expected, higher cadmium levels than non-smokers. Cadmium concentrations in blood were related to diastolic blood pressure in non-smoking, non-demented individuals. In contrast to previous reports no differences in blood cadmium levels were found between AD sufferers and non-demented subjects. Furthermore, there were no correlations between cadmium levels in blood and age or cognitive functions. The importance of quality assurance in sample collection and analysis of cadmium as well as scrutinizing smoking habits is emphasized.  相似文献   

18.
Alzheimer''s disease (AD) is a heterogeneous neurodegenerative disorder and the most prevalent form of dementia worldwide. AD is characterized pathologically by amyloid-β plaques, neurofibrillary tangles and neuronal loss, and clinically by a progressive loss of cognitive abilities. At present, the fundamental molecular mechanisms underlying the disease are unclear and no treatment for AD is known. Epidemiological evidence continues to mount linking vascular diseases, such as hypertension and diabetes, and hypercholesterolaemia with an increased risk for developing AD. A growing amount of evidence suggests a mechanistic link between cholesterol metabolism in the brain and the formation of amyloid plaques in AD development. Cholesterol and statins clearly modulate β-amyloid precursor protein (βAPP) processing in cell culture and animal models. Statins not only reduce endogenous cholesterol synthesis but also exert other various pleiotrophic effects, such as the reduction in protein isoprenylation. Through these effects statins modulate a variety of cellular functions involving both cholesterol (and membrane rafts) and isoprenylation. Although clearly other factors, such as vascular inflammation, oxidative stress and genetic factors, are intimately linked with the progression of AD, this review focuses on the present research findings describing the effect of cholesterol, membrane rafts and isoprenylation in regulating βAPP processing and in particular γ-secretase complex assembly and function and AD progression, along with consideration for the potential role statins may play in modulating these events.  相似文献   

19.
New functions have been identified for glyceraldehyde-3-phosphate dehydrogenase (GAPDH) including its role in neurodegenerative disease and in apoptosis. GAPDH binds specifically to proteins implicated in the pathogenesis of a variety of neurodegenerative disorders including the beta-amyloid precursor protein and the huntingtin protein. However, the pathophysiological significance of such interactions is unknown. In accordance with published data, our initial results indicated there was no measurable difference in GAPDH glycolytic activity in crude whole-cell sonicates of Alzheimer's and Huntington's disease fibroblasts. However, subcellular-specific GAPDH-protein interactions resulting in diminution of GAPDH glycolytic activity may be disrupted or masked in whole-cell preparations. For that reason, we examined GAPDH glycolytic activity as well as GAPDH-protein distribution as a function of its subcellular localization in 12 separate cell strains. We now report evidence of an impairment of GAPDH glycolytic function in Alzheimer's and Huntington's disease subcellular fractions despite unchanged gene expression. In the postnuclear fraction, GAPDH was 27% less glycolytically active in Alzheimer's cells as compared with age-matched controls. In the nuclear fraction, deficits of 27% and 33% in GAPDH function were observed in Alzheimer's and Huntington's disease, respectively. This evidence supports a functional role for GAPDH in neurodegenerative diseases. The possibility is considered that GAPDH:neuronal protein interaction may affect its functional diversity including energy production and as well as its role in apoptosis.  相似文献   

20.
The acridine-based, potential Alzheimer's disease therapeutic agents, tacrine and velnacrine, were incubated with rat or gerbil neocortical synaptosomal membranes. Electron paramagnetic resonance employing a protein-specific spin label was used to monitor this interaction. Analogous to their effects in erythrocyte membranes [Butterfield and Rangachari (1992) Biochem. Biophys. Res. Commun. 185: 596–603], in the present studies both agents decreased segmental motion of spin labeled synaptosomal membrane proteins, consistent with increased cytoskeletal protein-protein interactions (0.001相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号