首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
While searching for food, predators may use volatiles associated with their prey, but also with their competitors for prey. This was tested for the case of Zetzellia mali (Ewing) (Acari: Stigmaeidae), an important predator of the hawthorn spider mite, Amphitetranychus viennensis (Zacher) (Acari: Tetranychidae), in black-cherry orchards in Baraghan, Iran. Using a Y-tube olfactometer, the response of this predatory mite was tested to odour from black-cherry leaves with a conspecific female predatory mite, either with or without a female of the hawthorn spider mite when the alternative odour came from black-cherry leaves with the hawthorn spider mite only. Female predators avoided odours from leaves with both a hawthorn spider mite and a conspecific predator, as well as leaves with a conspecific predator only. We discuss whether avoidance emerges in response to cues from the competitor/predator, the herbivore/prey or the herbivore-damaged plant.  相似文献   

2.
Intraguild predation (IGP) is defined as the killing and eating of prey species by a predator that also can utilize the resources of the prey. It is mainly reported among carnivores that share common herbivorous prey. However, a large chewing herbivore could prey upon sedentary and/or micro herbivores in addition to utilizing a host plant. To investigate such coincidental IGP, we observed the behavioral responses of the polyphagous mite Tetranychus kanzawai Kishida (Acari: Tetranychidae) when its host plant Cayratia japonica (Thunb.) Gagnep. (Vitaceae) was attacked by hornworms, Theretra japonica Boisduval (Sphingidae) and T. oldenlandiae Fabricius (Sphingidae). We also examined an interaction between the oligophagous mite Panonychus citri McGregor (Acari: Tetranychidae) and caterpillars of the swallowtail Papilio xuthus L. (Papilionidae) that share citrus plants as their main food source. Although all T. kanzawai and some active stage P. citri tried to escape from the coincidental IGP, some were consumed together with eggs, quiescent mites, and host plant leaves, suggesting that coincidental IGP occurs on spider mites in the wild. Moreover, neither hornworms nor swallowtail caterpillars distinguished between spider mite-infested and uninfested leaves, suggesting that the mite-infested leaves do not discourage caterpillar feeding. The reasons that the mites have no effective defense against coincidental IGP other than escaping are discussed.  相似文献   

3.
We report the discovery of a mutualistic system encompassing prey–predator interactions. A domatium is a small space in a vein axil on the underside of leaves of woody angiosperms. Cinnamomum camphora Linn. has domatia that harbor a microphytophagous eriophyid mite (sp. 1). We previously reported that a predatory mite, Euseius sojaensis (Ehara), depends on this eriophyid mite as food. We revealed that E. sojaensis also preyed upon another eriophyid mite (sp. 2) that induces galls on leaves, and that the mean area of C. camphora leaves with galls was usually less than half that of leaves without galls. We experimentally tested the effect of E. sojaensis on galls, and confirmed that the presence of E. sojaensis reduced gall induction. Therefore, C. camphora, eriophyid mite sp. 1, and E. sojaensis comprise a mutualistic system, in spite of the prey–predator interactions among them. The conventional concept of mutualism does not apply to such prey–predator interactions, so we defined them as systematic mutualism. Here, the system consists of three trophic levels, and individuals that constitute this system benefit from the other species that constitute this system.  相似文献   

4.
In the Kanzawa spider mite, Tetranychus kanzawai, adult males locate pre-reproductive quiescent females and engage in precopulatory mate guarding. We found that re-reproductive quiescent females preferred to be near veins, rather than other leaf parts, and moreover, adult males spent more time along the vein than on other parts. Consequently, T. kanzawai males found more quiescent females along veins than those on other parts. However, the predatory mite Neoseiulus womersleyi also found more quiescent T. kanzawai females along veins than those on other parts. Moreover, N. womersleyi found more guarding males than solitary males of T. kanzawai. Thus, we experimentally examined the effects of predation risk on the mating behavior of T. kanzawai. The presence of N. womersleyi reduced T. kanzawai female preference for vein vicinity as a quiescent site. Although the predation risk of guarding T. kanzawai males was lower than that of solitary males after detection by predators, the presence of N. womersleyi also reduced the proportion of guarding T. kanzawai males. These results suggest that the possible benefits of preferring vein vicinity as quiescent sites by T. kanzawai females is outweighed by predation risk in the presence of predators, and that the risk of detection by predators would be more important for T. kanzawai males than the risk of being preyed upon.  相似文献   

5.
Typhlodromalus manihoti and Typhlodromalus aripo are exotic predators of the cassava green mite Mononychellus tanajoa in Africa. In an earlier paper, we showed that the two predators were attracted to odors from M. tanajoa-infested cassava leaves. In addition to the key prey species, M. tanajoa, two alternative prey mite species, Oligonychus ossypii and Tetranychus urticae also occur in the cassava agroecosystem. Here, we used a Y-tube olfactometer to determine the attraction of the predators to odors from O. gossypii- or T. urticae-infested cassava leaves and their prey-related odor preference. T. aripo but not T. manihoti was slightly attracted to odors from O. gossypii-infested leaves. Both predator species showed a stronger response to odors from cassava leaves infested by M. tanajoa over odors from cassava leaves infested by O. gossypii. Neither predator species was attracted to odors from T. urticae-infested leaves and the predators preferred the odors from M. tanajoa-infested leaves over those from T. urticae-infested leaves. When O. gossypii was present together with M. tanajoa on the same leaves or on different sets of leaves offered together as an odor source the two predators were attracted. In contrast, after mixing non-attractive odors from T. urticae-infested leaves with attractive odors from M. tanajoa-infested leaves, neither T. aripo nor T. manihoti was attracted. Ecological advantages and disadvantages of the predators’ behavior and possible implications for biological control of M. tanajoa are discussed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
In two adjacent Japanese pear orchards (orchards 1 and 2), we studied the seasonal occurrence of the Kanzawa spider mite, Tetranychus kanzawai, and its predators. Also the response of these predators to the volatiles from kidney bean plants infested with T. kanzawai was investigated using trap boxes in orchard 1. The mite density in orchard 1 was unimodal, with one peak at the end of August. In this orchard, population development of the specialist insect predators, Scolothrips takahashii, Oligota kashmirica benefica and Stethorus japonicus, was almost synchronized with that of the spider mites. These predators disappeared when the density of their prey became very low in mid-September. Both S. takahashii and O. kashmirica benefica abruptly increased in number in orchard 2 when the spider mite population in orchard 1 decreased. These results suggested that some of the predators migrated from orchard 1 to orchard 2. In this period, predator-traps with T. kanzawai-infested bean plants attracted significantly more S. takahashii than traps with uninfested plants. Very few individuals of S. japonicus and O. kashimirica benefica were found in the traps, despite their abundance in orchard 1. The generalist insect predator, Orius sp., was attracted to the traps throughout the experimental period irrespective of the density of spider mites, although this predator was never observed inside the orchards.  相似文献   

7.
M. Mochizuki 《BioControl》2003,48(2):207-221
To prevent the resurgence of the Kanzawa spider mite, Tetranychus kanzawai Kishida, on tea plants caused by the application of synthetic pyrethroid insecticides (SP), an SP-resistant strain of the predatory mite Amblyseius womersleyi Schicha was released onto tea bushes under SP (permethrin) application. The released predators successfully survived and may be able to suppress T. kanzawai. In the plot where A. womersleyi was released, the damage to new leaves was less severe than in the control plot and the predators remained resistant to the permethrin in the bushes. The selective use of pesticides that are harmless against natural enemies is necessary to achieve a program of integrated tea pest management. Although mortality of adult females of the tested strain in response to SP was from 6.5 to 89.3%, and mortality was more than 95% in response to several carbamate and organophosphate insecticides, usefulness of A. womersleyi as an agent of biological control was successfully demonstrated in the present study.  相似文献   

8.
Predators can affect prey dispersal lethally by direct consumption or non-lethally by making prey hesitate to disperse. These lethal and non-lethal effects are detectable only in systems where prey can disperse between multiple patches. However, most studies have drawn their conclusions concerning the ability of predatory mites to suppress spider mites based on observations of their interactions on a single patch or on heavily infested host plants where spider mites could hardly disperse toward intact patches. In these systems, specialist predatory mites that penetrate protective webs produced by spider mites quickly suppress the spider mites, whereas generalist predators that cannot penetrate the webs were ineffective. By using a connected patch system, we revealed that a generalist ant, Pristomyrmex punctatus Mayr (Hymenoptera: Formicidae), effectively prevented dispersal of spider mites, Tetranychus kanzawai Kishida (Acari: Tetranychidae), by directly consuming dispersing individuals. We also revealed that a generalist predatory mite, Euseius sojaensis Ehara (Acari: Phytoseiidae), prevented between-patch dispersal of T. kanzawai by making them hesitate to disperse. In contrast, a specialist phytoseiid predatory mite, Neoseiulus womersleyi Schicha, allowed spider mites to escape an initial patch, increasing the number of colonized patches within the system. Our results suggest that ants and generalist predatory mites can effectively suppress Tetranychus species under some conditions, and should receive more attention as agents for conservation biological control in agroecosystems.  相似文献   

9.
We investigated the response of the specialist insect predator Oligota kashmirica benefica (Coleoptera: Staphylinidae) to volatiles from lima bean leaves infested with the spider mite Tetranychus urticae (Acari: Tetranychidae), both in a Y-tube olfactometer and in a field in Kyoto, Japan. Adult male and female predators were significantly more attracted to T. urticae-infested leaves than to clean air. Adult male and female predators were not more attracted to uninfested leaves, artificially damaged leaves, or the spider mites and their visible products when compared to clean air. In a field trap experiment, 12 adult predators were caught in three traps containing T. urticae-infested lima bean plants over 13 days, whereas no adult predators were trapped in three traps containing uninfested lima bean plants during the same period. These results showed that O. kashmirica benefica adults responded to herbivore-induced plant volatiles from T. urticae-infested lima bean leaves under both laboratory and field conditions.  相似文献   

10.
Studies have proposed that predators of herbivores suffer significant fitness losses from the defense chemicals of host plants, and that herbivores adapted to these chemicals may experience reduced predation risk when residing on such plant species. We examined the effects of oleander, Nerium indicum Mill. (Apocynaceae), a host plant of the spider mite, Tetranychus kanzawai Kishida (Acari: Tetranychidae), on their prime predator, Neoseiulus womersleyi (Schicha) (Acari: Phytoseiidae), and tested the hypothesis that this host plant provides enemy‐free space. At the study sites, T. kanzawai occurred on oleander shrubs; in contrast, although N. womersleyi was present in the area, no individuals were found on oleander. Tetranychus kanzawai feeding on oleander negatively affected the settlement, development, and egg production of N. womersleyi. The lower egg production was a result of both the direct effects of oleander and the indirect effects via T. kanzawai. Previous studies showed that the fitness of T. kanzawai in the presence of N. womersleyi was lower than that in the absence of the predator, and lower on oleander than on other palatable host plant species in the absence of predators. Our findings suggest that N. womersleyi may not be able to invade T. kanzawai patches on oleander shrubs, which results in the fitness of T. kanzawai being higher on oleander than on other host plant species in the same area when N. womersleyi is present. This supports the hypothesis that T. kanzawai acquires enemy‐free space on oleander using the direct and indirect adverse effects of oleander on their predators as major defense mechanisms.  相似文献   

11.
The effects of cassava exudate and prey densities on reproduction and survival of the predatory mite, Typhlodromalus limonicus (Garman & McGregor) (Acari: Phytoseiidae), were investigated in the laboratory. Females were provided either cassava exudate ad lib. daily, low or high numbers of the cassava green mite prey, Mononychellus tanajoa (Bondar) (Acari: Tetranychidae) daily, or exudate for 5 or 10 days before switching to a low or high prey diet. Females fed only exudate laid no eggs. Females fed exudate before prey experienced a significant decrease (30%) in the number of eggs laid compared to females fed high numbers of prey daily. The reduction in fecundity was the result of prolonged preoviposition periods (2.0 days on prey daily vs 4.0 days on exudate before prey) and reduced number of eggs laid per female per day (1.7 eggs per female per day on prey daily vs 0.4 eggs per female per day on exudate before prey). Females fed only exudate had a greater survival rate and longevity than females fed prey daily or females fed exudate before a diet of prey. These results suggest that T. limonicus can survice for a limited period on cassava exudate during periods of low prey availability, but requires prey to complete oögenesis and propagate the population.  相似文献   

12.
To clarify the prey‐finding behavior of the predatory mite Neoseiulus womersleyi (Schicha) (Acari: Phytoseiidae), we studied its olfactory responses to volatiles from the prey‐infested plant on which the mites had been collected. We used a local N. womersleyi population called Kanaya collected from tea (Camellia sinensis L.) (Theaceae) plants infested by Tetranychus kanzawai Kishida (Acari: Tetranychidae) in Kanaya City, Japan. Neoseiulus womersleyi (Kanaya population) were more attracted to volatiles from tea plants infested with five female T. kanzawai per leaf for 7 days than to intact tea leaves in a Y‐tube olfactometer. Tetranychus kanzawai‐induced tea leaf volatiles were identified as (E)‐β‐ocimene, (E)‐4,8‐dimethyl‐1,3,7‐nonatriene, and (E,E)‐α‐farnesene. As olfactory responses are known to differ among local populations of N. womersleyi, we compared the responses of the Kanaya population with those of a Kikugawa population collected from tea plants infested by T. kanzawai in Kikugawa City. To test the influence of previous predation experience, we reared the two populations on tea plants infested by T. kanzawai or on kidney bean plants (Phaseolus vulgaris) infested by Tetranychus urticae Koch. The Kanaya population was more attracted to the volatiles from infested plants on which they had been reared. Because the Kanaya population was not attracted to the plant volatiles they had not previously experienced, the positive response to previously experienced volatiles might be the result of learning. By contrast, the Kikugawa population showed no preference for previously experienced volatiles from infested plants. The implications of this flexibility in foraging behavior are discussed.  相似文献   

13.
Predator–predator, predator–prey, and prey–prey associations among nine species of mites were studied in a plot of 100 Red Delicious apple (Malus pumila Miller) trees from 1990 to 1997. In 1990, seven-year-old trees were inoculated with Panonychus ulmi (Koch), Tetranychus urticae Koch (Acari: Tetranychidae) or both, and sprayed with azinphosmethyl (alone or plus endosulfan), or nothing. The species Zetzellia mali (Ewing) (Acari: Stigmaeidae), Amblyseius andersoni Chant (Acari: Phytoseiidae), Eotetranychus sp., Bryobia rubrioculus (Scheuten) (Acari: Tetranychidae), and Aculus schlechtendali Nalepa (Acari: Eriophyidae) were already present or immigrated into plots, and Galendromus occidentalis (Nesbitt) and Typhlodromus pyri Scheuten (Acari: Phytoseiidae) were introduced. Yule's V association index was used to measure positive, neutral, or negative interspecific associations for each species pair, because of its robustness with spatially autocorrelated data. We found that pesticide and release treatments did not greatly affect the association results, but there were strong seasonal differences. Predator–predator associations were the strongest and most consistent, showing negative associations in the early and mid seasons, and neutral ones in late season. Negative associations of T. pyri with other predators were the strongest, which is consistent with evidence that this mite can detect other predators on a leaf. Predator–prey seasonal associations were mixed, with some positive and others negative, with most significant associations occurring in the mid season. One prey–prey interaction was positive, again in mid season, most likely because of similar habitat preferences.  相似文献   

14.
The relative toxicity of someacaricides to the predatory mite, Phytoseiulus persimilis and the twospottedspider mite, Tetranychus urticae (Acari: Phytoseiidae, Tetranychidae) wasevaluated in laboratory. Five of theacaricides tested, including bifenazate,acequinocyl, chlorfenapyr, flufenoxuron andfenbutatin oxide, were much less toxic to adultfemales and immatures of P. persimilisthan to those of T. urticae, and adultfemale predators treated with these fiveacaricides produced 84±96% as many eggs as didcontrol females. Etoxazole did not seriouslyaffect the survival and reproduction of adultfemale predators but caused high mortalityrates in eggs and larvae of P.persimilis. Milbemectin and fenazaquin werevery toxic to adult females and immatures ofP. persimilis. Adult female predatorssurvived on a diet of spider mites treated withbifenazate, acequinocyl, chlorfenapyr,flufenoxuron and fenbutatin oxide, and theirfecundity, prey consumption and the sex ratioof the progeny were not substantially affected. Based on the results, bifenazate, acequinocyl,chlorfenapyr, flufenoxuron and fenbutatin oxideappeared to be the promising candidates for usein integrated mite management programs whereP. persimilis is the major naturalenemy.  相似文献   

15.
The effectiveness of the predatory mite, Phytoseiulus persimilis Athias-Henriot (Acari: Phytoseidae), as a suppressive agent of the twospotted spider mite, Tetranychus urticae Koch (Acari: Tetranychidae), was evaluated on greenhouse ivy geraniums at predator:prey release ratios of 1:60, 1:20, and 1:4. Releases at each predator:prey ratio were made at moderate and high T. urticae densities to determine if initial pest population size influenced the suppressive ability of the predator. At ratios of 1:4 and 1:20, P. persimilis significantly reduced T. urticae populations 1 week after release and kept them at low levels thereafter. Plant damage also was significantly reduced at these densities. After 4 weeks, the P. persimilis that were released at a ratio of 1:4 consistently reduced T. urticae populations from densities as high as 30 T. urticae per leaf to fewer than 0.6 per leaf. We found no interaction between release ratio and T. urticae density, indicating that predator effectiveness remains constant, at least within the range of T. urticae densities used. Our work demonstrates the potential of P. persimilis to provide effective control of T. urticae on a greenhouse-grown floricultural crop at a moderately low predator:prey ratio (1:20) and over a range of initial pest densities. However, we recommend that P. persimilis be released at a ratio of 1:4 for greatest reliability and successful control of T. urticae on ivy geraniums.  相似文献   

16.
Understanding the factors affecting stress tolerance in phytoseiid mites is critical for their integration into biological control programs. In the present study, the effects of diet (varying in prey species, physiological status and phenotype) are examined on the future starvation tolerance of the predatory mite Neoseiulus californicus McGregor (Acari: Phytoseiidae). The predators are fed from egg to adulthood on diapausing or nondiapausing Tetranychus urticae, Tetranychus kanzawai (wild and albino strains) or the nondiapausing species Panonychus citri (wild and albino strains). Thereafter, 3‐day‐old mated adult females are held without food at 25 ± 1 °C and a relative humidity of 98 ± 2%. The survival of these starved females is observed daily until all females have died. The survival curves and mean survival times of N. californicus are found to vary among prey types and are significantly longer when the predator is fed with diapausing prey. This enhanced survival is consistent with high concentrations of glycogen and triacylglyceride in the body of the predator at the onset of starvation. The predators fed nondiapausing prey have shorter survival times, and the glycogen and triacylglyceride contents in their bodies are low or undetectable. The protein contents of the predator's body are similar after consuming different prey types, except for a high concentration when fed the albino strain of P. citri. Protein content is unlikely to play a direct role in starvation tolerance, although it may affect the response to varying glycogen and triacylglyceride levels. These findings indicate that nutritional value of prey has a strong impact on the starvation tolerance of N. californicus.  相似文献   

17.
Tetranychus evansi Baker and Pritchard and Tetranychus urticae Koch (Acari: Tetranychidae) are important pests of Solanaceae in many countries. Several studies have demonstrated that T. urticae is an acceptable prey to many predatory mites, although the suitability of this prey depends on the host plant. T. evansi, has been shown to be an unfavorable prey to most predatory mites that have been tested against it. The predator Phytoseiulus fragariae Denmark and Schicha (Acari: Phytoseiidae) has been found in association with the two species in Brazil. The objective of this work was to compare biological parameters of P. fragariae on T. evansi and on T. urticae as prey. The study was conducted under laboratory conditions at 10, 15, 20, 25 and 30°C. At all temperatures, survivorship was lower on T. evansi than on T. urticae. No predator reached adulthood at 10°C on the former species; even on the latter species, only about 36% of the predators reached adulthood at 10°C. For both prey, in general, duration of each life stage was shorter, total fecundity was lower and intrinsic rate of population increase (r m ) was higher with increasing temperatures. The slower rate of development of P. fragariae on T. evansi resulted in a slightly higher thermal requirement (103.9 degree-days) on that prey than on T. urticae (97.1 degree-days). The values of net reproduction rate (R 0), intrinsic rate of increase (r m ) and finite rate of increase (λ) were significantly higher on T. urticae, indicating faster population increase of the predator on this prey species. The highest value of r m of the predator was 0.154 and 0.337 female per female per day on T. evansi and on T. urticae, respectively. The results suggested that P. fragariae cannot be considered a good predator of T. evansi.  相似文献   

18.
The responses of 3 phytoseiid mite speciesPhytoseiulus persimilis Athias-Henriot,Phytoseius finitimus Ribaga andAmblyseius gossipi Elbadry to allelochemics emitted by prey mite speciesTetranychus urticae Koch,Brevipalpus pulcher (Canestrini & Fanzago) andEriophyes dioscoridis Soliman & Abou-Awad were studied using a test of two-choice assays. The repellent effect elicited by the tenuipalpid mite,B. pulcher and the eriophyid mite,E. dioscoridis againstP. persimilis could be an evidence for the existence of allomones produced by these 2 prey species. The negative response ofP. persimilis to the different stadia ofB. pulcher and the attraction ofP. finitimus toward the same prey suggest that the volatile semiochemicals produced by this prey act as kairomones forP. finitimus and as allomones forP. persimilis. The strong attraction ofP. finitimus andA. gossipi to the different stadia ofT. urticae and the considerable attraction of either predator toB. pulcher compared to the neutral response toE. dioscoridis reveal that both predators show a hierarchy of preference for the kairomones of the 3 prey species studied.   相似文献   

19.
The seasonal occurrence of Tetranychus kanzawai Kishida populations on hydrangea (Hydrangea macrophylla) was studied at two different localities in Ibaraki, Japan, during a three-year period. There were two types of seasonal population trends: one with a population peak from May to June, and the other with the spring peak in June and the autumn peak in September–October. Each year the populations on hydrangea plants abruptly declined just after the spring peak. Predators showed a delayed density-dependent numerical response. The population crashed even in the absence of predators, suggesting that the predators had nothing to do with the June decline. Furthermore, the rate of development from larva to adult and the fecundity in adult females on detached hydrangea leaves decreased markedly just prior to the abrupt decline in density in June. Consequently, seasonal changes in plant quality (perhaps influenced by secondary compounds) seem to contribute to the drastic decline of T. kanzawai density on hydrangea in June.  相似文献   

20.
In egg‐laying animals with no post‐oviposition parental care, between‐ or within‐patch oviposition site selection can determine offspring survival. However, despite the accumulation of evidence supporting the substantial impact predators have on oviposition site selection, few studies have examined whether oviposition site shift within patches (“micro‐oviposition shift”) reduces predation risk to offspring. The benefits of prey micro‐oviposition shift are underestimated in environments where predators cannot disperse from prey patches. In this study, we examined micro‐oviposition shift by the herbivorous mite Tetranychus kanzawai in response to the predatory mite, Neoseiulus womersleyi, by testing its effects on predator patch exploitation in situations where predatory mites were free to disperse from prey patches. Adult T. kanzawai females construct three‐dimensional webs on leaf surfaces and usually lay eggs under the webs; however, females that have experienced predation risks, shift oviposition sites onto the webs even in the absence of current predation risks. We compared the predation of eggs on webs deposited by predator‐experienced females with those on leaf surfaces. Predatory mites left prey patches with more eggs unpredated when higher proportions of prey eggs were located on webs, and egg survival on webs was much higher than that on leaf surfaces. These results indicate that a micro‐oviposition shift by predator‐experienced T. kanzawai protects offspring from predation, suggesting adaptive learning and subsociality in this species. Conversely, fecundity and longevity of predator‐experienced T. kanzawai females were not reduced compared to those of predator‐naïve females; we could not detect any costs associated with the learned micro‐oviposition shift. Moreover, the previously experienced predation risks did not promote between‐patch dispersal of T. kanzawai females against subsequently encountered predators. Based on these results, the relationships of between‐patch oviposition site selection and micro‐oviposition shift are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号