首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The locomotor performance (absolute maximum running speed [MRS]) of 120 mammals was analyzed for four different locomotor modes (plantigrade, digitigrade, unguligrade, and lagomorph-like) in terms of body size and basal metabolic rate (BMR). Analyses of conventional species data showed that the MRS of plantigrade and digitigrade mammals and lagomorphs increases with body mass, whereas that of unguligrade mammals decreases with body mass. These trends were confirmed in plantigrade mammals and lagomorphs using phylogenetically independent contrasts. Multiple regression analyses of MRS contrasts (dependent variable) as a function of body mass and BMR contrasts (predictor variables) revealed that BMR was a significant predictor of MRS in the complete data set, as well as in plantigrade and nonplantigrade mammals. However, there was severe multicollinearity in the nonplantigrade model that may influence the interpretation of these models. Although these data show mass-independent correlation between BMR and MRS, they are not necessarily indicative of a cause-effect relationship. However, the analyses do identify a negligible role of body size associated with MRS once phylogenetic and BMR effects are controlled, suggesting that the body size increase in large mammals over time (i.e., Cope's rule) can probably rule out MRS as a driving variable.  相似文献   

2.
The available data on maximal running speeds of mammals are presented, and the relationship between speed and body mass is considered. For all mammals ( n = 106), maximal running speed scales as (body mass)0–17; however, the largest mammals are not the fastest, and an optimal size with regards to running ability is suggested ( 119 kg). Maximal running speeds are, on the average, somewhat more than twice maximal aerobic speeds.
Within the Artiodactyla, Carnivora or Rodentia, maximal running speed is mass independent, in agreement with theoretical expectations for geometrically similar animals (Thompson, 1917; Hill, 1950). McMahon's (1975 b ) model for elastic similarity is therefore not supported by the available data on maximal running speeds, and there appears to be no necessary correspondence between scaling of limb bone proportions and running ability.  相似文献   

3.
Here we propose a model of energetic costs and the muscle-tendon unit function on running mammals. The main goal is to set a simple theoretical framework which gives an understanding of the biomechanical principles behind the size, speed and anatomical variations of the energetic costs of running mammals. The model is a point-like mass withstood by a two-segment leg with an extensor muscle serially attached to a tendon. We considered withstanding body weight during the stance phase as the main role of the muscle-tendon unit during fast locomotion. The ground reaction force dependence on speed and the time of stance phase as well as other biomechanical characteristics were taken from previous empirical studies of running. At the same time, the morphological variations with body mass were taken from empirically well-established allometric equations for mammals. The metabolic cost was estimated from an empirical equation relating metabolic power with muscular force and speed in shortening and stretching. Our model predicts the pattern of mass specific metabolic rate variations with both speed and body mass. It also gives an explanation of the experimentally reported linear inverse relationship between the rate of energy used for running and the time of application of force by the foot to the ground during each stride. It also suggests an explanation of the unusual energy saving adaptations of large macropodids. It provides some predictions on the relationship, between energy costs and muscle-tendon unit characteristics, testable on further experiments.  相似文献   

4.
Abstract.  1. Data were compiled from the literature and our own studies on 24 ant species to characterise the effects of body size and temperature on forager running speed.
2. Running speed increases with temperature in a manner consistent with the effects of temperature on metabolic rate and the kinetic properties of muscles.
3. The exponent of the body mass-running speed allometry ranged from 0.14 to 0.34 with a central tendency of approximately 0.25. This body mass scaling is consistent with both the model of elastic similarity, and a model combining dynamic similarity with available metabolic power.
4. Even after controlling for body size or temperature, a substantial amount of inter-specific variation in running speed remains. Species with certain lifestyles [e.g. nomadic group predators, species which forage at extreme (>60 °C) temperatures] may have been selected for faster running speeds.
5. Although ants have a similar scaling exponent to mammals for the running speed allometry, they run slower than predicted compared with a hypothetical mammal of similar size. This may in part reflect physiological differences between invertebrates and vertebrates.  相似文献   

5.
Predictions associated with opposing selection generating minimum variance in basal metabolic rate (BMR) in mammals at a constrained body mass (CBM; 358 g) were tested. The CBM is presumed to be associated with energetic constraints linked to predation and variable resources at intermediate sizes on a logarithmic mass scale. Opposing selection is thought to occur in response to energetic constraints associated with predation and unpredictable resources. As body size approaches and exceeds the CBM, mammals face increasing risks of predation and daily energy requirements. Fast running speeds may require high BMRs, but unpredictable and low resources may select for low BMRs, which also reduce foraging time and distances and thus predation risks. If these two selection forces oppose each other persistently, minimum BMR variance may result. However, extreme BMR outliers at and close to the CBM should be indicative of unbalanced selection and predator avoidance alternatives (escapers vs. defenders), and may therefore provide indirect support for opposing selection. It was confirmed that body armor in defenders evolves at and above the CBM, and armored mammals had significantly lower BMRs than their nonarmored counterparts. However, analyses comparing the BMR of escapers--the fastest nonarmored runners (Lagomorpha)--with similar-sized counterparts were inconclusive and were confounded by limb morphology associated with speed optimization. These analyses suggest that the risks and costs of predation and the speed limitations of the plantigrade foot may constrain the evolution of large body sizes in plantigrade mammals.  相似文献   

6.
Zoogeographical effects on the basal metabolic rate (BMR) of 487 mammal species were analyzed using conventional and phylogenetically independent ANCOVA. Minimal BMR variance occurred at a "constrained body mass" of 358 g, whereas maximum variance occurred at the smallest and largest body masses. Significant differences in BMR were identified for similar-sized mammals from the six terrestrial zoogeographical zones (Afrotropical, Australasian, Indomalayan, Nearctic, Neotropical, and Palearctic). Nearctic and Palearctic mammals had higher basal rates than their Afrotropical, Australasian, Indomalayan, and Neotropical counterparts. Desert mammals had lower basal rates than mesic mammals. The patterns were interpreted with a conceptual model describing geographical BMR variance in terms of the influence of latitudinal and zonal climate variability. Low and high basal rates were explained in unpredictable and predictable environments, respectively, especially in small mammals. The BMR of large mammals may be influenced in addition by mobility and predation constraints. Highly mobile mammals tend to have high BMRs that may somehow facilitate fast running speeds, whereas less mobile mammals are generally dietary specialists and are often armored. The model thus integrates physiological and ecological criteria and makes predictions concerning body size and life-history evolution, island effects, and locomotor energetics.  相似文献   

7.
The present study investigates relationships among size, shape and speed in the Australian agamid lizard Amphibolurus nuchalis . Maximal running speed, body mass, snout-vent length, tail length, fore- and hind limb spans and thigh muscle mass were measured in 68 field-fresh individuals spanning the entire ontogenetic size range (1.3 48 g). Relative lengths of both foreand hind limbs decrease with increasing body mass (= negative allometry), whereas relative tail length and thigh muscle mass increase with body mass (= positive allometry). Repeatable and significant differences in maximal running speed exist among individuals. Maximal running speed scales as (body mass)0.161, and 59% of the variation in maximal speed was related to body mass. Based on the results of the present and previous studies, data on scaling of body proportions alone appear inadequate to infer scaling relationships of functional characters such as top speed.
Surprisingly, individual variation in maximal speed is not related to individual variation in shape (relative limb, tail and body lengths). These components of overall shape are not independent; individuals tended to have either relatively long or relatively short limbs, tails and bodies for their body mass. Even the significant difference in multivariate shape between adult males and females has no measurable consequences for maximal speed. Speeds of field-fresh animals did not vary on a seasonal basis, and eight weeks of captivity had no effect on maximal running speeds. Gravid females and long-term (obese) captive lizards were both approximately 12% slower than field-fresh lizards.  相似文献   

8.
Mammalian basal metabolic rates (BMR) increase with body mass, whichs explains approximately 95% of the variation in BMR. However, at a given mass, there remains a large amount of variation in BMR. While many researchers suggest that the overall scaling of BMR with body mass is due to physiological constraints, variation at a given body mass may provide clues as to how selection acts on BMR. Here, we examine this variation in BMR in a broad sample of mammals and we test the hypothesis that, across mammals, body composition explains differences in BMR at a given body mass. Variation in BMR is strongly correlated with variation in muscle mass, and both of these variables are correlated with latitude and ambient temperature. These results suggest that selection alters BMR in response to thermoregulatory pressures, and that selection uses muscle mass as a means to generate this variation.  相似文献   

9.
Mammalian terrestrial locomotion has many unifying principles. However, the Macropodoidea are a particularly interesting group that exhibit a number of significant deviations from the principles that seem to apply to other mammals. While the properties of materials that comprise the musculoskeletal system of mammals are similar, evidence suggests that tendon properties in macropodoid marsupials may be size or function dependent, in contrast to the situation in placental mammals. Postural differences related to hopping versus running have a dramatic effect on the scaling of the pelvic limb musculoskeletal system. Ratios of muscle fibre to tendon cross-sectional areas for ankle extensors and digital flexors scale with positive allometry in all mammals, but exponents are significantly higher in macropods. Tendon safety factors decline with increasing body mass in mammals, with eutherians at risk of ankle extensor tendon rupture at a body mass of about 150 kg, whereas kangaroos encounter similar problems at a body mass of approximately 35 kg. Tendon strength appears to limit locomotor performance in these animals. Elastic strain energy storage in tendons is mass dependent in all mammals, but exponents are significantly larger in macropodid. Tibial stresses may scale with positive allometry in kangaroos, which result in lower bone safety factors in macropods compared to eutherian mammals.  相似文献   

10.
The objective of this study was to gather evidence supporting the accuracy of the 30-15 Intermittent Fitness Test (30-15IFT) for individualizing interval training of young intermittent sport players. In 59 young intermittent sport players (age, 16.2 +/- 2.3 years), we observed the relationships between the maximal running speed (MRS) reached at the end of the 30-15IFT (MRS30-15IFT) and physiological variables elicited by shuttle intermittent runs, including maximal oxygen uptake, explosive power of lower limbs, and the ability to repeat intense exercise bouts through cardiorespiratory recovery kinetics during exercise. To observe the capacity of the 30-15IFT to prescribe suitable running intensities for interval training sessions, we compared heart rates (HRs) reached during 3 series of intermittent runs, where distances were set according to the MRS30-15IFT and to MRS reached with 2 popular continuous field tests: the University of Montreal track test and the 20-m shuttle run test. The results show that the MRS30-15IFT is significantly correlated with all physiological variables elicited by shuttle intermittent runs (P < 0.05). Although mean HR were not different among the 3 series of intermittent runs, HR recorded during the runs based on MRS30-15IFT presented significantly less interindividual variation than when the continuously determined MRS were used as reference speeds. In conclusion, we can say that the 30-15IFT leads to an MRS that simultaneously takes into account various physiological qualities elicited when performing shuttle intermittent runs. For scheduling interval training sessions, the MRS30-15IFT appears to be an accurate reference speed for getting players with different physiological profiles to a similar level of cardiorespiratory demand and thus for standardizing training content.  相似文献   

11.
We have recently demonstrated that the triceps surae muscles energy cost (ECTS) represents a substantial portion of the total metabolic cost of running (Erun). Therefore, it seems relevant to evaluate the factors which dictate ECTS, namely the amount and velocity of shortening, since it is likely these factors will dictate Erun. Erun and triceps surae morphological and AT mechanical properties were obtained in 46 trained and elite male and female distance runners using ultrasonography and dynamometry. ECTS (J·stride−1) at the speed of lactate threshold (sLT) was estimated from AT force and crossbridge mechanics and energetics. To estimate the relative impact of these factors on ECTS, mean values for running speed, body mass, resting fascicle length (Lf), Achilles tendon stiffness and moment arm and maximum isometric plantarflexion torque were obtained. ECTS was calculated across a range (mean ± 1 sd) of values for each independent factor. Average sLT was 233 m·min−1. At this speed, ECTS was 255 J·stride−1. Estimated fascicle shortening velocity was 0.08 Vmax and the level of muscle activation was 84.7% of maximum isometric torque. Compared to the ECTS calculated from the lowest range of values obtained for each independent factor, higher AT stiffness was associated with a 39% reduction in ECTS, 81% reduction in fascicle shortening velocity and a 31% reduction in muscle activation. Longer AT moment arms and elevated body masses were associated with an increase in ECTS of 18% and 23%, respectively. These results demonstrate that a low ECTS is achieved primarily from a high AT stiffness and low body mass, which is exemplified in elite distance runners.  相似文献   

12.
Observations on extant mammals suggest that large body mass is selectively advantageous for a terrestrial predator on large herbivores. Yet, throughout the Cenozoic, some lineages of terrestrial mammalian predators attained greater maximal body masses than others. In order to explain this evolutionary pattern, the following biomechanical constraint on body mass is hypothesized. The stress, set up in the humerus by the bending moment of the peak ground reaction force at maximal running speed, increased with increasing body mass within a given lineage of terrestrial mammalian predators, resulting in a decreasing safety factor for the bone, until a predator could no longer attain the maximal running speed of its smaller relatives. The selective disadvantage of reduced maximal running speed prevented further increase of body mass within the lineage. This hypothesis is tested by examining the scaling of humeral dimensions and estimating maximal body masses in several lineages of terrestrial mammalian predators. Among lineages with otherwise similar postcranial skeletons, those with the more robust humeri at a given body mass attained the greater maximal body masses. Lineages with the longer deltoid ridges/deltopectoral crests of the humeri and/or the more distally located deltoid scars (suggesting the more distal insertions of the humeral flexors) at a given body mass also attained the greater maximal body masses. These results support the existence of the proposed biomechanical constraint, although paleoecological data suggest that some lineages of terrestrial mammalian predators failed to reach the limits, imposed by this constraint, because of the small size of available prey.  相似文献   

13.
We tested the hypothesis that hind limb proportions may be used to predict locomotor performance in a sample of 49 species of primarily cursorial mamals. Data on maximal sprint running speeds taken from published sources were related to measurements of hind limb lengths. To control for statistical complications due to the hierarchical nature of phylogenetic relationships, we used Felsenstein's (1985) independent contrasts method for analysing comparative data, and a composite phylogeny for all 49 species, based on a variety of published sources. The independent contrasts method indicates that maximal running speed does not covary significantly with body mass for this sample of mammals (mass range= 2.5–2,000 kg). Even though quality of the available speed data is highly variable, both metatarsal/femur ratio—the traditional index of 'cursoriality' in mammals—and hind limb length (corrected for body size) are significant predictors of maximal running speed. When only fully curorial species are included in the analyses (n = 32), hind limb length still significantly predicts speed (r2= 16%), but MT/F ratio does not. Although ungulates tend to have larger MT/F ratios than do Carnivora, they are not generally faster; relatonships between speed and limb proportions within the two clades show no significant differences. These and previous results suggest that hind limb proportions and maximal running speed may not have evolved in a tightly coupled fashion. Prediction of locomotor performance of extinct forms, based solely on their limb proportions, should be undertaken with caution.  相似文献   

14.
Declines in skeletal muscle size and strength, often seen with chronic wasting diseases, prolonged or high-dose glucocorticoid therapy, and the natural aging process in mammals, are usually associated with reduced physical activity and testosterone levels. However, it is not clear whether the decline in testosterone and activity are causally related. Using a mouse model, we found that removal of endogenous testosterone by orchidectomy results in an almost complete cessation in voluntary wheel running but only a small decline in muscle mass. Testosterone replacement restored running behavior and muscle mass to normal levels. Orchidectomy also suppressed the IGF-I/Akt pathway, activated the atrophy-inducing E3 ligases MuRF1 and MAFBx, and suppressed several energy metabolism pathways, and all of these effects were reversed by testosterone replacement. The study also delineated a distinct, previously unidentified set of genes that is inversely regulated by orchidectomy and testosterone treatment. These data demonstrate the necessity of testosterone for both speed and endurance of voluntary wheel running in mice and suggest a potential mechanism for declined activity in humans where androgens are deficient.  相似文献   

15.
Semi-aquatic mammals move between two very different media (air and water), and are subject to a greater range of physical forces (gravity, buoyancy, drag) than obligate swimmers or runners. This versatility is associated with morphological compromises that often lead to elevated locomotor energetic costs when compared to fully aquatic or terrestrial species. To understand the basis of these differences in energy expenditure, this study examined the interrelationships between limb morphology, cost of transport and biomechanics of running in a semi-aquatic mammal, the North American river otter. Oxygen consumption, preferred locomotor speeds, and stride characteristics were measured for river otters (body mass=11.1 kg, appendicular/axial length=29%) trained to run on a treadmill. To assess the effects of limb length on performance parameters, kinematic measurements were also made for a terrestrial specialist of comparable stature, the Welsh corgi dog (body mass=12.0 kg, appendicular/axial length=37%). The results were compared to predicted values for long legged terrestrial specialists. As found for other semi-aquatic mammals, the net cost of transport of running river otters (6.63 J kg(-1)min(-1) at 1.43 ms(-1)) was greater than predicted for primarily terrestrial mammals. The otters also showed a marked reduction in gait transition speed and in the range of preferred running speeds in comparison to short dogs and semi-aquatic mammals. As evident from the corgi dogs, short legs did not necessarily compromise running performance. Rather, the ability to incorporate a period of suspension during high speed running was an important compensatory mechanism for short limbs in the dogs. Such an aerial period was not observed in river otters with the result that energetic costs during running were higher and gait transition speeds slower for this versatile mammal compared to locomotor specialists.  相似文献   

16.
A mechanical model for the determination of maximum speed in terrestrial tetrapods, designed for application to extinct species, is proposed. Only external bone measures and average body mass estimations are used as input data, and the hypothesis is made that leg bones are strong enough to endure the stress of running at maximum speed at a certain universal safety factor. The model is applied to a broad sample of living mammalian species to test its predictive power, and it is found to provide very good estimates of maximum running speed.  相似文献   

17.
Body composition is known to vary dramatically among mammals, even in closely related species, yet this issue has never been systematically investigated. Here, we examine differences in muscle mass scaling among mammals, and explore how primate body composition compares to that of nonprimate mammals. We use a literature-based sample of eutherian and metatherian mammals, and combine this with new dissection-based data on muscularity in a variety of strepsirrhine primates and the haplorhine, Tarsius syrichta. Our results indicate an isometric scaling relationship between total muscle mass and total body mass across mammals. However, we documented substantial variation in muscularity in mammals (21-61% of total body mass), which can be seen both within and between taxonomic groups. We also found that primates are under-muscled when compared to other mammals. This difference in body composition may in part reflect the functional consequences of arboreality, as arboreal species have significantly lower levels of muscularity than terrestrial species.  相似文献   

18.
19.
Selective breeding for over 35 generations has led to four replicate (S) lines of laboratory house mice (Mus domesticus) that run voluntarily on wheels about 170% more than four random-bred control (C) lines. We tested whether S lines have evolved higher running performance by increasing running economy (i.e., decreasing energy spent per unit of distance) as a correlated response to selection, using a recently developed method that allows for nearly continuous measurements of oxygen consumption (VO2) and running speed in freely behaving animals. We estimated slope (incremental cost of transport [COT]) and intercept for regressions of power (the dependent variable, VO2/min) on speed for 49 males and 47 females, as well as their maximum VO2 and speeds during wheel running, under conditions mimicking those that these lines face during the selection protocol. For comparison, we also measured COT and maximum aerobic capacity (VO2max) during forced exercise on a motorized treadmill. As in previous studies, the increased wheel running of S lines was mainly attributable to increased average speed, with males also showing a tendency for increased time spent running. On a whole-animal basis, combined analysis of males and females indicated that COT during voluntary wheel running was significantly lower in the S lines (one-tailed P=0.015). However, mice from S lines are significantly smaller and attain higher maximum speeds on the wheels; with either body mass or maximum speed (or both) entered as a covariate, the statistical significance of the difference in COT is lost (one-tailed P> or =0.2). Thus, both body size and behavior are key components of the reduction in COT. Several statistically significant sex differences were observed, including lower COT and higher resting metabolic rate in females. In addition, maximum voluntary running speeds were negatively correlated with COT in females but not in males. Moreover, males (but not females) from the S lines exhibited significantly higher treadmill VO2max as compared to those from C lines. The sex-specific responses to selection may in part be consequences of sex differences in body mass and running style. Our results highlight how differences in size and running speed can account for lower COT in S lines and suggest that lower COT may have coadapted in response to selection for higher running distances in these lines.  相似文献   

20.
Age-related physiological variations of body composition concern both the fat-free mass (FFM) and the fat mass (FM). These variations expose the elderly person to the risk of malnutrition and could lead to conditions of disability. This paper aims to review the current state of knowledge on body composition in the aged population. The pattern of qualitative variations in body composition in old age is fairly well defined. In adulthood, the physiological variation of body mass involves a first increasing phase followed by a decreasing trend. The reduction is due mainly to the loss of fat-free mass, especially muscle mass. Total body water and bone mass also decrease. Fat mass tends to decrease and the reduction seems to be due mainly to the loss of subcutaneous fat. The quantitative aspects of the age of onset, rate and intensity of the physiological variations are still not completely clear. This poor quantitative definition is due to the variable and multifactorial phenomenology of ageing, the heterogeneity of assessment techniques and sampling models, and the limited number of empirical observations in oldest-old individuals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号