首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
The Saccharomyces cerevisiae homologue of the linker histone H1, Hho1p, has two domains that are similar in sequence to the globular domain of H1 (and variants such as H5). It is an open question whether both domains are functional and whether they play similar structural roles. Preliminary structural studies showed that the two isolated domains, GI and GII, differ significantly in stability. In 10 mM sodium phosphate (pH 7), the GI domain, like the globular domains of H1 and H5, GH1 and GH5, was stably folded, whereas GII was largely unstructured. However, at high concentrations of large tetrahedral anions (phosphate, sulphate, perchlorate), which might mimic the charge-screening effects of DNA phosphate groups, GII was folded. In view of the potential significance of these observations in relation to the role of Hho1p, we have now determined the structures of its GI and GII domains by NMR spectroscopy under conditions in which GII (like GI) is folded. The backbone r.m.s.d. over the ordered residues is 0.43 A for GI and 0.97 A for GII. Both structures show the "winged-helix" fold typical of GH1 and GH5 and are very similar to each other, with an r.m.s.d. over the structured regions of 1.3 A, although there are distinct differences. The potential for GII to adopt a structure similar to that of GI when Hho1p is bound to chromatin in vivo suggests that both globular domains might be functional. Whether Hho1p performs a structural role by bridging two nucleosomes remains to be determined.  相似文献   

2.
Yeast Hho1p contains two domains, GI and GII, that are homologous to the single globular domain of the linker histone H1 (GH1). We showed previously that the isolated GI and GII domains have different structural stabilities and functional properties. GI, like GH1 and the related GH5, is stably folded at low ionic strength (10 mM sodium phosphate) and gives strong protection of chromatosome-length DNA ( approximately 166 bp) during micrococcal nuclease digestion of chromatin. GII is intrinsically unfolded in 10 mM sodium phosphate and gives weak chromatosome protection, but in 250 mM sodium phosphate has a structure very similar to that of GI as determined by NMR spectroscopy. We now show that the loop between helices II and III in GII is the cause of both its instability and its inability to confer strong chromatosome protection. A mutant GII, containing the loop of GI, termed GII-L, is stable in 10 mM sodium phosphate and is as effective as GI in chromatosome protection. Two GII mutants with selected mutations within the original loop were also slightly more stable than GII. In GII, two of the four basic residues conserved at the second DNA binding site ("site II") on the globular domain of canonical linker histones, and in GI, are absent. Introduction of the two "missing" site II basic residues into GII or GII-L destabilised the protein and led to decreased chromatosome protection relative to the protein without the basic residues. In general, the ability to confer chromatosome protection in vitro is closely related to structural stability (the relative population of structured and unstructured states). We have determined the structure of GII-L by NMR spectroscopy. GII-L is very similar to GII folded in 250 mM sodium phosphate, with the exception of the substituted loop region, which, as in GI, contains a single helical turn.  相似文献   

3.
Hho1p is assumed to serve as a linker histone in Saccharomyces cerevisiae and, notably, it possesses two putative globular domains, designated HD1 (residues 41–118) and HD2 (residues 171–252), that are homologous to histone H5 from chicken erythrocytes. We have determined the three-dimensional structure of globular domain HD1 with high precision by heteronuclear magnetic resonance spectroscopy. The structure had a winged helix–turn–helix motif composed of an αβααββ fold and closely resembled the structure of the globular domain of histone H5. Interestingly, the second globular domain, HD2, in Hho1p was unstructured under physiological conditions. Gel mobility assay demonstrated that Hho1p preferentially binds to supercoiled DNA over linearized DNA. Furthermore, NMR analysis of the complex of a deletion mutant protein (residues 1–118) of Hho1p with a linear DNA duplex revealed that four regions within the globular domain HD1 are involved in the DNA binding. The above results suggested that Hho1p possesses properties similar to those of linker histones in higher eukaryotes in terms of the structure and binding preference towards supercoiled DNA.  相似文献   

4.
Schäfer G  Smith EM  Patterton HG 《Biochemistry》2005,44(50):16766-16775
Saccharomyces cerevisiae encodes a single linker histone, Hho1p, with two globular domains. This raised the possibility that Hho1p could bind to two nucleosome cores simultaneously. To evaluate this idea, we studied the ability of a four-way junction, immobilized on the surface of a magnetic bead, to pull down a radiolabeled four-way junction in the presence of different Hho1 proteins. Four-way junctions are known to bind to H1, presumably due to structure similarities to the DNA at the nucleosomal entry/exit point. We found a significant increase in the ability of full-length Hho1p to pull down radiolabeled four-way junction DNA under ionic conditions where both globular domains could bind. The binding was structure specific, since the use of double-stranded DNA, or a mutant Hho1p in which the second DNA binding site of globular domain 1 was abolished, resulted in a significant decrease in bridged binding. Additionally, bridged binding required a covalent attachment between the two globular domains, since factor Xa protease treatment of the complex formed by a modified Hho1p that contained a factor Xa cleavage site between the two globular domains resulted in a significant release of radiolabeled four-way junction. These findings demonstrated that the two globular domains independently associated with two different four-way junction molecules in a manner that required amino acid residues implicated in structure-specific binding in the nucleosome. We discuss the implication of these findings on the chromatin structure of yeast and propose a model where a single Hho1 protein binds to two serially adjacent nucleosomes.  相似文献   

5.
Biochemical studies to date have not been able to identify the linker histone H1 protein in the budding yeast Saccharomyces cerevisiae. Database homology searching against the complete yeast genome has identified a gene, HHO1, (or YPL127C, formerly LPI17) which encodes a protein that has two regions that show similarity to the pea histone H1 globular domain. To determine whether Hho1p can assume the shape of an H1 protein, homology model building experiments were performed using the structure of chicken histone H5 globular domain as the basis for comparison. A statistically significant match between each of the two globular domains of Hho1p and the chicken histone H5 structure was obtained, and probability values indicate that there is a less than 1 in 100 chance that such a match would be the result of a random event. These findings support the proposal that Hho1p acts as an "H1 dimer" and could be responsible for the decreased linker DNA length observed between nucleosomal core particles.  相似文献   

6.
The nature of the complexes of histones H1 and H5 and their globular domains (GH1 and GH5) with DNA suggested two DNA-binding sites which are likely to be the basis of the preference of H1 and H5 for the nucleosome, compared with free DNA. More recently the X-ray and NMR structures of GH5 and GH1, respectively, have identified two basic clusters on opposite sides of the domains as candidates for these sites. Removal of the positive charge at either location by mutagenesis impairs or abolishes the ability of GH5 to assemble cooperatively in ''tramline'' complexes containing two DNA duplexes, suggesting impairment or loss of its ability to bind two DNA duplexes. The mutant forms of GH5 also fail to protect the additional 20 bp of nucleosomal DNA that are characteristically protected by H1, H5 and wild-type recombinant GH5. They still bind to H1/H5-depleted chromatin, but evidently inappropriately. These results confirm the existence of, and identify the major components of, two DNA-binding sites on the globular domain of histone H5, and they strongly suggest that both binding sites are required to position the globular domain correctly on the nucleosome.  相似文献   

7.
8.
The basic unit of chromatin in eukaryotes is the nucleosome, comprising 146 bp of DNA wound around two copies of each of four core histones. Chromatin is further condensed by association with linker histones. Saccharomyces cerevisiae Hho1p has sequence homology to other known linker histones and interacts with nucleosomes in vitro. However, disruption of HHO1 results in no significant changes in the phenotypes examined thus far. Here, we show that Hho1p is inhibitory to DNA repair by homologous recombination (HR). We find Hho1p is abundant and associated with the genome, consistent with a global role in DNA repair. Furthermore, we establish that Hho1p is required for a full life span and propose that this is mechanistically linked to its role in HR. Finally, we show that Hho1p is inhibitory to the recombination-dependent mechanism of telomere maintenance. The role of linker histones in genome stability, aging, and tumorigenesis is discussed.  相似文献   

9.
10.
In view of the likely role of H1-H1 interactions in the stabilization of chromatin higher order structure, we have asked whether interactions can occur between the globular domains of the histone molecules. We have studied the properties of the isolated globular domains of H1 and the variant H5 (GH1 and GH5) and we have shown (by sedimentation analysis, electron microscopy, chemical cross-linking and nucleoprotein gel electrophoresis) that although GH1 shows no, and GH5 little if any, tendency to self-associate in dilute solution, they bind highly cooperatively to DNA. The resulting complexes appear to contain essentially continuous arrays of globular domains bridging 'tramlines' of DNA, similar to those formed with intact H1, presumably reflecting the ability of the globular domain to bind more than one DNA segment, as it is likely to do in the nucleosome. Additional (thicker) complexes are also formed with GH5, probably resulting from association of the primary complexes, possibly with binding of additional GH5. The highly cooperative nature of the binding, in close apposition, of GH1 and GH5 to DNA is fully compatible with the involvement of interactions between the globular domains of H1 and its variants in chromatin folding.  相似文献   

11.
Certain features of linker histone behavior were analyzed using a precipitation and a nitrocellulose filter binding assay. Chromatosomes, depleted of the linker histones, present one unique binding site to the globular domain of histone H5 (GH5) which involves the two 10-base pair DNA ends of the chromatosome. Additional binding to lower affinity sites is intrinsically different and results in aggregation as does all binding to core particles. These findings, as well as the binding study on a synthetic DNA decamer, lend support to earlier hypotheses of more than one DNA binding site on the globular domain. Our studies provide a deeper insight into the long standing question of H5/nucleosome stoichiometry. A salt dependence analysis of GH5 binding to H5-depleted chromatosomes indicates that GH5 displaces a number of ions similar to the total H1 linker histone, suggesting a delocalized binding of the carboxyl- and amino-terminal tails.  相似文献   

12.
Several different models of the linker histone (LH)–nucleosome complex have been proposed, but none of them has unambiguously revealed the position and binding sites of the LH on the nucleosome. Using Brownian dynamics-based docking together with normal mode analysis of the nucleosome to account for the flexibility of two flanking 10 bp long linker DNAs (L-DNA), we identified binding modes of the H5-LH globular domain (GH5) to the nucleosome. For a wide range of nucleosomal conformations with the L-DNA ends less than 65 Å apart, one dominant binding mode was identified for GH5 and found to be consistent with fluorescence recovery after photobleaching (FRAP) experiments. GH5 binds asymmetrically with respect to the nucleosomal dyad axis, fitting between the nucleosomal DNA and one of the L-DNAs. For greater distances between L-DNA ends, docking of GH5 to the L-DNA that is more restrained and less open becomes favored. These results suggest a selection mechanism by which GH5 preferentially binds one of the L-DNAs and thereby affects DNA dynamics and accessibility and contributes to formation of a particular chromatin fiber structure. The two binding modes identified would, respectively, favor a tight zigzag chromatin structure or a loose solenoid chromatin fiber.  相似文献   

13.
Treatment of chicken erythrocyte histone H5 with trypsin in a high-ionic-strength medium results in very rapid initial digestion and the formation of a 'limiting' resistant product peptide. Under these solution conditions the H5 molecule is maximally folded by spectroscopic criteria and it is concluded that the resistant peptide, GH5, represents a globular folded region of the molecule whilst the rapidly digested parts are disordered. The peptide GH5 is shown to comprise the sequence 22-100. In support of this conclusion it is shown that whilst intact histone H5 is hydrodynamically far from being a compact globular shape, peptide GH5 is approximately spherical by hydrodynamic and scattering criteria. Further more, peptide GH5 retains all the alpha-helical structure of intact H5 (circular dichroism) and appears to also maintain all the tertiary structure (nuclear magnetic resonance). It follows that in solution at high ionic strength, histone H5 consists of three domains: an N-terminal disordered region 1-21, a compact globular central domain 22-100 and a long disordered C-terminal chain 101-185. Structural parallels are drawn with the three-domain structure of the histone H1 molecule.  相似文献   

14.
The globular domain of the linker histone H5 has been expressed in Escherichia coli. The purified peptide is functional as it permits chromatosome protection during micrococcal nuclease digestion of chromatin reconstituted with the peptide, indicating that it binds correctly at the dyad axis of the nucleosomal core particle. The globular domain residue lysine 64 is highly conserved within the linker histone family, and site-directed mutagenesis has been used to assess the importance of this residue in the binding of the globular domain of linker histone H5 to the nucleosome. Recombinant peptides mutated at lysine 64 are unable to elicit chromatosome protection to the same degree as the wild-type peptide, and since they appear to be fully folded, these observations confirm a major role for this residue in determining the effective interaction between the globular domain of histone H5 and the nucleosome.  相似文献   

15.
Considerable progress has been made recently in defining the interactions of linker histones (H1s) within nucleosomes. Major advancements include atomic resolution structures of the globular domain of full-length H1s in the context of nucleosomes containing full-length linker DNA. Although these studies have led to a detailed understanding of the interactions and dynamics of H1 globular domains in the canonical on-dyad nucleosome binding pocket, more information regarding the intrinsically disordered N-terminal and C-terminal domains is needed. In this review, we highlight studies supporting our current understanding of the structures and interactions of the N-terminal, globular, and C-terminal domains of linker histones within the nucleosome.  相似文献   

16.
The globular domain of histone H5 (GH5) was prepared by trypsin digestion of H5 that was extracted from chicken erythrocyte nuclei with NaCl. Electron microscopy, sucrose gradient centrifugation, native agarose gel electrophoresis and equilibrium density gradient ultracentrifugation show that GH5 binds co-operatively to double-stranded DNA. The electron microscopic images suggest that the GH5-DNA complexes are very similar in structure to co-operative complexes of intact histone H1 (or its variants) with double-stranded DNA, studied previously, which have been proposed to consist of two parallel DNA double helices sandwiching a polymer of the protein. For complexes with GH5 or with intact H1, naked DNA co-sediments with the protein-DNA complexes through sucrose gradients, and DNA also appears to protrude from the ends and sides of the complexes; measurements of the protein-DNA stoichiometry in fractionated samples may not reflect the stoichiometry in the complexes. An estimate of the stoichiometry obtained from the buoyant density of fixed GH5-DNA complexes in CsCl suggests that sufficient GH5 is present in the complexes for the GH5s to be in direct contact, as required by a simple molecular mechanism for the co-operative binding. Chemical crosslinking demonstrates that GH5s are in close proximity in the complexes. In the absence of DNA, GH5-GH5 interactions are weak or non-existent.  相似文献   

17.
18.
Norovirus (NoV) is a causative agent of acute gastroenteritis. NoV binds to histo-blood group antigens (HBGAs), namely, ABH antigens and Lewis (Le) antigens, in which type 1 and type 2 carbohydrate core structures constitute antigenically distinct variants. Norwalk virus, the prototype strain of norovirus, binds to the gastroduodenal junction, and this binding is correlated with the presence of H type 1 antigen but not with that of H type 2 antigen (S. Marionneau, N. Ruvoen, B. Le Moullac-Vaidye, M. Clement, A. Cailleau-Thomas, G. Ruiz-Palacois, P. Huang, X. Jiang, and J. Le Pendu, Gastroenterology 122:1967-1977, 2002). It has been unknown whether NoV distinguishes between the type 1 and type 2 chains of A and B antigens. In this study, we synthesized A type 1, A type 2, B type 1, and B type 2 pentasaccharides in vitro and examined the function of the core structures in the binding between NoV virus-like particles (VLPs) and HBGAs. The attachment of five genogroup I (GI) VLPs from 5 genotypes and 11 GII VLPs from 8 genotypes, GI/1, GI/2, GI/3, GI/4, GI/8, GII/1, GII/3, GII/4, GII/5, GII/6, GII/7, GII/12, and GII/14, to ABH and Le HBGAs was analyzed by enzyme-linked immunosorbent assay-based binding assays and Biacore analyses. GI/1, GI/2, GI/3, GI/4, GI/8, and GII/4 VLPs were more efficiently bound to A type 2 than A type 1, and GI/8 and GII/4 VLPs were more efficiently bound to B type 2 than B type 1, indicating that NoV VLPs distinguish between type 1 and type 2 carbohydrates. The dissociation of GII/4 VLPs from B type 1 was slower than that from B type 2 in the Biacore experiments; moreover, the binding to B type 1 was stronger than that to B type 2 in the ELISA experiments. These results indicated that the type 1 carbohydrates bind more tightly to NoV VLPs than the type 2 carbohydrates. This property may afford NoV tissue specificity. GII/4 is known to be a global epidemic genotype and binds to more HBGAs than other genotypes. This characteristic may be linked with the worldwide transmission of GII/4 strains. GI/2, GI/3, GI/4, GI/8, GII/4, and GII/7 VLPs bound to Le(a) expressed by nonsecretors, suggesting that NoV can infect individuals regardless of secretor phenotype. Overall, our results indicated that HBGAs are important factors in determining tissue specificity and the risk of transmission.  相似文献   

19.
H1 linker histones stabilize the nucleosome, limit nucleosome mobility and facilitate the condensation of metazoan chromatin. Here, we have combined systematic mutagenesis, measurement of in vivo binding by photobleaching microscopy, and structural modeling to determine the binding geometry of the globular domain of the H1(0) linker histone variant within the nucleosome in unperturbed, native chromatin in vivo. We demonstrate the existence of two distinct DNA-binding sites within the globular domain that are formed by spatial clustering of multiple residues. The globular domain is positioned via interaction of one binding site with the major groove near the nucleosome dyad. The second site interacts with linker DNA adjacent to the nucleosome core. Multiple residues bind cooperatively to form a highly specific chromatosome structure that provides a mechanism by which individual domains of linker histones interact to facilitate chromatin condensation.  相似文献   

20.
The fully organized structure of the eukaryotic nucleosome remains unsolved, in part due to limited information regarding the binding site of the H1 or linker histone. The central globular domain of H1 is believed to interact with the nucleosome core at or near the dyad and to bind at least two strands of DNA. We utilized site-directed mutagenesis and in vivo photobleaching to identify residues that contribute to the binding of the globular domain of the somatic H1 subtype H1c to the nucleosome. As was previously observed for the H10 subtype, the binding residues for H1c are clustered on the surface of one face of the domain. Despite considerable structural conservation between the globular domains of these two subtypes, the locations of the binding sites identified for H1c are distinct from those of H10. We suggest that the globular domains of these two linker histone subtypes will bind to the nucleosome with distinct orientations that may contribute to higher order chromatin structure heterogeneity or to differences in dynamic interactions with other DNA or chromatin-binding proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号