首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Ca2+ blood serum level was reduced by 34.5% in rats with hypoparathyroidism (HPT) on the 7th-12th day after the damage of parathyroid glands. Synaptosomes isolated from the brain cortex of rats during this period accumulated in a normal medium more 45Ca2+ than synaptosomes from healthy animals. In potassium depolarization, control and experimental synaptosomes accumulated more 45Ca2+, however in HPT the increment in 45Ca2+ uptake in high potassium medium was less temperature-dependent. In normal medium 3H-GABA uptake and release by synaptosomes from the brain of rats with HPT slightly differed from those in the control. On the contrary, 3H-GABA release induced by synaptosome depolarization was depressed in HPT. It is suggested that nerve terminal excretory function disturbances contribute to increased excitability of the central nervous system in hypoparathyroidism.  相似文献   

2.
The voltage-dependent calcium uptake in rat brain synaptosomes was measured under conditions in which [Ca2+]o/[Na+]i exchange was minimized to characterize the voltage-sensitive calcium channels from rats of different ages. In solutions of CaCl2 concentrations of less than 500 microM, the initial (5-s) calcium uptake declined by approximately 20-50% in 12- and 24-month-old rats relative to 3-month-old adults. Depolarization of synaptosomes from 3-month-old rats in a calcium-free medium or in the presence of 0.5 mM CaCl2 led to an exponential decline of the calcium uptake rate after 20 s (voltage- or voltage-and-calcium-dependent inactivation) to approximately 66 and 34% of the initial value with a t1/2 of 1.6 or 0.7 s, respectively. The presence of 1 microM nifedipine resulted in a 15-25% reduction of 45Ca2+ uptake rates, which appeared to affect noninactivating calcium channels, but addition of the calcium channel agonist Bay K 8644 was without effect. In 24-month-old rats, inactivation of 45Ca2+ uptake in calcium-free media was nondetectable, and in the presence of 0.5 mM CaCl2, the rate and extent of inactivation were also much lower than in 3-month-old animals (the t1/2 was 0.9 s, and the calcium uptake rate at 20 s was 55% of its initial value). Moreover, the presence of 1 microM nifedipine was without effect on initial calcium uptake or inactivation in synaptosomes from 24-month-old rats. These results indicate that the decrease in calcium channel-mediated 45Ca2+ uptake involves an inhibition or block of both dihydropyridine-resistant and -sensitive calcium channels.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
1989年Lewanczuk等[1]报道在自发性高血压大鼠(spontaneouslyhvnertensiverat,SHR)的血浆中发现一种具有独特升压效应的高血压因子.通过激活平滑肌细胞膜钙通道,提高细胞内游离钙([Ca2 ])水平起作用.随之证明这种循环血中的高血压因子来源于甲状旁腺,故称“甲状旁腺高血压因子(Parathyroidhypertensivefactor,PHF)”[2]。我们经实验研究证明,当给SD(Sprague-Dawley)大鼠注射经透析的SHR血浆后30min其血压开始升高,45min达高峰,60min恢复到注射前水平.同时经透析的血浆可使SD大鼠尾动脉条的细胞45Ca2 摄取增加,其…  相似文献   

4.
Voltage-dependent 45Ca2+ uptake and endogenous norepinephrine (NE) release were measured simultaneously in synaptosomes isolated from rat hypothalamus, brainstem, and cerebellum at 1, 3, 5, 15, and 30 s. In synaptosomes depolarized by 125 mM KCl, 45Ca2+ uptake and NE release exhibited fast and slow components. Rates of NE release and 45Ca2+ uptake were fastest from 0 to 1 s. NE release and 45Ca2+ uptake rates from 1 to 5 s were less than 15% of 0-1 s rates. Both resting (5 mM KCl) and depolarization-induced (125 mM KCl) NE release paralleled 45Ca2+ uptake from 1 to 30 s. Voltage-dependent NE release was approximately 1% and 2% of total synaptosomal NE content at 1- and 30-s measurement intervals, respectively, and did not differ between the three brain regions studied. Calcium and potassium dependence studies showed that NE release was stimulated by increased potassium and that depolarization-induced NE release was dependent on the presence of external calcium. These results show that calcium-dependent NE release from synaptosomes is correlated with calcium entry. Both processes exhibit fast and slow temporal components.  相似文献   

5.
Previous studies have shown that an adenosine triphosphate-dependent calcium uptake activity in lysed brain synaptosomes is attributable to the neuronal endoplasmic reticulum elements. The present study has examined the effects of tetracaine, lidocaine, and dibucaine on this calcium uptake process. The adenosine triphosphate-dependent uptake of 45Ca2+ was measured (in the absence and in the presence of drug) by Millipore filtration and liquid scintillation spectrometry. The local anesthetics studied exhibited a biphasic effect on 45Ca2+ uptake by lysed synaptosomes from rat brain cortex. High concentrations (5 mM tetracaine, 50 mM lidocaine, 0.6 mM dibucaine) inhibited the uptake of 45Ca2+; the order of potency for this effect was dibucaine greater than tetracaine greater than lidocaine. Lower concentrations of these local anesthetics produced either no effect on 45Ca2+ uptake (2 mM tetracaine or 30 mM lidocaine) or a stimulation of 45Ca2+ uptake (1 mM tetracaine, 10 mM lidocaine, and 0.3 mM or 0.1 mM dibucaine); the order of potency for stimulation of 45Ca2+ uptake was dibucaine greater than tetracaine greater than lidocaine.  相似文献   

6.
The goal of this study was to investigate the isolated and combined effect of ebselen and Hg2+ on calcium influx and on glutamatergic system. We examined the in vitro effects of 2 phenyl-1,2-benzisoselenazol-3(2H)-ona), (Ebselen) on 45Ca2+ influx in synaptosomes of rat at rest and during depolarization and glutamate uptake into synaptosomes. Entry of 45Ca was measured during exposure to mercury in non-depolarizing and depolarizing solutions. Ebselen abolished the inhibition of 45Ca2+ influx on non-depolarizing conditions; however, ebselen did no modify inhibition uptake of 45Ca2+ caused by Hg2+ in high K+ depolarizing medium. Ebselen did not modify glutamate uptake inhibition caused by Hg2+ in synaptosomes. These results indicate that ebselen has an in vitro protective effect against Hg2+ induced inhibition of Ca2+ influx into synaptosomes, depending on the depolarizing conditions of the assay. The effects of Hg2+ on glutamate uptake were not modified by ebselen, suggesting that its protection is dependent on the target protein considered.  相似文献   

7.
1. K(+)-stimulated 45Ca2+ uptake by synaptosomes was measured with respect to the strain differences between Sprague-Dawley (SD), Wistar-Kyoto (WKY) and spontaneously hypertensive rats (SHR). 2. 45Ca2+ uptake by synaptosomes isolated from cerebral cortex of SD, WKY and SHR was measured at 15, 30, 60, 120 and 240 sec time periods. 3. The sequence of both the magnitude and rate of resting and depolarization-dependent 45Ca2+ uptake was SHR greater than WKY greater than SD. 4. The fastest rates of resting and depolarization-dependent 45Ca2+ uptake occurred in each rat during the first 15 sec and uptake rates dropped off quickly in both resting and depolarization states. 5. At 15 sec, there were significant differences between SHR and WKY, while there were no significant differences between WKY and SD. 6. The results suggest that an important alteration in Ca2+ channel characteristics may occur in SHR brain synaptosomes.  相似文献   

8.
The possibility that protein kinase C modulates neurotransmitter release in brain was investigated by examining the effects of 12-O-tetradecanoylphorbol 13-acetate (TPA) on Ca2+ transport and endogenous dopamine release from rat striatal synaptosomes. TPA (0.16 and 1.6 microM) significantly increased dopamine release by 24 and 33%, respectively, after a 20-min preincubation with TPA followed by 60 s of depolarization with 30 mM KCl. Depolarization-induced 45Ca2+ uptake, measured simultaneously with dopamine release, was not significantly increased by TPA. Neither 45Ca2+ uptake nor dopamine release was altered under resting conditions. When the time course of K+-stimulated 45Ca2+ uptake and dopamine release was examined, TPA (1.6 microM) enhanced dopamine release after 15, 30, and 60 s, but not 1, 3, or 5 s, of depolarization. A slight increase in 45Ca2+ uptake after 60 s of depolarization was also seen. The addition of 30 mM KCl to synaptosomes which had been preloaded with the Ca2+-sensitive fluorophore fura-2 increased the cytosolic free Ca2+ concentration ([Ca2+]i) from 445 nM to 506 nM after 10 s of depolarization and remained elevated after 60 s. TPA had no effect on [Ca2+]i under depolarizing or resting conditions. Replacing extracellular Ca2+ with 100 microM EGTA reduced K+-stimulated (60 s) endogenous dopamine release by 53% and decreased [Ca2+]i to 120 nM. In Ca2+-free medium, 30 mM KCl did not produce an increase in the [Ca2+]i. TPA (1.6 microM) did not alter the [Ca2+]i under resting or depolarizing conditions, but did increase K+-stimulated dopamine release in Ca2+-free medium.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
S M Dunn 《Biochemistry》1988,27(14):5275-5281
The voltage dependence of binding of the calcium channel antagonist, (+)-[3H]PN200-110, to rat brain synaptosomes and the effects of dihydropyridines on 45Ca2+ uptake have been investigated. Under nondepolarizing conditions (+)-[3H]PN200-110 binds to a single class of sites with a Kd of 0.07 nM and a binding capacity of 182 fmol/mg of protein. When the synaptosomal membrane potential was dissipated either by osmotic lysis of the synaptosomes or by depolarization induced by raising the external K+ concentration, there was a decrease in affinity (approximately 7-fold) with no change in the number of sites. The effects of calcium channel ligands on 45Ca2+ uptake by synaptosomes have been measured as a function of external potassium concentration, i.e., membrane potential. Depolarization led to a rapid influx of 45Ca2+ whose magnitude was voltage-dependent. Verapamil (100 microM) almost completely inhibited calcium uptake at all potassium concentrations studied. In contrast, the effects of dihydropyridines (2 microM) appear to be voltage-sensitive. At relatively low levels of depolarization (10-25 mM K+) nitrendipine and PN200-110 completely inhibited 45Ca2+ influx, whereas the agonist Bay K8644 slightly potentiated the response. At higher K+ concentrations an additional dihydropyridine-insensitive component of calcium uptake was observed. These results provide evidence for the presence of dihydropyridine-sensitive calcium channels in synaptosomes which may be activated under conditions of partial depolarization.  相似文献   

10.
Ouabain (5 x 10(-8)-5 x 10(-4) M) was confirmed to cause a dose-dependent increase in [3H]acetylcholine ([3H]ACh) release, cytosolic free Ca2+ concentration ([Ca2+]i), and 22Na+ uptake in cerebrocortical synaptosomes of rats in the presence of extracellular Ca2+. Ouabain also caused a dose-dependent decrease in membrane potential. In a low-Na+ (10 mM) medium, ouabain failed to increase [3H]ACh release and [Ca2+]i. Tetrodotoxin (10(-6) M) had no effect on the ouabain-induced increase in both [3H]ACh release and [Ca2+]i but abolished the increase in 22Na+ uptake and partially inhibited the depolarizing effect. Verapamil (10(-6)-5 x 10(-4) M) inhibited the ouabain-induced increase in both [3H]ACh release and [Ca2+]i in a dose-dependent manner. Removal of extracellular Ca2+ abolished the effect of ouabain on [Ca2+]i but not on [3H]ACh release and 22Na+ uptake, regardless of the presence or absence of EGTA. In the absence of extracellular Ca2+, 10 mM Mg2+ blocked ouabain-induced [3H]ACh release, which was resistant to verapamil. These results suggest that ouabain can increase ACh release from synaptosomes without the preceding increases in intracellular Ca2+ and/or Na+ content. It seems likely that the removal of extracellular Ca2+ unmasks mechanisms of ouabain action different from those operating in the presence of Ca2+.  相似文献   

11.
K+-stimulated 45Ca2+ uptake into rat brain and guinea pig cerebral cortex synaptosomes was measured at 10 s and 90 s at K+ concentrations of 5-75 mM. Net increases in 45Ca2+ uptake were observed in rat and guinea pig brain synaptosomes. 45Ca2+ uptake under resting or depolarizing conditions was not increased by the 1,4-dihydropyridine BAY K 8644, which has been shown to activate Ca2+ channels in smooth and cardiac muscle. High-affinity [3H]nitrendipine binding in guinea pig synaptosomes (KD = 1.2 X 10(-10) M, Bmax = 0.56 pmol mg-1 protein) was competitively displaced with high affinity (IC50 2.3 X 10(-9) M) by BAY K 8644. Thus high-affinity Ca2+ channel antagonist and activator binding sites exist in synaptosome preparations, but their relationship to functional Ca2+ channels is not clear.  相似文献   

12.
The effect of parathyroid hormone (PTH) on Ca2+ uptake was studied in brush-border membrane vesicles (BBMV) prepared from the kidneys of dogs administered 4-5 micrograms/kg of bovine PTH 1-84 in vivo. PTH stimulated Ca2+ uptake at 20 s of incubation from control values of 231 +/- 21 to 306 +/- 30 pmol/mg of protein, p less than 0.001. The stimulation of Ca2+ uptake by PTH was not reversed by incubation of the BBMV with the Ca2+ ionophore, despite the fact that Ca2+ uptake was several times greater than the expected uptake at equilibrium, indicating that most of the uptake represented Ca2+ binding to the BBMV. In BBMV from kidneys exposed to PTH, hypotonic lysis or increasing the osmolality of the solution external to the BBMV did not affect Ca2+ uptake. These data also indicated that the largest fraction of Ca2+ uptake in the presence of a chemical potential represented binding of Ca2+ to BBMV. Ca2+ binding was initially to the exterior of the BBMV, then translocated within the membrane and to the interior vesicular face as assessed by chelation of Ca2+ bound to the BBMV by ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid. Incubation of BBMV from kidneys exposed to PTH with gentamicin, which competes with Ca2+ for anionic phospholipid-binding sites, reversed the stimulatory effects of PTH on Ca2+ uptake. Phosphorylation of BBMV and PTH treatment in vivo had similar effects on BBMV phospholipid composition increasing the levels of anionic phospholipids. Phosphorylation of the BBMV also produced gentamicin-inhibitable increases in membrane Ca2+ binding. Phosphorylation of BBMV from kidneys exposed to PTH was inhibited suggesting a higher state of phosphorylation in vivo. The data demonstrate that PTH administered in vivo stimulated Ca2+ binding in BBMV that was gentamicin inhibitable and associated with an increase in the membrane content of anionic phospholipids.  相似文献   

13.
The activity of the Na(+)-Ca2+ exchanger, which regulates the entry and the extrusion of Ca2+ ions from nerve endings was investigated in Percoll-purified cerebrocortical synaptosomes of aged rats. 45Ca2+ uptake in a Na(+)-free medium and 45Ca2+ efflux in a 145 mM Na+ medium were significantly reduced in cerebrocortical synaptosomes from aged rats (24 months) as compared to those occurring in young (4 months) and mature (14 months) rats. 45Ca2+ influx induced by 55 mM K+, a concentration of K+ ions which selectively promotes Ca2+ entry through voltage-sensitive Ca2+ channels (VSCC), was significantly reduced in mature and aged rats as compared to that occurring in young rats. The impairment of these mechanisms in aged rats is not accompanied by any variation of fura-2 monitored Ca2+ levels under resting and depolarizing conditions.  相似文献   

14.
Aluminum has been shown to have neurotoxic effects, but the mechanisms by which it acts are not well understood. Because it has been reported that aluminum can interact with Ca2+-binding sites, the possibility that aluminum might interfere with Ca2+ influx into synaptosomes was examined. At concentrations of 50 microM and greater, aluminum significantly inhibited the fast phase (0-1 s) of the voltage-dependent uptake of 45Ca2+ into synaptosomes. Higher concentrations of aluminum also reduced 45Ca2+ uptake measured at 1 s in nondepolarizing media and inhibited the slow phase of 45Ca2+ uptake into synaptosomes whether they were suspended in either low K or high K media. The possibility that aluminum competitively inhibits the fast phase of Ca2+ influx was investigated. Aluminum (250 microM) increased the apparent KT (concentration of Ca2+ at which Ca2+ transport is half maximal) for 45Ca2+ of fast phase voltage-dependent channels and slightly decreased the maximal influx (Jmax). These effects are characteristic of a mixed type inhibitor, and the apparent Ki for Al3+ is estimated to be 0.64 mM. The interaction of aluminum with the fast phase of voltage-dependent calcium influx may disrupt intraneuronal calcium homeostasis and may also represent a means by which aluminum could accumulate intraneuronally.  相似文献   

15.
The mechanisms by which an elevated KCl level and the K+-channel inhibitor 4-aminopyridine induce release of transmitter glutamate from guinea-pig cerebral cortical synaptosomes are contrasted. KCl at 30 mM caused an initial spike in the cytosolic free Ca2+ concentration ([Ca2+]c), followed by a partial recovery to a plateau 112 +/- 13 nM above the polarized control. The Ca2+-dependent release of endogenous glutamate, determined by continuous fluorimetry, was largely complete by 3 min, by which time 1.70 +/- 0.35 nmol/mg was released. [Ca2+]c elevation and glutamate release were both insensitive to tetrodotoxin. KCl-induced elevation in [Ca2+]c could be observed in both low-Na+ medium and in the presence of low concentrations of veratridine. 4-Aminopyridine at 1 mM increased [Ca2+]c by 143 +/- 18 nM to a plateau similar to that following 30 mM KCl. The initial rate of increase in [Ca2+]c following 4-aminopyridine administration was slower than that following 30 mM KCl, and a transient spike was less apparent. Consistent with this, the 4-aminopyridine-induced net uptake of 45Ca2+ is much lower than that following an elevated KCl level. 4-Aminopyridine induced the Ca2+-dependent release of glutamate, although with somewhat slower kinetics than that for KCl. The measured release was 0.81 nmol of glutamate/mg in the first 3 min of 4-aminopyridine action. In contrast to KCl, glutamate release and the increase in [Ca2+]c with 4-aminopyridine were almost entirely blocked by tetrodotoxin, a result indicating repetitive firing of Na+ channels. Basal [Ca2+]c and glutamate release from polarized synaptosomes were also significantly lowered by tetrodotoxin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
The swelling of nerve terminals of rat brain in a hypotonic medium (230 mOsm) induced the potential-independent entrance of 45Ca2+ into synaptosomes and intrasynaptosomal mitochondria that changed the energy status of synaptosomes, the rate of O2 consumption and the content of ATP being decreased. The ratio ATP/ADP decreased from 6.5 +/- 0.26 (310 mOsm medium) to 3.1 +/- 0.18 (the medium 230 mOsm). Studies on the equilibrium distribution of K+ (86Rb+) and [3H]TPP+ showed that contents of these cations in the nerve terminals were virtually the same on incubation in both iso- and hypotonic media. This indicated that the swelling did not damage intrasynaptosomal mitochondria and plasma membranes of the synaptosomes. The inhibition of oxidative phosphorylation increased twofold the rate of glycolysis. The incubation of synaptosomes in calcium-free medium (230 mOsm) in the presence of EGTA (1 mM) prevented the inhibition of oxidative phosphorylation and synthesis of ATP by the osmotic swelling. Ruthenium Red (10 microM) in the medium 230 mOsm inhibited the entrance of 45Ca2+ into the intrasynaptosomal mitochondria and normalized the oxidative phosphorylation to the control level (310 mOsm medium). The decrease in the energy potential of synaptosomes induced by the hypoosmotic shock is suggested to be associated with the increase in Ca2+ content in the cytoplasm, its transport into the mitochondria, and the inhibitory effect on oxidative phosphorylation.  相似文献   

17.
The Na+ dependence of tyrosine uptake into rat brain synaptosomes and synaptosomal plasma membrane vesicles (SPMV) was examined in the present study. At low tyrosine concentrations, the isoosmotic substitution of Na+ by sucrose in the incubation medium led to an increase of tyrosine uptake in synaptosomes and to a decrease in SPMV. The removal of extracellular Ca2+ and Mg2+ and addition of isoosmotic sucrose completely prevented the augmented tyrosine uptake in Na+-free incubated synaptosomes. Morphological differences were found at the electron-microscopic level when synaptosomes were incubated in Na+-free and Na+-containing media. The internal volume measured for synaptosomes incubated in a Na+-free medium was almost half of that obtained in a Na+-containing medium, in good agreement with the observations made with the electron microscope. Also, the omission of Ca2+ and Mg2+ resulted in a specific swelling of only the synaptosomes incubated in Na+-free medium. When synaptosomes and SPMV were preloaded with several neutral amino acids, the tyrosine uptake rate was greatly increased, indicating fully operational exchange mechanisms for these amino acids. We propose that the enhancement of high-affinity synaptosomal tyrosine uptake observed in Na+-free medium is a consequence of a specific shrinkage of the synaptosomes and a parallel increase of the exchange rate with endogenous neutral amino acids.  相似文献   

18.
Opiate alkaloids and peptides are reported to inhibit 45Ca2+ binding to synaptic plasma membranes and uptake into brain synaptosomes. We have examined the effects of a number of opiates on 45Ca2+ uptake in a clonal cell line NCB20 which expresses multiple opioid binding sites. The cells express voltage-dependent calcium channels that are blocked by verapamil and nifedipine. In contrast to brain, 45Ca2+ uptake in these cells, in normal or high potassium medium, is unaffected by opiates. This difference may be due to the particular receptor types; the delta and sigma sites of these cells do not inhibit 45Ca2+ uptake.  相似文献   

19.
The contribution of Ca2+ channels and Na+/Ca2+ exchange to Ca2+ uptake in rat brain synaptosomes upon long- (t greater than or equal to 30 s) and short-term (t less than 30 s) depolarization by high K+ was studied by measuring the 45Ca content and free Ca2+ concentration (from Quin-2 fluorescence). At 37 degrees C, the system responsible for the K+-stimulated uptake of 45Ca (t greater than or equal to 30 s) and the Na+/Ca+ exchanger are characterized by a similar concentration dependence of external Ca2+ (Ca0(2+] and K0+ as well as by an equal sensitivity to verapamil (Ki = approximately 20-40 microM) and La2+ (Ki = approximately 50 microM). These data and the results from predepolarization suggest that the 45Ca entry into synaptosomes at t greater than or equal to 30 s is due to the activation of Na+/Ca+ exchange caused by its electrogenic component, while the insignificant contribution of Ca2+ channels can be accounted for by their inactivation. At low temperatures (2-4 degrees C) which decelerate the inactivation, the initial phase of 45Ca uptake is fully provided for by Ca2+ channels, showing a lower (as compared to the exchanger) affinity for Ca0(2+) (K0.5 greater than 1 mM)m a greater sensitivity to La3+ (Ki = approximately 0.2-0.3 microM) and verapamil (Ki = approximately 2-3 microM); these channels are fully inactivated by predepolarization with K0+, ouabain and batrachotoxin. The Ca2+ channels can be related to T-type channels, since they are not blocked by nicardipine and niphedipine.  相似文献   

20.
Parathyroid hormone (PTH) and calcitonin exert well known effects on the renal tubule which are thought to involve specific hormone receptors and adenyl cyclase. In the intestine, it is not clear whether the action of PTH and calcitonin is only indirect or also direct, and their mechanisms of action are much less well established. In the present study, possible direct effects of PTH and calcitonin on Na+ transport in isolated intestinal epithelial cells of rats were investigated. In the presence of bovine PTH (1.2 I.U/ml) in the incubation medium, the Na+ efflux rate constant (oKNa) of isolated enterocytes was significantly reduced when compared to that in control experiments with the hormone vehicle only. The mean depression of oKNa induced by bovine PTH was 26% as compared to the control (100%) and to that induced by ouabain (4.0 mM) which was 44%. No depressant effect of bovine PTH on oKNa was observed when the isolated enterocytes were incubated with ouabain (4.0 mM). Thus, bovine PTH appeared to inhibit the ouabain-sensitive Na+ pump. When incubating the isolated epithelial cells in an EGTA-containing CA2+-free medium, bovine PTH lost its capacity to inhibit oKNa. Thus, the presence of extracellular Ca2+ appeared necessary for the inhibitory effect of bovine PTH. In contrast to its effect on oKNa, bovine PTH induced no change in net Na+ uptake by isolated enterocytes. Moreover, no significant effect on enterocyte Na+ transport could be demonstrated for salmon or porcine calcitonin at two different concentrations in the incubation medium, Neither bovine PTH nor salmon calcitonin induced significant changes in enterocyte cyclic AMP or cycle GMP concentrations. It was concluded that bovine PTH, but not calcitonin, exerted a directed inhibitory effect on the ouabain-sensitive oKNa of isolated rat enterocytes. The effect of bovine PTH occurred without measurable activation of the cyclic nucleotide system but needed the presence of Ca2+ in the incubation medium to be operative.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号