首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The transformation of human agranular blood lymphocytes into large granular lymphocytes (LGL) was studied. On the average, 2.8% of peripheral blood lymphocytes differentiate in less than 24 hr into LGL when cultured with autologous plastic-adherent monocytes and the Burkitt's lymphoma cell line Raji. The LGL precursors were intermediate-density lymphoid cells that were heterogenous for T3, T8, and Leu-7 antigens, negative for T4 and Leu-11, and positive for NK-9. During the transformation, frequency of Leu-11-positive cells increased and the cytotoxic activity was augmented. In single cell cytotoxicity experiments, the number of binding cells increased, whereas the number of killer cells among the binding cells remained unaltered. The transformation inducing factor was detectable in coculture supernatants of Raji and monocytes or Raji and the myeloid cell line ML-2. Analyses of the Raji-ML-2 coculture supernatants with reverse phase and gel filtration high-pressure liquid chromatography indicated that the factor is a heat- and trypsin-sensitive hydrophilic molecule with an apparent m.w. of 1000.  相似文献   

2.
A monoclonal hybridoma antibody of IgGIa subclass was produced by fusing NS-1 myeloma cells with spleen cells of a mouse immunized with human LGL cells. This hybridoma antibody, termed NK-8, was reactive by indirect immunofluorescence with 33% of peripheral blood LGL cells and 70% of LGL forming conjugates with K-562 cells. Monocytes, granulocytes, and other lymphocytes were nonreactive. In iodinated protein A binding assays NK-8 was nonreactive with all kinds of leukemia and lymphoma lines tested and showed activity only against LGL cells. NK-8 inhibited the LGL-mediated cytotoxicity against K-562 cells by 50 to 60% without complement and inhibited the K-562 induced interferon production from the LGL population. However, the spontaneous cytotoxicity against human skin fibroblasts was augmented if the effector cells were pretreated with NK-8.  相似文献   

3.
The normal steady state production of natural killer (NK) cells in the bone marrow and spleen was characterized with cytokinetic technics. We developed a protocol to enrich for NK cells in bone marrow and demonstrate that target binding can be used as a criterion for marrow NK cells if nonspecifically "sticky" cells are eliminated. The selected population of B cell-depleted bone marrow lymphoid cells was comprised mainly of lymphocytes, of which 80% were NK-1.1+. B cell-depleted bone marrow lymphocytes that bound to YAC-1 could be characterized as two populations on the basis of morphology and proliferative status: large, proliferating target-binding cells (TBC), of which 25% were in S phase of the mitotic cycle, and small postmitotic TBC. Pulse and chase studies indicated that the small TBC in bone marrow were derived from an immediate proliferating precursor, presumably the large TBC, which were, in turn, derived from a precursor population that was more rapidly proliferating. In contrast, few if any splenic TBC were labeled after a 30-min pulse with [3H]TdR and significant numbers of labeled TBC did not appear in the spleen until 2 or more days after the pulse label. Surprisingly, some of the splenic TBC were relatively long lived and survived 2 mo or longer. These studies are the first to directly characterize the production of NK cells in situ in normal marrow. We demonstrate that the marrow is the primary site of production of NK cells and that little, if any, proliferation of NK cells occurs in the periphery of unstimulated mice. The data suggest the existence in the bone marrow of at least three compartments in the NK lineage: a rapidly proliferating NK precursor population, a less rapidly proliferating population of large TBC, and a population of small postmitotic TBC.  相似文献   

4.
Six transplantable large granular lymphocyte (LGL) tumor lines in F344 rats were examined for natural killer (NK) and antibody-dependent cell-mediated cytotoxicity. Tumor cells from all six lines were highly cytotoxic, even at low effector to target ratios, when tested against NK-susceptible targets, but were unreactive against an NK-resistant target (C58NT)D) and a macrophage-susceptible target (P815). Three lines showed significant levels of lysis against antibody-coated tumor cells. After in vivo transplantation, the levels of cytotoxicity steadily increased in three lines and decreased in one. The cytotoxic activity of one line (RNK-16) remained high through 12 transplant generations. Tumor cells injected i.p. spread via the lymphatics to regional lymph nodes, mediastinal nodes, blood, and eventually the bone marrow. Leukemia occurred concurrently with organ enlargement and increased levels of NK. Studies in (F344 X W/Fu)F1 rats clearly demonstrated that the cytotoxic cells from leukemic animals were the transplanted tumor cells themselves and not merely the activation of normal host LGL. These results demonstrate that naturally occurring, transplantable LGL leukemias are an easily obtainable and excellent source of materials for those studies requiring a large number of functionally active LGL.  相似文献   

5.
Cells bearing the NK-specific marker NK-1.1 were purified from mouse spleens by utilizing a monoclonal anti-NK-1.1 antibody and cell sorting. In normal adult mice, all of the splenic NK activity against YAC-1 cells was found in the NK-1.1+ fraction, whereas NK-1.1- cells were depleted of NK activity. The NK activity of sorted NK-1.1+ cells was enriched 15- to 30-fold over unfractionated spleen cells. Light and electron microscopic studies of purified NK-1.1+ cells showed a homogeneous population of cells, each containing one to four cytoplasmic granules. Mice whose bone marrow has been destroyed by chronic exposure to 17-beta-estradiol have very low NK activity. However, spleen cells of estradiol-treated mice contained a normal frequency of NK-1.1+ cells which bound to YAC-1 cells, but failed to lyse them even after purification and subsequent exposure to interferon-alpha/beta in vitro. It appears, therefore, that in the absence of intact bone marrow, NK-1.1+ cells may be arrested in a nonlytic and interferon-unresponsive state. Spleens of neonatal mice which have low NK activity were analyzed to ascertain whether immature NK-1.1+ cells, similar to those found in estradiol-treated mice, could be demonstrated. Spleens of 8- to 9-day-old mice also contained NK-1.1+ cells which had very low NK activity even after purification. Sorted NK-1.1+ cells were examined for cytotoxicity in mice whose NK activity was suppressed by pretreatment with Corynebacterium parvum (-15 days). In contrast to cells from estradiol-treated and neonatal mice, NK-1.1+ from mice treated with C. parvum had normal functional activity. Similarly, although NK activity of unfractionated bone marrow cells is low, sorted NK-1.1+ cells were greatly enriched for lytic activity. Thus, we conclude that cell sorting with monoclonal anti-NK-1.1 antibody provides a powerful tool for examining the mechanisms underlying various states of low NK activity, and there exist NK-1.1+, nonlytic, interferon-unresponsive cells which apparently require an intact marrow microenvironment for differentiation into mature, lytic NK cells.  相似文献   

6.
Generation of NK cell activity from human bone marrow   总被引:4,自引:0,他引:4  
This study was designed to examine the effect of interleukin 2 (IL 2) on cytotoxic activity of human bone marrow cells and to characterize the IL 2-dependent killer cells and the cell population required for their induction. We have demonstrated that the most aggressive IL 2-dependent killer cells (directed against leukemic and solid cancer targets) exhibited LGL morphology and expressed NK cell-associated antigens NKH1 and CD16, but not T cell-associated antigens CD3, CD4, CD5, or CD8. Similarly, the bone marrow cell population necessary for induction of killer cells with highest cytotoxic activity displayed NK cell surface characteristics, as exemplified by CD16 and Leu-7 antigens. On the contrary, very low or no lytic activity was generated from the bone marrow cell population expressing T cell markers CD3 and CD5. These data indicate that the IL 2-dependent bone marrow-derived killer cells with antitumor activity were activated NK cells. If T cells are involved at all in IL 2-dependent bone marrow killing, their potency is inferior to that of activated NK cells. The clinical applications of these studies are discussed.  相似文献   

7.
Proliferation and the cloning efficiency of T3+ but not T3- T cells are increased by the addition of lectins (phytohemagglutinin; PHA) to the culture medium. In contrast to that of T3+ cloned cell lines, the cytolytic activity of T3- clones is not enhanced by PHA, as we report here. We have investigated the effects of anti-T3 monoclonal antibody (MAb) and PHA on the proliferative capacity and cytolytic activity of various T3+ and T3- clones and cells to determine the possible involvement of the T3 receptor in these processes. We found that, in addition to inhibition of allospecific cytotoxicity, anti-T3 MAb can induce and/or enhance nonspecific cytolytic activity against particular target cells in cloned allospecific cytotoxic T cells (CTL) following preincubation of the effector cells with PHA or anti-T3. This enhancement of cytolytic activity is seen in T3+ but not T3- activated killer (AK) clones or fresh T3- natural killer (NK) cells and depends on the concentrations of anti-T3 MAb or PHA used. We conclude that the T3-Ti antigen-receptor complex is involved in the transmission of the activation signals by anti-T3 and PHA.  相似文献   

8.
Bone marrow cells from a patient with pancytopenia and a lymphoproliferative disorder of large granular lymphocytes (LGL) were cultured and tested for their hemopoietic colony-forming potential. Neither erythroid nor granulocyte-macrophage colony formation could be obtained from unfractionated, or LGL-depleted bone marrow cell preparations. However, a spontaneous growth of lymphoid colonies was observed after culturing LGL-depleted (T3-) bone marrow cell suspensions for 25 days. Pooled colonies expanded with recombinant interleukin-2 yielded a population composed predominantly of mature T cells (T3+, Leu 6-). These findings suggest that some (T3-) T cell precursors may mature in the bone marrow and that, in our patient, LGL may have exerted a suppressor effect on this maturational process.  相似文献   

9.
The growth factor transferrin (Tf) enhanced natural killer (NK) cell cytotoxicity. This enhancement was due to direct effects on NK cell function, and Tf treatment of the K562 target cell had no effect on their sensitivity. NK cells were highly enriched in the low-density large granular lymphocyte population (LGL) by Percoll gradient centrifugation. Despite the direct effect of Tf on NK cells, the number of cells expressing receptors for Tf (TfR) in NK-enriched LGL was the same as the NK-cell-depleted high-density small lymphocyte population (SL). All populations, tested without stimulation, had very few TfR+ cells. Interleukin 2 (IL-2) could induce very high NK-like activity in the LGL but not in SL. Similarly, only LGL could be induced by IL-2 to express TfR. In serum-free cultures, only limited NK-like activity could be developed which was greatly enhanced by supplementing with Tf in the cultures. The importance of Tf in NK-like development was confirmed by modulating the expression of TfR in IL-2 containing cultures with mouse monoclonal antibody OKT9 specific for TfR. OKT9 totally abrogated the induction of cytotoxic activity by IL-2 against K562 and NK-resistant target. OKT9 inhibited the induction of cytotoxicity in both lymphocytes containing active NK cells and in those predepleted of active NK cells, indicating that the development of NK-like activity from both precursor populations requires Tf. The inhibition by OKT9 was only during the induction phase. The same antibody had no effect on the cytotoxicity of fresh NK cells or the mature IL-2-induced NK-like cells. Our data therefore do not support the hypothesis of TfR as the NK recognition structure. Instead, these results indicate that Tf is important for the development of NK and NK-like activities.  相似文献   

10.
Two patients with T gamma lymphocytosis in whom expanded large granular lymphocyte (LGL) populations were detected in peripheral blood and bone marrow are described. The surface antigen phenotypes of the LGL from these patients were similar with a major portion of cells carrying T3, T8, T11 and Leu7 markers. However, whereas fresh LGL from both patients demonstrated antibody-dependent cell cytotoxicity (ADCC), natural killer (NK) cell function was present in one case but absent in the other. Supernatants from enriched suspensions of the LGL unstimulated by exogenous antigen or mitogens were shown to contain significant amounts of hemopoietic growth factors colony-stimulating activity (CSA) and burst-promoting activity (BPA). In one case gamma-interferon was also detected. This study contributes to the accumulating evidence that LGL are able to generate factors which have the capacity to influence the proliferation of hemopoietic progenitor cells in vitro.  相似文献   

11.
Large granular lymphocytes (LGL) are the most abundant cell type in first trimester human pregnancy decidua. We have shown previously that CD56-positive decidual LGL have cytotoxic activity against the natural killer (NK) target K562, and that this cytotoxicity is augmented by pretreatment with interleukin-2 (IL-2). We now report that flow cytometrically purified populations of CD56-positive decidual LGL have no cytotoxic activity against either the BeWo choriocarcinoma cell line or freshly isolated term trophoblast. Incubation of unfractionated decidual cells with IL-2 induced cytotoxicity against BeWo, but term trophoblast remained resistant to lysis. Both BeWo and trophoblast showed much lower binding frequencies to decidual or peripheral blood cells than K56 targets, and excess trophoblast did not inhibit cytotoxic activity against K562. This suggests that the resistance of trophoblast to lysis by either decidual or peripheral blood LGL is due to the lack of accessible NK target structures on the surface of trophoblast.  相似文献   

12.
In addition to allospecific cytotoxic lymphocytes, cytolytic effector cells capable of killing a broad range of targets are generated during mixed leukocyte culture (MLC). These cells, which have been previously called anomalous killer cells, are a distinct functional subset separate from natural killer cells or allospecific cytotoxic lymphocytes but display many characteristics of lymphokine-activated killers. In order to isolate anomalous killer cells for detailed analysis, we generated the cytolytic effectors from an allogeneic MLC using heat-inactivated stimulators. This treatment of the stimulator population abrogated the generation of classical allospecific cytotoxic lymphocytes but allowed the generation of anomalous killer cells which were subsequently cloned via limiting dilution. The clones derived by this method displayed the functional properties of anomalous killers seen in bulk MLCs. The clones demonstrated potent cytolytic activity against both NK-sensitive and NK-resistant tumor targets in vitro and also suppressed tumor growth in vivo. Ultrastructural studies revealed features similar to those of cloned antigen-specific cytolytic cells and clones with NK-like function. The cells expressed surface glycoproteins associated with both NK and T lymphocytes including Thy-1, Ly-2, T200, Qa-5, asialo GM1, and the antigens defined by the NK alloantisera NK-2.1 and NK-3.1. These cells may play an important role during early phases of the immune response, since cytolytic cells of broad specificity may protect the host until classical cytotoxic lymphocytes with restricted specificity are generated.  相似文献   

13.
Maintenance and regulation of natural killer (NK) cell activity in human bone marrow cultures were studied using K562 leukemia cells as targets. Culture of bone marrow cells in medium supporting long-term generation of myeloid cells resulted in a rapid loss of NK activity in 1-3 days. In contrast, antibody-dependent cytotoxicity to an NK-resistant tumor was maintained for more than 7 weeks. Horse serum, a component of the myelopoietic culture medium, was found to diminish NK cytotoxicity of blood and bone marrow cultures whereas hydrocortisone supplement did not. In addition, an adherent cell is present in bone marrow which greatly inhibits NK activity. Nonadherent bone marrow cells exhibited higher cytotoxicity than unfractionated cells at all days of culture; adherent cells were not cytotoxic to K562. Purified adherent marrow cells inhibited the cytotoxic capacity of nonadherent blood or marrow mononuclear cells during coculture. Indomethacin, an inhibitor of protaglandin synthesis, augmented levels of NK activity in cultures of bone marrow cells, indicating that macrophages may be suppressing this effector function via prostaglandins. Further identification of the adherent suppressor cells came from experiments in which suppression was prevented by treatment of the adherent cells with monoclonal OKM1 antibody plus complement. This study shows that bone marrow-adherent OKM1-positive cells, presumably macrophages, negatively regulate NK activity, and it defines conditions for analysis of the generation and/or positive regulation of NK cells in human bone marrow.  相似文献   

14.
The NK-1.1(-) mouse: a model to study differentiation of murine NK cells   总被引:19,自引:0,他引:19  
The NK-1.1(-) mouse was constructed by weekly injections of monoclonal anti-NK-1.1 antibody from birth through adulthood. Spleen cells from these mice have decreased NK-1.1+ cells and null (Thy-1- and B220-) cells. Their splenic NK activity to YAC targets was low and was not enhanced by IFN-alpha or IFN-beta. Bone marrow (BM) of these NK-1.1(-) mice have normal precursors to NK cells: 1) NK activity could be generated from NK-1.1(-) BM cells cultured in rIL 2 for 5 to 6 days. These cultured BM cells expressed Qa-5, Thy-1, AsGm-1, and NK-1.1 antigens. The precursor cells of these BM cytotoxic cells are NK-1.1-; 2) transfer of BM cells from the NK-1.1(-) mice reconstituted the NK activity of irradiated, NK-depleted recipients. Lymphokine-activated killer cells could also be generated from spleens of these NK-1.1(-) mice. Therefore, the NK-1.1(-) mice were specifically depleted of mature cytotoxic NK cells, but not the NK-1.1- precursors of NK cells. This mouse model is valuable to study ontogeny and physiologic relevance of NK cells.  相似文献   

15.
Spleen cells from irradiated, bone marrow-reconstituted mice were tested for their ability to mediate antibody-dependent cellular cytotoxicity against P815 target (ADCC-P815), ADCC against sheep red blood cells (ADCC-SRBC), and natural killer (NK) activity judged as YAC-1 lysis at different times after bone marrow reconstitution. Donor-derived ADCC-P815 effectors were found to appear in the spleens 10-12 days after bone marrow reconstitution simultaneously with the appearance of donor-derived NK cells. NK cells recently derived from bone marrow are known to express the Thy-1 antigen; the phenotype of the "early" ADCC-P815 effectors was found to be the same as that of NK cells, i.e., Thy-1+, asialo-GM1+. These data suggest that ADCC-P815 effector cells belong to the NK cell population. ADCC-SRBC, in contrast to ADCC-P815 and NK activity, was already high on Day 7 after bone marrow reconstitution. However, it was mediated partly by recipient-derived effectors. ADCC-SRBC effectors were characterized to be different from ADCC-P815 effectors.  相似文献   

16.
The coculture of rat bone marrow cells with recombinant interleukin-2 induced the generation of cells mediating natural killer (NK) activity and subsequent lymphokine-activated killer (LAK) activity depending upon the dose of IL-2 and time of culture. NK activity was detected as early as 4 to 5 days after the addition of IL-2 and could be evoked with as little as 5 to 50 U/ml. The induced NK cells had large granular lymphocyte (LGL) morphology and expressed 0X8 and asialo GM1 surface markers but did not express 0X19 or W3/25 markers. LAK activity was detected only after 5 days of culture, and required above 100 U/ml IL-2. Cells mediating LAK activity also expressed 0X8 and asialo GM1 but not 0X19. The generation of detectable NK and subsequent LAK activity was due to induction of early progenitor cells and not contaminating mature LGL/NK cells within the bone marrow population since of removal of such mature NK cells with L-leucine methyl ester (L-LME) did not affect the subsequent generation of either activity. Moreover, the removal of actively dividing cells as well as mature NK cells from the bone marrow by treatment with 5-fluorouracil (5-FU) in vivo enriched the remaining bone marrow population for both NK and LAK progenitor cells. The phenotype of the L-LME- and 5-FU-resistant NK and LAK progenitor cells within populations of bone marrow was determined by antibody plus complement depletion analysis. Although treatment of normal bone marrow with anti-asialo GM1 + C reduced the induction of NK and LAK activity in 5-day cultures, treatment of 5-FU marrow with anti-asialo GM1 + C did not affect either activity. Treatment with a pan-T cell antibody + C did not affect the development of NK or LAK activity under any conditions. Thus, the 5-FU-resistant NK/LAK progenitors were asialo GM1 negative but became asialo GM1+ after induction by IL-2. Finally, evidence that bone marrow-derived LAK cells were generated directly from the IL-2-induced NK cells was obtained by treating the IL-2-induced LGL/NK cells with L-LME.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
Peripheral blood lymphocytes were incubated with glutaraldehyde-fixed Salmonella bacteria. This resulted in rapid activation of nonspecific cytotoxic potential of the lymphocytes. Both originally noncytotoxic, high-density Percoll-fractionated cells, and cytotoxic natural killer (NK) cell-enriched low-density cells were activated. The induction of originally noncytotoxic cells into activated killer (AK) cells was apparently independent of interferon (IFN), whereas the activation of the NK cell-enriched fractions also involved IFN production. Neither the AK nor NK activity were associated with significant bactericidal activity. The IFN-independent induction of AK activity was not dependent on the O-antigenic polysaccharide part of the lipopolysaccharide (LPS) on the bacterial cell surface, because both smooth (S) strains with differing O-antigenic structures (S-4,12 and S-6,7) and a rough (Re) strain without O-antigen were effective inducers. Isolated LPS, and especially alkali-hydrolyzed (O-deacylated, detoxified) LPS (ALPS) interfered with the induction of cytotoxicity. At concentrations of 10 to 30 micrograms/ml, ALPS totally inhibited the induction of AK activity without affecting the endogenous NK activity. Thus contact with bacteria can lead to the emergence of AK cells, and a bacterial product can effectively block this activation. These phenomena stress the complexity of interactions with host defenses that can take place during bacterial infection.  相似文献   

18.
Our laboratory has recently identified a novel Ag, LGL-1, that is expressed on a major population of mouse NK cells. Two color immunofluorescence analysis has demonstrated that spleen cells consist of two major subsets of NK cells. We have identified an NK-1.1+/LGL-1+ subset that consists of 50% of the total NK cells and an NK-1.1+/LGL-1- subset comprising the remaining 50%. Because numerous reports have identified NK cells as the major cell type mediating lymphokine-activated killing (LAK), the NK-1.1+/LGL-1+ and NK-1.1+/LGL-1- subsets were examined for their contribution toward LAK generation, as defined by their ability to lyse P815 tumor targets. Antibody plus C depletion experiments with the use of anti-LGL-1 indicated that LGL-1+ cells were not found on LAK precursor or effector cells. Two-color cell sorting experiments were also performed to separate freshly isolated NK-1.1+/LGL-1+ spleen cells from the NK-1.1+/LGL-1- subset. It was found that the vast majority of LAK activity (greater than 95%) is derived from the NK-1.1+/LGL-1- cells. Cell sorting of LAK effectors also demonstrated that the NK-1.1+/LGL-1- cells mediated the vast majority of lysis against P815 targets. Similar results were obtained when NK cell subsets were analyzed for their contribution toward ADCC. These findings may prove important in understanding and further elucidating the contribution of NK cells to the LAK phenomenon. Our data also indicates that subsets of NK cells exist that may function differently in response to stimulation by various lymphokines and cytokines.  相似文献   

19.
Peripheral blood low-density cells were sorted, with respect to their ability to accumulate the lysosomotropic agent mepacrine (Mep), into lysosome-rich (Mep+) and lysosome-poor (Mep-) cell populations. Cells of large granular lymphocyte (LGL) morphology and phenotype were found in the Mep+ but not in the Mep- cell population. The latter cells lacked any natural killer (NK) activity. Cultures of the Mep- cells resulted in the appearance of cells showing K-562 lytic activity, LGL morphology and CD16 and/or Leu-7 positivity. This process was facilitated by the supplementation of the culture with recombinant human interleukin-2 (rIL-2). Mep+ cells retested after 7 days of culture showed a decline in the fraction of granular (LGL and Mep+) cells. This decrease was less pronounced but also seen in rIL-2-supplemented cultures. In spite of the lower number of typical LGL, Mep+ cells cultured with rIL-2 were mostly large but scarcely granular; rIL-2-activated K-562 killing (rIL-2 AK) of originally Mep+ cells was much higher than K-562 lytic activity of these cells at the beginning of the culture, and as compared to rIL-2 AK of Mep- cells. From this finding it is apparent that the most active rIL-2 AK cells originate from low-density granular (Mep+) cells (LGL) and, therefore, we propose to call them 'giant' NK cells. Furthermore, in the presence of rIL-2, LGL differentiate from agranular (Mep-) low-density cells. In view of these data, LGL appear to be resting cells on the differentiation pathway of NK cells.  相似文献   

20.
Sensitivity to L-leucyl-L-leucine methyl ester (Leu-Leu-OMe) was used to characterize the phenotype of human activated killer cells. Natural killer cells (NK) and the precursors of both the alloantigen-specific cytotoxic T lymphocytes (CTL) and the NK-like activated killer cells generated after stimulation with allogeneic cells were deleted from human peripheral blood lymphocytes by preincubation with Leu-Leu-OMe. It was noted, however, that cytotoxic lymphocytes could be generated from Leu-Leu-OMe-treated lymphocyte precursors after 2 to 6 days of culture with the nonspecific mitogen, phytohemagglutinin (PHA). The characteristics of these killer cells indicated that they were a unique population that could be distinguished from other cytotoxic cells. Killing by these cells exhibited slow kinetics in that 18 hr cytotoxicity assays were required to detect full cytotoxic potential. When 18 hr assays were used, PHA-stimulated cytotoxic cells generated from Leu-Leu-OMe-treated lymphocytes were able to kill both NK-sensitive K562 cells and the relatively NK-resistant renal cell carcinoma cell line, Cur. These cytotoxic lymphocytes were HNK-1, Leu-11b (CD16), and OKM1 (CR3)-negative at both the precursor and effector stage of activation. Furthermore, these cells were derived from a CD3-positive precursor. Finally, killing by activated effectors was inhibited by OKT3. Unlike activation of Leu-Leu-OMe-sensitive large granular lymphocytes, generation of these cytotoxic T cells was totally prevented by treatment with mitomycin c before stimulation. Thus, a unique class of tumoricidal T cells can be characterized by resistance of lymphocyte precursors to a concentration of Leu-Leu-OMe, which has been shown to ablate NK, mixed lymphocyte culture-activated NK-like cytotoxic precursors, and the precursors of alloantigen-specific CTL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号