首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 109 毫秒
1.
张改娜  贾敬芬 《植物学报》2009,44(4):442-450
在成功培养原生质体的基础上, 用改进的PEG-高pH高钙法诱导草木樨状黄芪(Astragalus melilotoides)和木本霸王(Zygophyllum xanthoxylum)原生质体融合, 得到了科间体细胞杂种融合细胞。采用罗丹明-6G预处理草木樨状黄芪原生质体以及UV-B辐照霸王原生质体, 使双亲原生质体及其同源融合产物均不能持续分裂而死亡, 融合后的杂种细胞由于生理互补可恢复持续分裂能力而被筛选出来。融合产物经培养分裂获得了2个杂种细胞系, 其中1个分化出芽。染色体计数和分子鉴定证明了杂种的真实性。初步比较了杂种细胞系及亲本对盐分和水分胁迫的耐受性, 结果表明杂种细胞系对盐分和水分胁迫的耐受性介于两个亲本之间。  相似文献   

2.
电融合法产生骆驼刺与鹰嘴紫云英属间体细胞杂种   总被引:1,自引:0,他引:1  
采用电融合法获得了骆驼刺和鹰嘴紫云英属间体细胞杂种。骆驼刺原生质体来自发根农杆菌A4转化系细胞,并经碘乙酰胺处理;鹰嘴紫云英原生质体从甲硫氨酸抗性系细胞分离。双亲及同源融合产物均不能在无激素的筛选培养基上持续分裂,融合后的杂种细胞由于双亲生理互补效应可恢复持续分裂能力而被筛选出来。本实验优化了电融合参数,如直流脉冲、交流脉冲和脉冲次数。融合产物经培养获得的杂种细胞系经形态学、染色体数目检查、生化及随机扩增多态性DNA分析,鉴定出10个杂种克隆,并从3个杂种克隆再生了小植株。  相似文献   

3.
霸王的原生质体培养的研究   总被引:1,自引:0,他引:1  
张改娜  施江 《生物技术》2009,19(5):78-80
目的:为利用原生质体融合技术转移霸王抗旱基因。方法:采用酶解法分离霸王原生质体,比较了霸王子叶和愈伤组织游离原生质体的产量和活力,不同渗透压和起始密度对原生质体分裂频率的影响。结果:愈伤组织游离的原生质体产量和活力均高于子叶,原生质体产率可达2.4×106个/g.FW,活力达89%。采用液体浅层培养,在附加2,4-D(2mg/L)、6-BA(1.0mg/L)、2%蔗糖和甘露醇(0.4mol/L)的DPD培养基中,原生质体分裂频率最高,达68.6%。转移到附加2-iP(3mg/L)、KT(1.0mg/L)、6-BA(1.0mg/L)的分化培养基上,获得2个再生苗。结论:采用酶解法游离霸王愈伤组织,可获得高活力和高分裂频率的霸王原生质体。  相似文献   

4.
以豆科牧草沙打旺为一亲本,碘乙酰胺处理的紫花苜蓿发根农杆菌A_4菌株转化系为另一亲本,通过PEG-高pH,高钙法诱导原生质体融合。在不加外源激素的DPD 培养基上有效地筛选了杂种细胞。经培养首次得到沙打旺( )紫花苜蓿的属间体细胞杂种。尽管双亲原生质体均已丧失分化植株的能力,但杂种细胞系R_1仍得到苗的分化。杂种R_1细胞的染色体数检查、冠瘿碱检测、同工酶和RAPD 分析结果,都证实了其杂种特性。  相似文献   

5.
多年生黑麦草(Lolium perenne L.)悬浮培养细胞来源的原生质体和小麦(Triticumaestivum L.)含叶绿体的悬浮培养细胞来源的原生质体间,用直流方波脉冲进行电融合,获得了体细胞杂种愈伤组织。小麦的原生质体经过碘乙酰胺失活。愈伤组织的形态和颜色被用作识别预期杂种的标记。为了对杂种愈伤组织进行同工酶分析,观察了亲本的9种同工酶谱,其中3种在亲本间表现出差异(ADH、GOT 和 SDH)。酒精脱氢酶(ADH)的分析结果表明,有6个细胞系表现出杂种带。这些细胞系经过其他两种同工酶分析和 rDNA 探针杂交试验表明,一个细胞系表现出基本完全的亲本基因组间的组合,其余5个细胞系是部分杂种。  相似文献   

6.
沙打旺与苜蓿属间体细胞杂交   总被引:1,自引:0,他引:1  
以豆科牧草沙打旺为一亲本,碘乙酰胺处理的紫花苜蓿发根农杆菌A4菌株转化系为另一亲本,通过PEG-高pH,高钙法诱导原生质体融合。在不加外源激素的DPD培养基上有效地筛选了杂种细胞。经培养首次得到沙打旺( )紫花苜蓿的属间体细胞杂种。尽管双亲原生质体均已丧失分化植株的能力,但杂种细胞系R1仍得到苗的分化。杂种R1细胞的染色体数检查、冠瘿碱检测、同工酶和RAPD分析结果,都证实了其杂种特性。  相似文献   

7.
通过“供体──受体”原生质体融合获得5个“波缘烟草+普通烟草”体细胞杂种细胞系(TU_1至TU_5)。对5个杂种细胞系的细胞学观察表明,其中2个系为多细胞融合产物,其平均染色体数目分别为167.2和198.4;3个系为二细胞融合产物,其平均染色体数目分别为54.370.6和62.8。杂种细胞系的一个明显特征是所有观察的中期细胞均存在数量不等的畸变染色体。对5个杂种细胞系再生植株叶片苹果酸脱氢酶和酯酶的同工酶分析结果表明,它们均为程度不同的不对称核杂种,即只含有供体亲本(波缘烟草)的部分核基因组。以小麦rDNA为探针对杂种细胞系基因组DNA的Southern杂交结果表明,杂种中双亲的载有rDNA的染色体可能均有部分消除;此外,杂种中新DNA片段的存在说明双亲rDNA可能发生了分子间重组。两个由多细胞融合产生的杂种细胞系(TU_2和TU_5)再生苗不易生根而且形态上异常。3个由二细胞融合产生的杂种细胞系(TU_1、TU_3和TU_4)再生苗可生根长大,形态上类似受体亲本;对其根尖的细胞学观察表明,染色体数目在51─66之间,说明均为只含有少量供体亲本染色体的不对称核杂种。  相似文献   

8.
柑桔种间体配融合及培养研究   总被引:9,自引:0,他引:9  
“平户”文旦(柚)(Citrusgrandis)Osbeck的四分体经酶解,分离出原生质体。PEG(聚乙二醇)诱导这类原生质体与二倍体“伏令夏”甜橙(C.sinensis)胚性悬浮细胞系的原生质体融合。融合后的原生质体培养于BH3/EME培养基中。2天后,观察到花粉管生长现象。不同处理的结果显示,这一现象来源于异核体细胞。这种具花粉管生长的细胞可进一步分裂,形成多细胞团及球形和心形胚状体。对再生的胚状体进行染色体数检查,证明13.1%的胚状体为三倍体,2n=3x=27。而起始悬浮细胞系为二倍体,检查的392个细胞,未发现有染色体倍性变异。  相似文献   

9.
亲缘品种间原生质体的融合可产生有用的体细胞杂种植株。然而,远缘品种间原生质体的融合常常导致遗传不亲和性,这可能引起亲本之一染色体的快速消失。日本京都大学和京都医科大学的T.Endo等人发现,单个族间融合产物产生的愈伤组织系可能是连续遗传不稳定性的一个来源。他们分离出了由Duboisia hopwoodii细胞悬浮培养原生质体与烟草叶肉原生质体之间融合产生的单个杂种细胞。从融合产物长出了愈伤组织,从这些愈伤组织产生了10个  相似文献   

10.
本文进行了小麦和裸燕麦悬浮细胞原生质体的电融合,并基于双亲失活(用IOA处理受全小麦原生质体,用γ-射线照射供体裸燕细胞系),获得可能的杂种愈伤组织。对7块愈伤组织进行了乙醇脱氢酶(Adh)同工酶筛选,发现5块表现出双亲特征酶带。对3个杂种细胞系进行5种同工酶分析,证实它们均为稳定的不对称体细胞核杂种细胞系;它们表现出小麦的完整谱带和裸燕麦的部分谱带。对2个杂种细胞系及亲本的核糖体DNA Sout  相似文献   

11.
建立了草木樨状黄芪(Astragalus melilotoides Pall.)甲硫氨酸抗性系原生质体再生植株的实验体系。以茎切段诱导的松软愈伤组织为材料,通过酶法分离出大量有活力的原生质体。原生质体经培养持续分裂形成了愈伤组织,并高频率地分化出再生苗。比较了不同培养基、培养方法和培养密度对原生质体分裂和再生的影响。结果表明,原生质体以3×105/mL的植板密度,采用琼脂糖岛法培养在附加1.0mg/L 2,4-二氯苯氧乙酸(2,4-D)、0.5mg/L 6-苄氨基嘌呤(6BA)、500mg/L水解酪蛋白、3%蔗糖、0.3mol/L甘露醇的KM8p培养基中,可获得最佳效果,其细胞分裂频率达38%左右。原生质体培养后仍然保持对甲硫氨酸的抗性,同时对乙硫氨酸表现交叉抗性。  相似文献   

12.
Experiments were conducted to identify the genetic factors controlling protoplast division and to determine eventual relations between genetic factors involving organogenesis, somatic embryogenesis and protoplast division in sunflower. The present study involved protoplast culture and two traits: total division per 100 protoplasts (TOTD) and asymmetric division per 100 protoplasts (ASYD) were scored in 52 recombinant inbred lines (RILs) from a cross between PAC-2 and RHA-266. Asymmetric division is an early event in the formation of embryoids from protoplasts. Analysis of variance indicated the existence of highly significant differences among parental genotypes and their RILs. Heritability for the two protoplast division parameters (TOTD and ASYD) was high (0.87 and 0.89, respectively) and genetic gain expressed as percentage of the best parent for 10% of the selected RILs was significant. Twelve putative loci associated with total division per 100 protoplasts were identified. Eleven QTLs were also detected for asymmetric division per 100 protoplasts. The QTLs present high significant LOD scores and sum to a high percentage of phenotypic variance. The percentage of phenotypic variation explained by each QTL ranged from 2% to 24%. Some segments of the linkage groups I, XV and XVII are likely to contain genes important for organogenesis, somatic embryogenesis and protoplast division, as clustering of QTLs for these characters were described. The QTLs identified in these three linkage groups should be involved in cell division and in early events associated with cell differenciation. Received: 15 December 1999 / Accepted: 30 December 1999  相似文献   

13.
Bóka K  Orbán N  Kristóf Z 《Protoplasma》2007,230(1-2):89-97
Hybrid callus was formed from the successful protoplast fusion between pollen protoplasts of Brassica oleracea var. italica and haploid mesophyll protoplasts of Brassica rapa. The pollen protoplast isolation frequency in broccoli was highly related to the ratio of trinucleate pollens in the male gametophyte population. Large quantities of pollen protoplasts with high vigor could be isolated, and the isolation frequency reached up to 90% in 6.0-7.0 mm long flower buds with about 94.7% trinucleate-stage pollens. Pollen protoplasts could be collected and purified by discontinuous gradient centrifugation. In 1% Na-alginate embedding culture, cell divisions were observed but no further development was found. The haploid mesophyll protoplasts were isolated from in vitro haploid plants of B. rapa. Results strongly showed the variability in culturability of mesophyll protoplasts from different haploid lines. Both pollen protoplasts and haploid mesophyll protoplasts retained a stable round shape in the designed prefusion solution with an osmotic pressure of 0.74 osmol/kg. Polyethylene glycol was used for the protoplast fusion, and 40% polyethylene glycol 4000 enabled the highest fusion frequency of about 20%. Some postfusion protoplasts showed cell divisions up to callus proliferation. Calli were screened by random amplified polymorphic DNA analysis for their hybrid character. Results revealed the existence of the hybrid calli. Some of the hybrid calli grew well with green color and shoot primordia. According to our knowledge, this is the first report about a hybrid formation between two haploid protoplasts. Potential comprehensive applications, as well as problems of this technique, are discussed.  相似文献   

14.
F Constabel 《In vitro》1976,12(11):743-748
Somatic hybridization in higher plants has come into focus since methods have been established for protoplast fusion and uptake of foreign DNA and organelles by protoplasts. Polyethylene glycol (PEG) was an effective agent for inducing fusion. Treatment of protoplasts with PEG resulted in 5 to 30% heterospecific fusion products. Protoplasts of different species, genera and even families were compatible when fused. A number of protoplast combinations (soybean + corn, soybean + pea, soybean + tobacco, carrot + barley, etc.) provided fusion products which underwent cell division and callus formation. Fusion products initially were heterokaryocytes. In dividing heterokaryocytes, random distribution of mitotic nuclei was observed to be accompanied by multiple wall formation and to result in chimeral callus. Juxtaposition of mitotic nuclei suggested nuclear fusion and hybrid formation. Fusion of heterospecific interphase nuclei was demonstrated in soybean + pea and carrot + barley heterokaryons. Provided parental protoplasts carry suitable markers, the fusion products can be recognized. For the isolation and cloning of hybrid cells, fusion experiments must be supplemented with a selective system. Complementation of two non-allelic genes that prevent or inhibit growth under special culture conditions appears as the principle on which to base the selection of somatic hybrids. As protoplasts of some species have been induced to regenerate entire plants, the development of hybrid plants from protoplast fusion products is feasible and has already been demonstrated for tobacco.  相似文献   

15.
Summary Somatic hybridization in higher plants has come into focus since methods have been established for protoplast fusion and uptake of foreign DNA and organelles by protoplasts. Polyethylene glycol (PEG) was an effective agent for inducing fusion. Treatment of protoplasts with PEG resulted in 5 to 30% heterospecific fusion products. Protoplasts of different species, genera and even families were compatible when fused. A number of protoplast combinations (soybean + corn, soybean + pea, soybean + tobacco, carrot + barley, etc.) provided fusion products which underwent cell division and callus formation. Fusion products initially were heterokaryocytes. In dividing heterokaryocytes, random distribution of mitotic nuclei was observed to be accompanied by multiple wall formation and to result in chimeral callus. Juxtaposition of mitotic nuclei suggested nuclear fusion and hybrid formation. Fusion of heterospecific interphase nuclei was demonstrated in soybean + pea and carrot + barley heterokaryons. Provided parental protoplasts carry suitable markers, the fusion products can be recognized. For the isolation and cloning of hybrid cells, fusion experiments must be supplemented with a selective system. Complementation of two nonallelic genes that prevent or inhibit growth under special culture conditions appears as the principle on which to base the selection of somatic hybrids. As protoplasts of some species have been induced to regenerate entire plants, the development of hybrid plants from protoplast fusion products is feasible and has already been demonstrated for tobacco. Presented in the formal symposium on Somatic Cell Genetics at the 27th Annual Meeting of the Tissue Culture Association, Philadelphia, Pennsylvania, June 7–10, 1976.  相似文献   

16.
Petiole protoplasts from in vitro-grown carrot plants are a very good alternative to traditionally obtained protoplasts from suspension cultures. High plating and regeneration efficiencies were obtained in most of the breeding lines that were tested. The embedding of the protoplasts in alginate was crucial for initiating cell division and further development. Several streptomycin resistant and chlorophyll-deficient plant lines were selected for using the petiole protoplast system. Maternally inherited streptomycin resistance was demonstrated by sexual crosses. Protoplast fusion of several chlorophyll-deficient lines did not result in complementation, indicating the cytoplasmic nature of the mutations. Petiole protoplasts were used for direct transformation with plasmid DNA pNUNV containing NPTII as a selectable marker. High transformation frequencies (up to 1%) were obtained after PEG treatment of the protoplasts. Kanamycin resistance was shown to be inherited as a single dominant nuclear trait.  相似文献   

17.
Early events, such as formation of the cell wall, first nuclear division and first unequal division of the zygote, were examined following in vitro fusion of single egg and sperm protoplasts of maize ( Zea mays L.). The time course of these events was determined. The formation of cell wall components was observed 30 sec following egg—sperm fusion and proceeded continuously thereafter. Within 15 h after fusion most of the organelles became more densely grouped around the nucleus of the zygote. In the in vitro produced zygote the location of the cell organelles and of the dividing nucleus showed polarity. Two nucleoli were first observed 18 h after gamete fusion. The zygotic nucleus remained undivided for about 40 h. The first cell division was observed 40–60 h, generally 42–46 h, after egg—sperm fusion. The non-fused egg cell could be triggered to sporophytic development in vitro by pulses of high amounts of 2,4-D. Without such a treatment, cultured egg cells of different maize lines did not divide. Although nuclear fusion seemed to occur, fusion products of two egg cells also did not divide. Cell wall formation was incomplete and non-uniform, showing a polarity of cultured egg cells and fusion products of two egg protoplasts. Cell division was also induced after fusion of maize egg with sperms of genetically remote species, such as Coix, Sorghum, Hordeum or Triticum . These gametic heterologous fusion products developed to microcalli. Moreover, cell division occurred in fusion products of an egg and a diploid somatic cell-suspension protoplast from maize.  相似文献   

18.
Protoplast fusion was induced between sainfoin and alfalfa by an improved polyethyleneglycol (PEG) method. The intergeneric somatic calluses were selected based on complementation of hydroxyproline-resistance of sainfoin and hormone autonomy growth of alfalfa transformation cell line. 17 somatic hybrid plantlets were regenerat-ed. PEG could induce the tight agglutination of protoplasts. During diluting and washing process, cyclization of the linked membrane and formation of vesicle-like structures were observed, resulting in protoplast fusion. 5%-10% glycerol supplemented in the fusion inducing solution markedly increased the frequency of heterogeneous fusion. Better fusion results were obtained when mixed protoplast suspension was dripped in petri dishes in which PEG solution was previously placed. Chromosome number of regenerated hybrid buds varied from 30 to 60. The genome of hybrids in-cluded the small chromosome from sainfoin and two chromosomes with two clear constrictions from alfalfa. The hybrid  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号