首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Antigen three-dimensional structure potentially limits the access of endoproteolytic processing enzymes to cleavage sites and of class II major histocompatibility antigen-presenting proteins to helper T-cell epitopes. Helper T-cell epitopes in bacteriophage T4 Hsp10 have been mapped by restimulation of splenocytes from CBA/J and C57BL/6J mice immunized in conjunction with mutant (R192G) heat-labile enterotoxin from Escherichia coli. Promiscuously immunogenic sequences were associated with unstable loops in the three-dimensional structure of T4 Hsp10. The immunodominant sequence lies on the N-terminal flank of the 22-residue mobile loop, which is sensitive to proteolysis in divergent Hsp10s. Several mobile loop deletions that inhibited proteolysis in vitro caused global changes in the helper T-cell epitope map. A mobile loop deletion that strongly stabilized the protein dramatically reduced the immunogenicity of the flanking immunodominant helper T-cell epitope, although the protein retained good overall immunogenicity. Antisera against the mobile loop deletion variants exhibited increased cross-reactivity, most especially the antisera against the strongly stabilized variant. The results support the hypothesis that unstable loops promote the presentation of flanking epitopes and suggest that loop deletion could be a general strategy to increase the breadth and strength of an immune response.  相似文献   

2.
CD4+ helper T cells specific for human immunodeficiency virus type 1 (HIV-1) are associated with control of viremia. Nevertheless, vaccines have had limited effectiveness thus far, in part because sequence variability and other structural features of the HIV envelope glycoprotein deflect the immune response. Previous studies indicated that CD4+ T-cell epitope dominance is controlled by antigen three-dimensional structure through its influence on antigen processing and presentation. In this work, three disulfide bonds in the outer domain of gp120 were individually deleted in order to destabilize the local three-dimensional structure and enhance the presentation of nearby weakly immunogenic epitopes. However, upon immunization of groups of BALB/c mice, the CD4+ T-cell response was broadly reduced for all three variants, and distinct epitope profiles emerged. For one variant, antibody titers were sharply increased, and the antibody exhibited significant CD4-blocking activity.The development of an effective vaccine against HIV has been hampered by an incomplete understanding of the correlates of protection against the virus. It is generally accepted that a robust antibody response and cytotoxic T-lymphocyte (CTL) response are required to control the disease and to prevent progression to AIDS (2, 17, 19, 20, 36, 38-42). Both of these arms of the immune system require help from CD4+ helper T cells (1, 27, 48). However, several important aspects of the CD4+ helper T-cell response remain poorly defined; these include the factors that determine epitope immunodominance in the CD4+ T-cell response, the relationship of specificity in the CD4+ T-cell response to specificity in the antibody and CD8+ responses, and the investment made by HIV (or any pathogen) to control the CD4+ T-cell response.Previous studies of mice showed that antigen structure modulates antigen processing and presentation of CD4+ helper T-cell epitopes (3-6, 9, 10, 23, 24, 43). Immunodominant CD4+ helper T-cell epitopes raised in response to immunization with the HIV envelope glycoprotein gp120 were found adjacent to flexible loops between elements of secondary structure (10). This was rationalized by the fact that flexible loops more readily conform to protease active sites and therefore are preferentially cleaved by proteases during antigen processing (10, 14, 15). Helper T-cell epitopes of gp120 in humans infected with HIV were also found flanking flexible loops (30). Dominant epitopes were located in the outer domain, an average of 12 residues C-terminal to flexible loops. In the less immunogenic inner domain, epitopes were found an average of five residues N-terminal to conserved regions of the protein, once again placing the epitopes C-terminal to flexible loops (30). These results suggested that antigen structure plays a significant role in the shaping of the helper T-cell response against HIV gp120 in both mice and humans.In reviewing previous studies mapping the helper T-cell response to gp120, we noted a marked absence of CD4+ T-cell responses to regions of the outer domain that coincided with the locations of highly conserved disulfide bonds (Fig. (Fig.1).1). Disulfide bonds have previously been shown to interfere with presentation of nearby helper T-cell epitopes (13, 26). Thus, we hypothesized that disulfide bonds stabilized these regions of the protein, protecting them from proteolysis. This resulted in the exclusion of these regions from presentation to helper T cells. We further hypothesized that the deletion of these disulfide bonds would result in the production of new helper T-cell epitopes by creating localized regions of flexibility that could now be processed and presented to T cells. The creation of new helper T-cell epitopes could also potentially lead to changes in the antibody response.Open in a separate windowFIG. 1.Gaps in helper T-cell epitope frequency in the outer domain of HIV gp120 coincide with the locations of disulfide bonds. The graph illustrates the frequencies of responses by residue for the combined profiles from immunized BALB/c and CBA mice (gray area) and for a group of seven HIV-infected human subjects (black line) (10, 30).For the present work, we constructed three disulfide-bond variants of gp120 by replacing paired cysteines in the outer domain with alanines. Characterization of the variants revealed that the proteins were structurally distinct from one another and from wild-type gp120. Groups of 10 BALB/c mice immunized with these proteins produced patterns of helper T-cell responses that were very different from each other and from that of a group of 10 BALB/c mice immunized with wild-type gp120. In general, the T-cell response was reduced in mice immunized with the variant proteins. For one of the variants, anti-gp120 antibody titers were increased and exhibited CD4-blocking activity.  相似文献   

3.
The envelope glycoprotein of HIV gp120 is a T cell Ag in experimental animals and in humans infected with HIV or deliberately immunized with gp120 in various forms. Inasmuch as T cell responses result from the interaction of Ag processed and presented by APC with the unprimed T cell repertoire, we have investigated the human T cell repertoire specific for gp120 in seronegative, normal individuals. T cell lines and clones specific for HIV gp120 were generated by repeated in vitro stimulation of peripheral blood T lymphocytes with gp120-pulsed APC, followed by IL-2 expansion. We observed that the T cell response to whole gp120 involved single restricted immunodominant epitopes in gp120 that differ between responding individuals. Focusing of the response to limited regions of gp120 when the whole Ag is used for priming suggests that one or more adjacent epitopes are immunodominant and mask responses to "immunorecessive" epitopes. We have been able to generate primary in vitro responses to recessive epitopes by stimulation in vitro with synthetic peptides of gp120. The results indicate that a much broader T repertoire can be detected when individual peptides are used for priming in vitro rather than gp120. This information has important implications for the development of vaccination protocols aimed at eliciting diverse immune responses to "immunorecessive" regions of envelope glycoprotein.  相似文献   

4.
Extracellular Tat (eTat) plays an important role in HIV-1 pathogenesis. The presence of anti-Tat antibodies is negatively correlated with disease progression, hence making Tat a potential vaccine candidate. The cytotoxicity and moderate immunogenicity of Tat however remain impediments for developing Tat-based vaccines. Here, we report a novel strategy to concurrently enhance the immunogenicity and safety profile of Tat. The grafting of universal helper T-lymphocyte (HTL) epitopes, Pan DR Epitope (PADRE) and Pol711 into the cysteine rich domain (CRD) and the basic domain (BD) abolished the transactivation potential of the Tat protein. The HTL-Tat proteins elicited a significantly higher titer of antibodies as compared to the wild-type Tat in BALB/c mice. While the N-terminal epitope remained immunodominant in HTL-Tat immunizations, an additional epitope in exon-2 was recognized with comparable magnitude suggesting a broader immune recognition. Additionally, the HTL-Tat proteins induced cross-reactive antibodies of high avidity that efficiently neutralized exogenous Tat, thus blocking the activation of a Tat-defective provirus. With advantages such as presentation of multiple B-cell epitopes, enhanced antibody response and importantly, transactivation-deficient Tat protein, this approach has potential application for the generation of Tat-based HIV/AIDS vaccines.  相似文献   

5.
Comparing antigenicity and immunogenicity of engineered gp120   总被引:1,自引:0,他引:1       下载免费PDF全文
We have engineered monomeric gp120 in such a way as to favorably present the conserved epitope for the broadly neutralizing antibody b12 while lowering the exposure of epitopes recognized by some weakly neutralizing and nonneutralizing antibodies. The work presented here describes the immune response in rabbits immunized with two prototype, engineered gp120s to explore the relationship between antigenicity and immunogenicity for these mutants. The GDMR gp120 mutant (residues 473 to 476 on gp120 altered from GDMR to AAAA) has a series of substitutions on the edge of the CD4 binding site (CD4bs), and the mCHO gp120 mutant has seven extra glycans relative to the wild-type protein. Importantly, serum mapping showed that both mutants did not elicit antibodies against a number of epitopes that had been targeted for dampening. The sera from rabbits immunized with the GDMR gp120 mutant neutralized some primary viruses at levels somewhat better than the wild-type gp120 immune sera as a result of an increased elicitation of anti-V3 antibodies. Unlike wild-type gp120 immune sera, GDMR gp120 immune sera failed to neutralize HXBc2, a T-cell line adapted (TCLA) virus. This was associated with loss of CD4bs/CD4-induced antibodies that neutralize TCLA but not primary viruses. The mCHO gp120 immune sera did not neutralize primary viruses to any significant degree, reflecting the masking of epitopes of even weakly neutralizing antibodies without eliciting b12-like antibodies. These results show that antibody responses to multiple epitopes on gp120 can be dampened. More precise focusing to a neutralizing epitope will likely require several iterations comparing antigenicity and immunogenicity of engineered proteins.  相似文献   

6.
Prime-boost vaccination regimes have shown promise for obtaining protective immunity to HIV. Poorly understood mechanisms of cellular immunity could be responsible for improved humoral responses. Although CD4+ T-cell help promotes B-cell development, the relationship of CD4+ T-cell specificity to antibody specificity has not been systematically investigated. Here, protein and peptide-specific immune responses to HIV-1 gp120 were characterized in groups of ten mucosally immunized BALB/c mice. Protein and peptide reactivity of serum antibody was tested for correlation with cytokine secretion by splenocytes restimulated with individual gp120 peptides. Antibody titer for gp120 correlated poorly with the peptide-stimulated T-cell response. In contrast, titers for conformational epitopes, measured as crossreactivity or CD4-blocking, correlated with average interleukin-2 and interleukin-5 production in response to gp120 peptides. Antibodies specific for conformational epitopes and individual gp120 peptides typically correlated with T-cell responses to several peptides. In order to modify the specificity of immune responses, animals were primed with a gp120 peptide prior to immunization with protein. Priming induced distinct peptide-specific correlations of antibodies and T-cells. The majority of correlated antibodies were specific for the primed peptides or other peptides nearby in the gp120 sequence. These studies suggest that the dominant B-cell subsets recruit the dominant T-cell subsets and that T-B collaborations can be shaped by epitope-specific priming.  相似文献   

7.
The selection of human monoclonal antibodies (MAbs) specific for human immunodeficiency virus (HIV) type 1 by binding assays may fail to identify Abs to quaternary epitopes on the intact virions. The HIV neutralization assay was used for the selection of human MAb 2909, which potently neutralizes SF162 and recognizes an epitope on the virus surface but not on soluble proteins. Three regions of gp120, the V2 and V3 loops and the CD4 binding domain, contribute to the epitope recognized by MAb 2909. The existence of such a unique MAb, which defines a complex epitope formed by a quaternary structure, suggests that there may be other new neutralizing HIV epitopes to target with vaccines.  相似文献   

8.
We have determined the crystal structure of the Fab fragment from F105, a broadly reactive human antibody with limited potency that recognizes the CD4 binding site of gp120. The structure reveals an extended CDR H3 loop with a phenylalanine residue at the apex and shows a striking pattern of serine and tyrosine residues. Modeling the interaction between gp120 and F105 suggests that the phenylalanine may recognize the binding pocket of gp120 used by Phe(43) of CD4 and that numerous tyrosine and serine residues form hydrogen bonds with the main chain atoms of gp120. A comparison of the F105 structure to that of immunoglobulin G1 b12, a much more potent and broadly neutralizing antibody with an overlapping epitope, suggests similarities that contribute to the broad recognition of human immunodeficiency virus by both antibodies. While the putative epitope for F105 shows significant overlap with that predicted for b12, it appears to differ from the b12 epitope in extending across the interface between the inner and outer domains of gp120. In contrast, the CDR loops of b12 appear to interact predominantly with the outer domain of gp120. The difference between the predicted epitopes for b12 and F105 suggests that the unique potency of b12 may arise from its ability to avoid the interface between the inner and outer domains of gp120.  相似文献   

9.
The glycan shield comprised of multiple carbohydrate chains on the human immunodeficiency virus (HIV) envelope glycoprotein gp120 helps the virus to evade neutralizing antibodies. The present study describes a novel method for increasing immunogenicity of gp120 vaccine by enzymatic replacement of sialic acid on these carbohydrate chains with Galalpha1-3Galbeta1-4GlcNAc-R (alpha-gal) epitopes. These epitopes are ligands for the natural anti-Gal antibody constituting approximately 1% of immunoglobulin G in humans. We hypothesize that vaccination with gp120 expressing alpha-gal epitopes (gp120(alphagal)) results in in vivo formation of immune complexes with anti-Gal, which targets vaccines for effective uptake by antigen-presenting cells (APC), due to interaction between the Fc portion of the antibody and Fcgamma receptors on APC. This in turn results in effective transport of the vaccine to lymph nodes and effective processing and presentation of gp120 immunogenic peptides by APC for eliciting a strong anti-gp120 immune response. This hypothesis was tested in alpha-1,3-galactosyltransferase knockout mice, which produce anti-Gal. Mice immunized with gp120(alphagal) produced anti-gp120 antibodies in titers that were >100-fold higher than those measured in mice immunized with comparable amounts of gp120 and effectively neutralized HIV. T-cell response, measured by ELISPOT, was much higher in mice immunized with gp120(alphagal) than in mice immunized with gp120. It is suggested that gp120(alphagal) can serve as a platform for anti-Gal-mediated targeting of additional vaccinating HIV proteins fused to gp120(alphagal), thereby creating effective prophylactic vaccines.  相似文献   

10.
Recent studies of human immunodeficiency virus (HIV)-specific CD8(+) T cells have focused on responses to single, usually HLA-A2-restricted epitopes as surrogate measures of the overall response to HIV. However, the assumption that a response to one epitope is representative of the total response is unconfirmed. Here we assess epitope immunodominance and HIV-specific CD8(+) T-cell response complexity using cytokine flow cytometry to examine CD8(+) T-cell responses in 11 HLA-A2(+) HIV(+) individuals. Initial studies demonstrated that only 4 of 11 patients recognized the putative immunodominant HLA-A2-restricted p17 epitope SLYNTVATL, suggesting that the remaining subjects might lack significant HIV-specific CD8(+) T-cell responses. However, five of six SLYNTVATL nonresponders recognized other HIV epitopes, and two of four SLYNTVATL responders had greater responses to HIV peptides restricted by other class I alleles. In several individuals, no HLA-A2-restricted epitopes were recognized, but CD8(+) T-cell responses were detected to epitopes restricted by other HLA class I alleles. These data indicate that an individual's overall CD8(+) T-cell response to HIV is not adequately represented by the response to a single epitope and that individual major histocompatibility complex class I alleles do not predict an immunodominant response restricted by that allele. Accurate quantification of total HIV-specific CD8(+) T-cell responses will require assessment of the response to all possible epitopes.  相似文献   

11.
The third hypervariable domain V3 of the human immunodeficiency virus type 1 gpl20 envelope glycoprotein contains neutralizing epitopes and plays an important role in the diagnosis of HIV infection . Neutralizing antibodies bind to conserved epitope with sequence GPG of V3 loop. The effect of sequence variation on the antigenic properties of the V3 epitope gp120 was studied using five synthetic peptides. The amino acid sequence of the peptide corresponding to the V3 region gp120 of HIV-1 subtype C showed the highest immunoreactivity. The DNA fragment encoding V3-C region gp120 was synthesized by polymerase chain reaction and cloned into pET41b vector. The recombinant plasmid was expressed in the E. coli cells, and recombinant protein was purified using glutathione-S sepharose affinity chromatography. The serological activity of the recombinant protein was tested using ELISA and compared to activity of similar synthetic peptide. The results of this study showed that most immunoreactive agent was the amino acid sequence of V3 region gp120 of HIV-1 subtype C. The recombinant antigen comprising this sequence was more antigenic than synthetic peptide with the same sequence. The evaluation of this antigen shows that this protein is a good candidate for the immunoassay development.  相似文献   

12.
Rationally engineered therapeutic proteins with reduced immunogenicity   总被引:1,自引:0,他引:1  
Chronic administration of protein therapeutics may elicit unacceptable immune responses to the specific protein. Our hypothesis is that the immunogenicity of protein drugs can be ascribed to a few immunodominant helper T lymphocyte (HTL) epitopes, and that reducing the MHC binding affinity of these HTL epitopes contained within these proteins can generate drugs with lower immunogenicity. To test this hypothesis, we studied the protein therapeutic erythropoietin (Epo). Two regions within Epo, designated Epo 91-120 and Epo 126-155, contained HTL epitopes that were recognized by individuals with numerous HLA-DR types, a property common to immunodominant HTL epitopes. We then engineered analog epitopes with reduced HLA binding affinity. These analog epitopes were associated with reduced in vitro immunogenicity. Two modified forms of Epo containing these substitutions were shown to be bioactive and nonimmunogenic in vitro. These findings support our hypothesis and demonstrate that immunogenicity of protein drugs can be reduced in a systematic and predictable manner.  相似文献   

13.
The high affinity binding site for human immunodeficiency virus (HIV) envelope glycoprotein gp120 resides within the amino-terminal domain (D1) of CD4. Mutational and antibody epitope analyses have implicated the region encompassing residues 40-60 in D1 as the primary binding site for gp120. Outside of this region, a single residue substitution at position 87 abrogates syncytium formation without affecting gp120 binding. We describe two groups of CD4 monoclonal antibodies (mAbs) which recognize distinct epitopes associated with these regions in D1. These mAbs distinguish between the gp120 binding event and virus infection and virus-induced cell fusion. One cluster of mAbs, which bind at or near the high affinity gp120 binding site, blocked gp120 binding to CD4 and, as expected, also blocked HIV infection of CD4+ cells and virus-induced syncytium formation. A second cluster of mAbs, which recognize the CDR-3 like loop, did not block gp120 binding as demonstrated by their ability to form ternary complexes with CD4 and gp120. Yet, these mAbs strongly inhibited HIV infection of CD4+ cells and HIV-envelope/CD4-mediated syncytium formation. The structure of D1 has recently been solved at atomic resolution and in its general features resembles IgVk regions as predicted from sequence homology and mAb epitopes. In the D1 structure, the regions recognized by these two groups of antibodies correspond to the C'C" (Ig CDR2) and FG (Ig CDR3) hairpin loops, respectively, which are solvent-exposed beta turns protruding in two different directions on a face of D1 distal to the D2 domain. This face is straddled by the longer BC (Ig CDR1) loop which bisects the plain formed by C'C' and FG. This structure is consistent with C'C' and FG forming two distinct epitope clusters within D1. We conclude that the initial interaction between gp120 and CD4 is not sufficient for HIV infection and syncytium formation and that CD4 plays a critical role in the subsequent virus-cell and cell-cell membrane fusion events. We propose that the initial binding of CD4 to gp120 induces conformational changes in gp120 leading to subsequent interactions of the FG loop with other regions in gp120 or with the fusogenic gp41 potion of the envelope gp160 glycoprotein.  相似文献   

14.

Background

We recently reported induction of broadly neutralizing antibodies (bnAbs) against multiple HIV-1 (human immunodeficiency virus type 1) isolates in rabbits, albeit weak against tier 2 viruses, using a monomeric gp120 derived from an M group consensus sequence (MCON6). To better understand the nature of the neutralizing activity, detailed characterization of immunological properties of the protein was performed. Immunogenic linear epitopes were identified during the course of immunization, and spatial distribution of these epitopes was determined. Subdomain antibody target analyses were done using the gp120 outer domain (gp120-OD) and eOD-GT6, a protein based on a heterologous sequence. In addition, refined epitope mapping analyses were done by competition assays using several nAbs with known epitopes.

Results

Based on linear epitope mapping analyses, the V3 loop was most immunogenic, followed by C1 and C5 regions. The V1/V2 loop was surprisingly non-immunogenic. Many immunogenic epitopes were clustered together even when they were distantly separated in primary sequence, suggesting the presence of immunogenic hotspots on the protein surface. Although substantial antibody responses were directed against the outer domain, only about 0.1% of the antibodies bound eOD-GT6. Albeit weak, antibodies against peptides that corresponded to a part of the bnAb VRC01 binding site were detected. Although gp120-induced antibodies could not block VRC01 binding to eOD-GT6, they were able to inhibit VRC01 binding to both gp120 and trimeric BG505 SOSIP gp140. The immune sera also efficiently competed with CD4-IgG2, as well as nAbs 447-52D, PGT121 and PGT126, in binding to gp120.

Conclusions

The results suggest that some antibodies that bind at or near known bnAb epitopes could be partly responsible for the breadth of neutralizing activity induced by gp120 in our study. Immunization strategies that enhance induction of these antibodies relative to others (e.g. V3 loop), and increase their affinity, could improve protective efficacy of an HIV-1 vaccine.
  相似文献   

15.
HIV-exposed, uninfected (EUN) babies born to HIV-infected mothers are examples of natural resistance to HIV infection. In this study, we evaluated the titer and neutralizing potential of gp41-specific maternal antibodies and their correlation with HIV transmission in HIV-infected mother-child pairs. Specific gp41-binding and -neutralizing antibodies were determined in a cohort of 74 first-time mother-child pairs, of whom 40 mothers were infected with HIV subtype C. Within the infected mother cohort, 16 babies were born infected and 24 were PCR negative and uninfected at birth (i.e., exposed but uninfected). Thirty-four HIV-uninfected and HIV-unexposed mother-child pairs were included as controls. All HIV-positive mothers and their newborns showed high IgG titers to linear epitopes within the HR1 region and to the membrane-proximal (MPER) domain of gp41; most sera also recognized the disulfide loop immunodominant epitope (IDE). Antibody titers to the gp41 epitopes were significantly lower in nontransmitting mothers (P < 0.01) and in the EUN babies (P < 0.005) than in HIV-positive mother-child pairs. Three domains of gp41, HR1, IDE, and MPER, elicited antibodies that were effectively transmitted to EUN babies. Moreover, in EUN babies, epitopes overlapping the 2F5 epitope (ELDKWAS), but not the 4E10 epitope, were neutralization targets in two out of four viruses tested. Our findings highlight important epitopes in gp41 that appear to be associated with exposure without infection and would be important to consider for vaccine design.  相似文献   

16.
HLA-B*27 exerts protective effects in hepatitis C virus (HCV) and human immunodeficiency virus (HIV) infections. While the immunological and virological features of HLA-B*27-mediated protection are not fully understood, there is growing evidence that the presentation of specific immunodominant HLA-B*27-restricted CD8+ T-cell epitopes contributes to this phenomenon in both infections. Indeed, protection can be linked to single immunodominant CD8+ T-cell epitopes and functional constraints on escape mutations within these epitopes. To better define the immunological mechanisms underlying HLA-B*27-mediated protection in HCV infection, we analyzed the functional avidity, functional profile, antiviral efficacy and naïve precursor frequency of CD8+ T cells targeting the immunodominant HLA-B*27-restricted HCV-specific epitope as well as its antigen processing and presentation. For comparison, HLA-A*02-restricted HCV-specific epitopes were analyzed. The HLA-B*27-restricted CD8+ T-cell epitope was not superior to epitopes restricted by HLA-A*02 when considering the functional avidity, functional profile, antiviral efficacy or naïve precursor frequency. However, the peptide region containing the HLA-B*27-restricted epitope was degraded extremely fast by both the constitutive proteasome and the immunoproteasome. This efficient proteasomal processing that could be blocked by proteasome inhibitors was highly dependent on the hydrophobic regions flanking the epitope and led to rapid and abundant presentation of the epitope on the cell surface of antigen presenting cells. Our data suggest that rapid antigen processing may be a key immunological feature of this protective and immunodominant HLA-B*27-restricted HCV-specific epitope.  相似文献   

17.
A number of monoclonal antibodies (MAbs) with various levels of neutralizing activity that recognize epitopes in the V1/V2 domain of LAI-related gp120s have been described. These include rodent antibodies directed against linear and conformational epitopes and a chimpanzee MAb, C108G, with extremely potent neutralizing activity directed against a glycan-dependent epitope. A fusion glycoprotein expression system that expressed the isolated V1/V2 domain of gp120 in native form was used to analyze the structural characteristics of these epitopes. A number of MAbs (C108G, G3-4, 684-238, SC258, 11/68b, 38/66a, 38/66c, 38/62c, and CRA3) that did not bind with high affinity to peptides immunoprecipitated a fusion glycoprotein expressing the V1/V2 domain of HXB2 gp120 in the absence of other human immunodeficiency virus sequences, establishing that their epitopes were fully specified within this region. Biochemical analyses indicated that in the majority of V1/V2 fusion molecules only five of the six glycosylation signals in the V1/V2 domain were utilized, and the glycoforms were found to be differentially recognized by particular MAbs. Both C108G and MAbs directed against conformational epitopes reacted with large fractions of the fully glycosylated molecules but with only small fractions of the incompletely glycosylated molecules. Mutational analysis of the V1 and V2 glycosylation signals indicated that in most cases the unutilized site was located either at position 156 or at position 160, suggesting the occurrence of competition for glycan addition at these neighboring positions. Mutation of glycosylation site 160 destroyed the C108G epitope but increased the fraction of the molecules that presented the conformational epitopes, while mutation of the highly conserved glycosylation site at position 156 greatly diminished the expression of the conformational epitopes and increased expression of the C108G epitope. Similar heterogeneity in glycosylation was also observed when the HXB2 V1/V2 fusion glycoprotein was expressed without most of the gp70 carrier protein, and thus, this appeared to be an intrinsic property of the V1/V2 domain. Heterogeneity in expression of conformational and glycan-dependent epitopes was also observed for the natural viral env precursor, gPr160, but not for gp120. These results suggested that the closely spaced glycosylation sites 156 and 160 are often alternatively utilized and that the pattern of glycosylation at these positions affects the formation of the conformational structures needed for both expression of native epitopes in this region and processing of gPr160 to mature env products.  相似文献   

18.
Antigen three-dimensional structure potentially limits antigen processing and presentation to helper T-cell epitopes. The association of helper T-cell epitopes with the mobile loop in Hsp10s from mycobacteria and bacteriophage T4 suggests that the mobile loop facilitates proteolytic processing and presentation of adjacent sequences. Sites of initial proteolytic cleavage were mapped in divergent Hsp10s after treatment with a variety of proteases including cathepsin S. Each protease preferentially cleaved the Hsp10s in the mobile loop. Flexibility in the 22-residue mobile loop most probably allows it to conform to protease active sites. Three variants of the bacteriophage T4 Hsp10 were constructed with deletions in the mobile loop to test the hypothesis that shorter loops would be less sensitive to proteolysis. The two largest deletions effectively inhibited proteolysis by several proteases. Circular dichroism spectra and chemical cross-linking of the deletion variants indicate that the secondary and quaternary structures of the variants are native-like, and all three variants were more thermostable than the wild-type Hsp10. Local structural flexibility appears to be a general requirement for proteolytic sensitivity, and thus, it could be an important factor in antigen processing and helper T-cell epitope immunogenicity.  相似文献   

19.
A model of the spatial structure of the immunodominant epitope of human immunodeficiency virus type 1 (HIV-Haiti virion) consistent with the NMR data was constructed using an earlier proposed method based on theoretical calculations. It was found that, in aqueous solution, the main immunogenic region of the virus protein gp120 took the prevalent conformation of a double β-turn IV–IV. It is shown that two structures of this fragment found in the crystal were present in the set of preferable conformations of the HIV-Haiti immunodominant epitope. On the basis of comparative analysis of the 3D structures of the immunodominant epitopes of type 1 human immunodeficiency virus (HIV-Haiti, HIV-Thailand, and HIV-MN virions), it was concluded that the studied gp120 fragment forms similar spatial backbone structures in these three virus subtypes; however, these structures are formed from different local minimums of the constituent amino acids. It was assumed that the detected distinctions between the local structures of this fragment determine the specificity of HIV-1 binding to virus-neutralizing antibodies.  相似文献   

20.
T-cell epitopes within viral polypeptide VP4 of the capsid protein of foot-and-mouth disease virus were analyzed using 15-mer peptides and peripheral blood mononuclear cells (PBMC) from vaccinated outbred pigs. An immunodominant region between VP4 residues 16 and 35 was identified, with peptide residues 20 to 34 (VP4-0) and 21 to 35 (VP4-5) particularly immunostimulatory for PBMC from all of the vaccinated pigs. CD25 upregulation on peptide-stimulated CD4(+) CD8(+) cells-dominated by Th memory cells in the pig-and inhibition using anti-major histocompatibility complex class II monoclonal antibodies indicated recognition by Th lymphocytes. VP4-0 immunogenicity was retained in a tandem peptide with the VP1 residue 137 to 156 sequential B-cell epitope. This B-cell site also retained immunogenicity, but evidence is presented that specific antibody induction in vitro required both this and the T-cell site. Heterotypic recognition of the residue 20 to 35 region was also noted. Consequently, the VP4 residue 20 to 35 region is a promiscuous, immunodominant and heterotypic T-cell antigenic site for pigs that is capable of providing help for a B-cell epitope when in tandem, thus extending the possible immunogenic repertoire of peptide vaccines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号