首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
Cardiovascular responses to hypoxia and hypercapnia in barodenervated rats   总被引:2,自引:0,他引:2  
Experiments were performed to examine the role of the arterial baroreceptors in the cardiovascular responses to acute hypoxia and hypercapnia in conscious rats chronically instrumented to monitor systemic hemodynamics. One group of rats remained intact, whereas a second group was barodenervated. Both groups of rats retained arterial chemoreceptive function as demonstrated by augmented ventilation in response to hypoxia. The cardiovascular effects to varying inspired levels of O2 and CO2 were examined and compared between intact and barodenervated rats. No differences between groups were noted in response to mild hypercapnia (5% CO2); however, the bradycardia and reduction in cardiac output observed in intact rats breathing 10% CO2 were eliminated by barodenervation. In addition, hypocapnic hypoxia caused a marked fall in blood pressure and total peripheral resistance (TPR) in barodenervated rats compared with controls. Similar differences in TPR were observed between the groups in response to isocapnic and hypercapnic hypoxia as well. It is concluded that the arterial baroreflex is an important component of the overall cardiovascular responses to both hypercapnic and hypoxic stimuli in the conscious rat.  相似文献   

2.
The process of the respiratory air conditioning as a process of heat and mass exchange at the interface inspired air-airways surface was studied. Using a model of airways (Olson et al., 1970) where the segments of the respiratory tract are like cylinders with a fixed length and diameter, the corresponding heat transfer equations, in the paper are founded basic rate exchange parameters-convective heat transfer coefficient h(c)(W m(-2) degrees C(-1)) and evaporative heat transfer coefficient h(e)(W m(-2)hPa(-1)). The rate transfer parameters assumed as sources with known heat power are connected to airflow rate in different airways segments. Relationships expressing warming rate of inspired air due to convection, warming rate of inspired air due to evaporation, water diffused in the inspired air from the airways wall, i.e. a system of air conditioning parameters, was composed. The altitude dynamics of the relations is studied. Every rate conditioning parameter is an increasing function of altitude. The process of diffusion in the peripheral bronchial generations as a basic transfer process is analysed. The following phenomenon is in effect: the diffusion coefficient increases with altitude and causes a compensation of simultaneous decreasing of O(2)and CO(2)densities in atmospheric air. Due to this compensation, the diffusion in the peripheral generations with altitude is approximately constant. The elements of the human anatomy optimality as well as the established dynamics are discussed and assumed. The square form of the airways after the trachea expressed in terms of transfer supposes (in view of maximum contact surface), that a maximum heat and water exchange is achieved, i.e. high degree of air condition at fixed environmental parameters and respiration regime.  相似文献   

3.
In awake lambs we investigated the role of the peripheral chemoreceptors in producing dynamic ventilatory (VE) responses to CO2. The immediate VE response, within 15 s, to transient CO2 inhalation was studied in two groups: 1) five lambs before carotid denervation and 2) the same lambs after carotid denervation. The time course of VE responses during the first 60 s after a step change to 8% inspired CO2 was also studied in lambs after carotid denervation and in a group of six carotid body-intact lambs 10-11 days of age. Acute CO2 responses were assessed using step changes to various concentrations of CO2 + air and CO2 + O2, while VE was recorded breath by breath. Intact lambs exhibited a brisk VE response to step changes in CO2, beginning after 3-5 s. Hyperoxia altered but did not suppress the dynamic VE CO2 response when the carotid chemoreceptors were intact. Carotid denervation markedly reduced the VE response during the first 25 s after a CO2 step change, revealing the time delay required for the central chemoreceptors to produce an effective VE response. The residual VE response remaining after CD was thought to be mediated by the remaining aortic body chemoreceptors and was eliminated by adding O2 to the CO2 challenges. However, after carotid denervation, even with CO2 + hyperoxia, the onset of a small tidal volume response was apparent by 10-12 s.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Hypoxia potentiates the ventilatory response to exercise, eliciting a greater decrease in arterial PCO2 (PaCO2) from rest to exercise than in normoxia. The mechanism of this hypoxia-exercise interaction requires intact carotid chemoreceptors. To determine whether carotid chemoreceptor stimulation alone is sufficient to elicit the mechanism without whole body hypoxia, ventilatory responses to treadmill exercise were compared in goats during hyperoxic control conditions, moderate hypoxia (PaO2 = 38-44 Torr), and peripheral chemoreceptor stimulation with the peripheral dopamine D2-receptor antagonist, domperidone (Dom; 0.5 mg/kg iv). Measurements with Dom were made in both hyperoxia (Dom) and hypoxia (Dom/hypoxia). Finally, ventilatory responses to inspired CO2 at rest were compared in each experimental condition because enhanced CO2 chemoreception might be expected to blunt the PaCO2 decrease during exercise. At rest, PaCO2 decreased from control with Dom (-5.0 +/- 0.9 Torr), hypoxia (-4.1 +/- 0.5 Torr), and Dom/hypoxia (-11.1 +/- 1.2 Torr). The PaCO2 decrease from rest to exercise was not significantly different between control (-1.7 +/- 0.6 Torr) and Dom (-1.4 +/- 0.8 Torr) but was significantly greater in hypoxia (-4.3 +/- 0.7 Torr) and Dom/hypoxia (-3.5 +/- 0.9 Torr). The slope of the ventilation vs. CO2 production relationship in exercise increased with Dom (16%), hypoxia (18%), and Dom/hypoxia (68%). Ventilatory responses to inspired CO2 at rest increased from control to Dom (236%) and Dom/hypoxia (295%) and increased in four of five goats in hypoxia (mean 317%).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Breathing pattern and steady-state CO2 ventilatory response during mouth breathing were compared with those during nose breathing in nine healthy adults. In addition, the effect of warming and humidification of the inspired air on the ventilatory response was observed during breathing through a mouthpiece. We found the following. 1) Dead space and airway resistance were significantly greater during nose than during mouth breathing. 2) The slope of CO2 ventilatory responses did not differ appreciably during the two types of breathing, but CO2 occlusion pressure response was significantly enhanced during nose breathing. 3) Inhalation of warm and humid air through a mouthpiece significantly depressed CO2 ventilation and occlusion pressure responses. These results fit our observation that end-tidal PCO2 was significantly higher during nose than during mouth breathing. It is suggested that a loss of nasal functions, such as during nasal obstruction, may result in lowering of CO2, fostering apneic spells during sleep.  相似文献   

6.
The possible role of intrapulmonary CO2 receptors (IPC) in arterial CO2 partial pressure (PaCO2) homeostasis was investigated by comparing the arterial blood gas and ventilatory responses to CO2 loading via the inspired gas and via the venous blood. Adult male Pekin ducks were decerebrated 1 wk prior to an experiment. Venous CO2 loading was accomplished with a venovenous extracorporeal blood circuit that included a silicone-membrane blood oxygenator. The protocol randomized four states: control (no loading), venous CO2 loading, inspired CO2 loading, and venous CO2 unloading. Intravenous and inspired loading both resulted in hypercapnic hyperpnea. Comparison of the ventilatory sensitivity (delta VE/delta PaCO2) showed no significant difference between the two loading regimes. Likewise, venous CO2 unloading led to a significant hypocapnic hypopnea. Sensitivity to changes in PaCO2 could explain the response of ventilation under these conditions. The ventilatory pattern, however, was differentially sensitive to the route of CO2 loading; inspired CO2 resulted in slower deeper breathing than venous loading. It is concluded that IPC play a minor role in adjusting ventilation to match changes in pulmonary CO2 flux but rather are involved in pattern determination.  相似文献   

7.
A recent continuum model of the large scale electrical activity of the cerebral cortex is generalized to include cholinergic modulation. In this model, dynamic modulation of synaptic strength acts over the time scales of nicotinic and muscarinic receptor action. The cortical model is analyzed to determine the effect of acetylcholine (ACh) on its steady states, linear stability, spectrum, and temporal responses to changes in subcortical input. ACh increases the firing rate in steady states of the system. Changing ACh concentration does not introduce oscillatory behavior into the system, but increases the overall spectral power. Model responses to pulses in subcortical input are affected by the tonic level of ACh concentration, with higher levels of ACh increasing the magnitude firing rate response of excitatory cortical neurons to pulses of subcortical input. Numerical simulations are used to explore the temporal dynamics of the model in response to changes in ACh concentration. Evidence is seen of a transition from a state in which intracortical inputs are emphasized to a state where thalamic afferents have enhanced influence. Perturbations in ACh concentration cause changes in the firing rate of cortical neurons, with rapid responses due to fast acting facilitatory effects of nicotinic receptors on subcortical afferents, and slower responses due to muscarinic suppression of intracortical connections. Together, these numerical simulations demonstrate that the actions of ACh could be a significant factor modulating early components of evoked response potentials.  相似文献   

8.
Nonobstructive (i.e., central) sleep apnea is a major cause of sleep-disordered breathing in patients with stable congestive heart failure (CHF). Although central sleep apnea (CSA) is prevalent in this population, occurring in 40-50% of patients, its pathogenesis is poorly understood. Dynamic loop gain and delay of the chemoreflex response to CO(2) was measured during wakefulness in CHF patients with and without CSA by use of a pseudorandom binary CO(2) stimulus method. Use of a hyperoxic background minimized responses derived from peripheral chemoreceptors. The closed-loop and open-loop gain, estimated from the impulse response, was three times greater in patients with nocturnal CSA (n = 9) than in non-CSA patients (n = 9). Loop dynamics, estimated by the 95% response duration time, did not differ between the two groups of patients. We speculate that an increase in dynamic gain of the central chemoreflex response to CO(2) contributes to the genesis of CSA in patients with CHF.  相似文献   

9.
The ventilatory response to exercise below ventilatory threshold (VTh) increases with aging, whereas above VTh the ventilatory response declines only slightly. We wondered whether this same ventilatory response would be observed in older runners. We also wondered whether their ventilatory response to exercise while breathing He-O(2) or inspired CO(2) would be different. To investigate, we studied 12 seniors (63 +/- 4 yr; 10 men, 2 women) who exercised regularly (5 +/- 1 days/wk, 29 +/- 11 mi/wk, 16 +/- 6 yr). Each subject performed graded cycle ergometry to exhaustion on 3 separate days, breathing either room air, 3% inspired CO(2), or a heliox mixture (79% He and 21% O(2)). The ventilatory response to exercise below VTh was 0.35 +/- 0.06 l x min(-1) x W(-1) and above VTh was 0.66 +/- 0.10 l x min(-1) x W(-1). He-O(2) breathing increased (P < 0.05) the ventilatory response to exercise both below (0.40 +/- 0.12 l x min(-1) x W(-1)) and above VTh (0.81 +/- 0.10 l x min(-1) x W(-1)). Inspired CO(2) increased (P < 0.001) the ventilatory response to exercise only below VTh (0.44 +/- 0.10 l x min(-1) x W(-1)). The ventilatory responses to exercise with room air, He-O(2), and CO(2) breathing of these fit runners were similar to those observed earlier in older sedentary individuals. These data suggest that the ventilatory response to exercise of these senior runners is adequate to support their greater exercise capacity and that exercise training does not alter the ventilatory response to exercise with He-O(2) or inspired CO(2) breathing.  相似文献   

10.
Intrapulmonary chemoreceptors (IPC) are CO(2)-sensitive sensory neurons that innervate the lungs of birds, help control the rate and depth of breathing, and require carbonic anhydrase (CA) for normal function. We tested whether the CA enzyme is located intracellularly or extracellularly in IPC by comparing the effect of a CA inhibitor that is membrane permeable (iv acetazolamide) with one that is relatively membrane impermeable (iv benzolamide). Single cell extracellular recordings were made from vagal filaments in 16 anesthetized, unidirectionally ventilated mallards (Anas platyrhynchos). Without CA inhibition, action potential discharge rate was inversely proportional to inspired PCO(2) (-9.0 +/- 0.8 s(-1). lnTorr(-1); means +/- SE, n = 16) and exhibited phasic responses to rapid PCO(2) changes. Benzolamide (25 mg/kg iv) raised the discharge rate but did not alter tonic IPC PCO(2) response (-9.8 +/- 1.6 s(-1). lnTorr(-1), n = 8), and it modestly attenuated phasic responses. Acetazolamide (10 mg/kg iv) raised IPC discharge, significantly reduced tonic IPC PCO(2) response to -3.5 +/- 3.6 s(-1). lnTorr(-1) (n = 6), and severely attenuated phasic responses. Results were consistent with an intracellular site for CA that is less accessible to benzolamide. A model of IPC CO(2) transduction is proposed.  相似文献   

11.
Role of substance P in hypercapnic excitation of carotid chemoreceptors   总被引:1,自引:0,他引:1  
Experiments were performed on 17 anesthetized, paralyzed, and artificially ventilated cats to evaluate the importance of substance P-like peptide (SP) on the carotid body responses to CO2. Single or paucifiber carotid chemoreceptor activity was recorded from the peripheral end of the cut carotid sinus nerve. In eight of the cats the influence of SP on hyperoxic hypercapnic responses was studied. While the animals breathed 100% O2, intracarotid infusion of SP (1 microgram.kg-1.min-1, 3 min) increased chemoreceptor activity by +4.8 +/- 0.3 impulses/s. After SP infusion, inhalation of CO2 in O2 caused a rapid increase in activity that reached a peak and then adapted to a lower level, whereas similar levels of CO2 before SP caused only a gradual increase in carotid body discharge rate without any overshoot in response. Furthermore SP significantly increased the magnitude and slope of the CO2 response. In the other nine cats the effect of intracarotid infusion of an SP antagonist, [D-Pro2,D-Trp7,9] SP (10-15 micrograms.kg-1.min-1), on carotid body responses to 1) hyperoxic hypercapnia (7% CO2-93% O2), 2) isocapnic hypoxia (11% O2-89% N2), and 3) hypoxic hypercapnia (11% O2-7% CO2-82% N2) was examined. SP antagonist had no effect on carotid body response to hyperoxic hypercapnia but significantly attenuated the chemoreceptor excitation caused by isocapnic hypoxia and hypoxic hypercapnia. These results suggest that 1) SP may play an important role in carotid body responses to hypoxia but not to CO2, and 2) the mechanisms of stimulation of the carotid body by hypercapnia and by hypoxia differ.  相似文献   

12.
Pulmonary CO2 flow (the product of cardiac output and mixed venous CO2 content) is purported to be an important determinant of ventilatory dynamics in moderate exercise. Depletion of body CO2 stores prior to exercise should thus slow these dynamics. We investigated, therefore, the effects of reducing the CO2 stores by controlled volitional hyperventilation on cardiorespiratory and gas exchange response dynamics to 100 W cycling in six healthy adults. The control responses of ventilation (VE), CO2 output (VCO2), O2 uptake (VO2), and heart rate were comprised of an abrupt increase at exercise onset, followed by a slower rise to the new steady state (t1/2 = 48, 43, 31, and 33 s, respectively). Following volitional hyperventilation (9 min, PETCO2 = 25 Torr), the steady-state exercise responses were unchanged. However, VE and VCO2 dynamics were slowed considerably (t1/2 = 76, 71 s) as PETCO2 rose to achieve the control exercise value. VO2 dynamics were slowed only slightly (t1/2 = 39 s), and heart rate dynamics were unaffected. We conclude that pulmonary CO2 flow provides a significant stimulus to the dynamics of the exercise hyperpnea in man.  相似文献   

13.
Temperate and boreal forest ecosystems contain a large part of the carbon stored on land, in the form of both biomass and soil organic matter. Increasing atmospheric [CO2], increasing temperature, elevated nitrogen deposition and intensified management will change this C store. Well documented single-factor responses of net primary production are: higher photosynthetic rate (the main [CO2] response); increasing length of growing season (the main temperature response); and higher leaf-area index (the main N deposition and partly [CO2] response). Soil organic matter will increase with increasing litter input, although priming may decrease the soil C stock initially, but litter quality effects should be minimal (response to [CO2], N deposition, and temperature); will decrease because of increasing temperature; and will increase because of retardation of decomposition with N deposition, although the rate of decomposition of high-quality litter can be increased and that of low-quality litter decreased. Single-factor responses can be misleading because of interactions between factors, in particular those between N and other factors, and indirect effects such as increased N availability from temperature-induced decomposition. In the long term the strength of feedbacks, for example the increasing demand for N from increased growth, will dominate over short-term responses to single factors. However, management has considerable potential for controlling the C store.  相似文献   

14.
Cerebrocortical b-cytochromes have been found to be sensitive to reduction in the presence of CO and O2 in vivo. CO-mediated cytochrome b reduction responses in "bloodless" rats were correlated in this study with changes in concentrations of high energy and glycolytic intermediates measured in cortex after rapid brain freezing. Cytochrome redox state and metabolite concentrations also were compared with cerebral blood flow (CBF) and cerebral metabolic rate for O2 (CMRo2) measured before and after CO administration. No definite biochemical evidence of energy limitation was found in parietal cortex after the fluorocarbon-for-blood exchange; however, CO had direct effects on brain metabolite concentrations. Fifteen-minute CO exposures at inspired CO/O2 of 0.003-0.06 increased cerebrocortical phosphocreatine and ADP and decreased creatine concentration. CO exposure produced no significant changes in either ATP concentration or CMRo2, although CBF increased slightly. These findings may be interpreted to indicate that CO binding to cytochrome aa3 at low CO/O2 in vivo increases extramitochondrial pH relative to that within the mitochondrial matrix. In the process, cytochrome b reduction levels increase, possibly signaling an increased efficiency of oxidative phosphorylation relative to O2 uptake by unblocked respiratory chains.  相似文献   

15.
The partial pressure of carbon dioxide in arterial blood is an important operator in the control of breathing, by actions on peripheral and central chemoreceptors. In experiments on man we must often assume that lung alveolar PCO2 equals arterial PCO2 and obtain estimates of the former derived from measurements in expired gas sampled at the mouth. This paper explores the potential errors of such estimates, which are magnified during exercise. We used a published model of the cardiopulmonary system to simulate various levels of exercise up to 300 W. We tested three methods of estimating mean alveolar PCO2 (PACO2) against the true value derived from a time average of the within-breath oscillation in steady-state exercise. We used both sinusoidal and square-wave ventilatory flow wave forms. Over the range 33-133 W end-tidal PCO2 (P(et)CO2) overestimated PACO2 progressively with increasing workload, by about 4 mmHg at 133 W with normal respiratory rate for that load. PCO2 by a graphical approximation technique (PgCO2; "graphical method") underestimated PACO2 by 1-2 mmHg. PCO2 from an experimentally obtained empirical equation (PnjCO2; "empirical method") overestimated PACO2 by 0.5-1.0 mmHg. Graphical and empirical methods were insensitive to alterations in cardiac output or respiratory rate. End-tidal PCO2 was markedly affected by respiratory rate during exercise, the overestimate of PACO2 increasing if respiratory rate was slowed. An increase in anatomical dead space with exercise tends to decrease the error in P(et)CO2 and increase the error in the graphical method. Changes in the proportion of each breath taken up by inspiration make no important difference, and changes in functional residual capacity, while important in principle, are too small to have any major effect on the estimates. Changes in overall alveolar ventilation which alter steady-state PACO2 over a range of 30-50 mmHg have no important effect. At heavy work loads (200-300 W), P(et)CO2 grossly overestimates by 6-9 mmHg. The graphical method progressively underestimates, by about 5 mmHg at 300 W. A simulated CO2 response (the relation between ventilation and increasing PCO2) performed at 100 W suggests that a response slope close to the true one can be obtained by using any of the three methods. The graphical method gave results closest to the true absolute values. Either graphical or empirical methods should be satisfactory for detecting experimentally produced changes in PACO2 during steady-state exercise, to make comparisons between different steady-state exercise loads, and to assess CO2 response in exercise.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
We hypothesized that excessive sympathoactivation observed during strenuous exercise in subjects with heart failure (HF) may result from tonic activation of the muscle metaboreflex (MMR) via hypoperfusion of active skeletal muscle. We studied MMR responses in dogs during treadmill exercise by graded reduction of terminal aortic blood flow (TAQ) before and after induction of HF by rapid ventricular pacing. At a low workload, in both control and HF experiments, large decreases in TAQ were required to elicit the MMR pressor response. During control experiments, this pressor response resulted from increased cardiac output (CO), whereas in HF CO did not increase; thus the pressor response was solely due to peripheral vasoconstriction. In HF, MMR activation also induced higher plasma levels of vasopressin, norepinephrine (NE), and renin. At a higher workload, in control experiments any reduction of TAQ elicited MMR pressor responses. In HF, before any vascular occlusion, TAQ was already below MMR control threshold levels and reductions in TAQ again did not result in higher CO; thus SAP increased via peripheral vasoconstriction. NE rose markedly, indicating intense sympathetic activation. We conclude that in HF, the MMR is likely tonically active at moderate workloads and contributes to the tonic sympathoactivation.  相似文献   

17.
The ventilatory responses to steady-state venous CO2 loading (iv CO2) and CO2 inhalation have been observed in chloralose-urethan-anesthetized dogs. Intravenous CO2 was administered by increasing the CO2 fraction of gas ventilating a membrane gas exchanger in an arteriovenous bypass; blood flow rate was fixed at 30 ml/min. During the study, we identified a time-dependent hyperventilation in all 14 experimentally treated dogs and in 4 additional sham-treated dogs. When we tested 8 of these animals with a protocol having small progressive increments in iv CO2 loading rate, we observed a response approaching isocapnia during iv CO2 and a large hypocapnia when we returned to control conditions. The use of a randomized protocol in 6 animals demonstrated the necessity of accounting for this systematic base-line shift, because before doing so the response depended more on the passage of time than on the nature of the CO2 load. After this analytical adjustment was made, there was no significant difference between the respiratory controller gains (delta nu E/delta Paco2) for inhaled and iv CO2.  相似文献   

18.
Time-dependent effect of hypoxia on carotid body chemosensory function   总被引:4,自引:0,他引:4  
The time-dependent effects of hypoxia on the discharge rate carotid chemoreceptors were measured in anesthetized cats. Hypoxic exposure of two different durations were used: a short-term exposure (2-3 h) was used to measure the response of the same carotid chemoreceptors; and a long-term exposure (28 days at inspired PO2 of 70 Torr) to study carotid chemoreceptor properties in one group of cats relative to those of a control group. In the chronically hypoxic and control groups, determinations were made of the 1) steady-state responses to four levels of arterial PO2 (PaO2) at constant levels of arterial PCO2; 2) steady-state responses to acute hypercapnia during hyperoxia; and 3) maximal discharge rates during anoxia. We found that the acute responses of carotid chemoreceptor afferents to a given level of hypoxia (PaO2 = 30-40 Torr) did not significantly change within 2-3 h. After long-term exposure the carotid chemoreceptor responses to hypoxia significantly increased, with no significant changes in the hypercapnic response and in the maximal discharge rate during anoxia. We conclude that isocapnic hypoxia may not elicit a sufficient cellular response within 2-3 h in the cat carotid body to sensitize the O2 responsive mechanism, but hypoxia of longer duration will sensitize such a mechanism, thereby augmenting the chemosensory activity.  相似文献   

19.
The effect of changes in arterial CO2 tension on the cardiovascular system is analyzed by means of a mathematical model. The model is an extension of a previous one that already incorporated the main reflex and local mechanisms triggered by O2 changes. The new aspects covered by the model are the O2-CO2 interaction at the peripheral chemoreceptors, the effect of local CO2 changes on peripheral resistances, the direct central neural system (CNS) response to CO2, and the control of central chemoreceptors on ventilation and tidal volume. A statistical comparison between model simulation results and various experimental data has been performed. This comparison suggests that the model is able to simulate the acute cardiovascular response to changes in blood gas content in a variety of conditions (normoxic hypercapnia, hypercapnia during artificial ventilation, hypocapnic hypoxia, and hypercapnic hypoxia). The model ascribes the observed responses to the complex superimposition of many mechanisms simultaneously working (baroreflex, peripheral chemoreflex, CNS response, lung-stretch receptors, local gas tension effect), which may be differently activated depending on the specific stimulus under study. However, although some experiments can be reproduced using a single basal set of parameters, reproduction of other experiments requires a different combination of the mechanism strengths (particularly, a different strength of the local CO2 mechanism on peripheral resistances and of the CNS response to CO2). Starting from these results, some assumptions to explain the striking differences reported in the literature are presented. The model may represent a valid support for the interpretation of physiological data on acute cardiovascular regulation and may favor the synthesis of contradictory results into a single theoretical setting.  相似文献   

20.
Vertebrates and invertebrates show a similar response of rapid anesthesia with high levels of carbon dioxide. In this study, we use crayfish to examine both behavioral and physiological responses to increasing [CO(2)] to explain the rapid unresponsiveness and cessation of an autonomic response. Hypoxic and low pH environments that are induced by CO(2) exposure were also examined, although neither produced the identified CO(2) effects. In insects, low concentrations play a vital role in providing information for task performance such as food location through attraction cues, whereas high concentrations produce avoidance responses. We found behavioral responses in crayfish that demonstrate a strong repellent effect to high [CO(2)] and that the avoidance behavior decreases with lower [CO(2)]. There was not a preference and/or repellent behavioral response with 5% CO(2), hypoxic or low pH environments. Mechanosensory stimulation showed that only at high [CO(2)] there is an unresponsiveness to stimuli within a 30?min time period. Additionally, the autonomic bioindex of heart and ventilatory rates showed a complete cessation with high acute exposure within in the same time period for unresponsiveness to mechanosensory stimulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号