共查询到20条相似文献,搜索用时 15 毫秒
1.
We studied the distribution of hemlock woolly adelgid, Adelges tsugae Annand (Hemiptera: Adelgidae), within hemlock trees for three summer (progrediens) and two winter (sistens) generations in northern Georgia. Eastern hemlock, Tsuga canadensis (L.) Carrière, trees were treated with 0, 10, or 25% of 1.5 g of imidacloprid per 2.5 cm of tree diameter at breast height and fertilized or not in a factorial design. Adelgid ovisacs per centimeter of branch were more abundant from June 2007 to June 2008 in the upper tree crown of insecticide untreated trees and when all trees were combined and that was the general trend for most comparisons. However, ovisacs were more abundant in the lower crown of insecticide treated trees in June 2008. More sistens nymphs settled on the upper crown branches than on the lower branches in summers 2007 and 2008. Higher eggs per ovisac were observed in the upper crown in February 2008 and in both the winter and summer 2009. In contrast, adelgids were more fecund in the lower crown in June 2008. On fertilized trees, eggs laid per adult were higher in the upper crown in February 2008. In summer 2008, eggs per ovisac were higher in the lower crown, but this reversed again to the upper crown by summer 2009. New growth of branches also varied among sample dates. These data demonstrate the variable distribution of adelgid and hemlock growth within trees over time and suggest that sampling only one crown area will not provide accurate estimates of adelgid densities. 相似文献
2.
Understanding how fertilization affects host resistance to hemlock woolly adelgid, Adelges tsugae Annand (Hemiptera: Adelgidae), is important because fertilizers are often used to grow resistant selections to a suitable size for testing. We evaluated four hemlock species (Tsuga) under three different fertilizer regimes to assess whether fertility affected resistance to the adelgid and to determine whether it affected feeding preferences of the adelgid predators Laricobius nigrinus Fender and Sasajiscymnus tsugae (Sasaji & McClure). Treatments were long-term fertilization (from June 2008 to June 2009), short-term fertilization (from March to June 2009), and no fertilizer. Fertilizer was applied biweekly with 240 ppm N by using water-soluble fertilizer (N-P-K, 20:20:20). Plants (>1 yr old) were artificially infested with adelgids on 31 March 2009. Among unfertilized hemlocks (n=10 per species), foliar N was highest in Tsuga mertensiana (Bong.) CarriBre and lowest in T. chinensis (Franch.) E. Pritz. Significantly more progredien ovisacs or sisten eggs were present on T. mertensiana than on the other hemlock species with none on unfertilized T. chinensis. A. tsugae adults on T. heterophylla (Raf.) Sarg. were unaffected by fertility, but densities of developing A. tsugae nymphs were higher on unfertilized T. heterophylla plants than on fertilized T. heterophylla plants regardless of fertilizer treatment. Both L. nigrinus and S. tsugae consumed more adelgid eggs that developed on fertilized T. canadensis than from unfertilized plants. The predators did not exhibit this preference for adelgid eggs from females that developed on T. heterophylla or T. mertensiana. 相似文献
3.
The main cellular components of the haemolymph of Adelges tsugae Annand were identified from individuals collected in Massachusetts, USA in February and October 1997. The cell types present were formative cells, plasmatocytes, adipohaemocytes, vermiform cells, prohaemocytes and oenocytoids. Vermiform cells were the most abundant. Very few oenocytoids were found. They were significantly more cells of all types in the haemolymph of A. tsugae collected in October than in those collected in February. Adelges tsugae collected in February were exposed in the laboratory to -20, -25 and -30°C for 2, 4 and 8h. No intact cells were found in the haemolymph of A. tsugae exposed to -30°C. Haemocytes were damaged by exposure to -20 and -25°C. The effect of these temperatures on the different cell types is presented. 相似文献
4.
Elena R Toenshoff Thomas Penz Thomas Narzt Astrid Collingro Stephan Schmitz-Esser Stefan Pfeiffer Waltraud Klepal Michael Wagner Thomas Weinmaier Thomas Rattei Matthias Horn 《The ISME journal》2012,6(2):384-396
Adelgids (Insecta: Hemiptera: Adelgidae) are known as severe pests of various conifers in North America, Canada, Europe and Asia. Here, we present the first molecular identification of bacteriocyte-associated symbionts in these plant sap-sucking insects. Three geographically distant populations of members of the Adelges nordmannianae/piceae complex, identified based on coI and ef1alpha gene sequences, were investigated. Electron and light microscopy revealed two morphologically different endosymbionts, coccoid or polymorphic, which are located in distinct bacteriocytes. Phylogenetic analyses of their 16S and 23S rRNA gene sequences assigned both symbionts to novel lineages within the Gammaproteobacteria sharing <92% 16S rRNA sequence similarity with each other and showing no close relationship with known symbionts of insects. Their identity and intracellular location were confirmed by fluorescence in situ hybridization, and the names ‘Candidatus Steffania adelgidicola'' and ‘Candidatus Ecksteinia adelgidicola'' are proposed for tentative classification. Both symbionts were present in all individuals of all investigated populations and in different adelgid life stages including eggs, suggesting vertical transmission from mother to offspring. An 85 kb genome fragment of ‘Candidatus S. adelgidicola'' was reconstructed based on a metagenomic library created from purified symbionts. Genomic features including the frequency of pseudogenes, the average length of intergenic regions and the presence of several genes which are absent in other long-term obligate symbionts, suggested that ‘Candidatus S. adelgidicola'' is an evolutionarily young bacteriocyte-associated symbiont, which has been acquired after diversification of adelgids from their aphid sister group. 相似文献
5.
1 The seasonal synchrony between the exotic predator, Pseudoscymnus tsugae and its prey, the hemlock woolly adelgid, Adelges tsugae, was investigated in field cages and in the forest in Connecticut, U.S.A. from 1997–1999. 2 In early spring, egg to adult development took 45 d at 18.7 °C, 39.7 d at 20.2 °C and 31.5 d at 22.7 °C. Earliest emerging F1 adults mated and oviposited in the same year. whereas F1 and F2 females emerging later in the summer mated and reserved most of their egg complement for the following year. 3 A second generation of P. tsugae is possible in Connecticut but may be delayed by cool mid‐spring temperatures. Individuals of three generations of P. tsugae, including overwintering survivors, may coexist in July and August and adults can be found year‐round with A. tsugae in infested hemlock forests. 4 A linear regression model for development from egg to adult under field temperatures gave good agreement with results from constant temperature findings. The model predicted a lower development threshold of 9.5 °C and a sum of effective temperatures of 405 day °C. Development time of P. tsugae is shorter relative to its prey A. tsugae and generation time ratios of predator to prey was 0.16–0.5, with an advantage conferred on the coccinellid. 5 Overwintering ability and behaviour were determined in 1998–1999 and adults remained on infested hemlock branches throughout a mild winter, becoming reproductively active in mid‐April. Peak oviposition period extended from April to July, in synchrony with peak oviposition and developing stages of two generations of A. tsugae. 相似文献
6.
Abstract: An exotic insect, the hemlock woolly adelgid, Adelges tsugae Annand (Hem., Adelgidae), is spreading through eastern North America, killing hemlock trees [ Tsuga canadensis (L.) Carrière], and thereby impoverishing ecosystems. Adelges tsugae , like many alien invasive insects, is difficult to monitor or sample in the forest. Monitoring of A. tsugae has been hampered by lack of information about its distribution within tree crowns. In order to assist future monitoring and biocontrol of A. tsugae , this study investigates the crown distribution of A. tsugae by sampling from the entire height of mature hemlock trees in a forest with an established infestation. In addition to A. tsugae , sampling includes scale insects, which are another group of important pests on hemlock trees. This study demonstrates the utility of a randomized branch sampling (RBS) plan for monitoring both invasive insects as well as native insects that are difficult to sample. Results from the RBS show that in trees with high populations of A. tsugae , branches from the lower crown have slightly higher densities of A. tsugae than upper crown branches. In trees with low A. tsugae populations, the upper crown may have higher A. tsugae densities than the lower crown. North pointing branches also have higher densities of A. tsugae than branches pointing in other cardinal directions. Future sampling efforts for A. tsugae can take advantage of higher densities in certain portions of the crown to increase accuracy. 相似文献
7.
Hemlock woolly adelgid, Adelges tsugae Annand (Homoptera: Adelgidae), is native to Japan where it is an innocuous inhabitant of Tsuga diversifolia Masters and T. sieboldii Carriere throughout their natural growing areas. Native adelgid populations are regulated by host resistance and natural enemies, in particular the oribatid mite, Diapterobates humeralis (Hermann) and the coccinellid beetle, Pseudoscymnus tsugae Sasaji and McClure. Invading populations of A. tsugae in western North America on T. heterophylla Sargent and T. mertensiana Carriere are mainly regulated by host resistance. However, invading populations in eastern North America attain damaging levels on T. canadensis (L.) Carriere and T. caroliniana Engelmann and are regulated mainly by weather and negative density-dependent feedback mechanisms related to host deterioration. Although A. tsugae is only passively dispersed by wind, birds, forest-dwelling mammals and humans, it is spreading at an alarming rate and is sufficiently cold hardy to threaten the existence of the two eastern hemlock species throughout their natural ranges. The current hope for suppressing invading populations of hemlock woolly adelgid in eastern North America lies with the exotic predator, P. tsugae. Extensive laboratory studies of the biology and predatory ability of P. tsugae revealed that it feeds on all life stages of its prey, that its multivoltine life cycle is well synchronized with that of the adelgid, and that it has great potential for biological control. We have reared and released nearly 130,000 adults of P. tsugae in forests in Connecticut, New Jersey and Virginia during the past four years. P. tsugae has reproduced, dispersed, overwintered and reduced densities of hemlock woolly adelgid by 47–88% in only five months on release branches at these sites. Current studies are investigating the long-term ability of P. tsugae to regulate invading populations of A. tsugae in eastern North America. 相似文献
8.
Anna Michalik Aniela Gołas Marta Kot Karina Wieczorek Teresa Szklarzewicz 《Arthropod Structure & Development》2013,42(6):531-538
The aim of this paper was to identify endosymbiotic microorganisms living in the body cavity of a Polish population of an aphid, Adelges (Sacchiphantes) viridis, as well as to describe their ultrastructure and mode of transmission between generations. Molecular data (amplification and sequencing of 16S rRNA genes) indicated that endosymbionts of A. (S.) viridis are Betaproteobacteria of the species “Candidatus Vallotia virida”. Endosymbiotic bacteria are rod-shaped and localized in the cytoplasm of specific cells, termed bacteriocytes, of host insects. Endosymbionts sharing the same bacteriocytes differ in the density of their cytoplasm. There are two morphotypes of endosymbiotic bacteria: with electron-dense cytoplasm and electron-translucent cytoplasm. Since only bacteria containing electron-dense cytoplasm were observed in the binary fusion stage, differences in density of the cytoplasm are probably due to changes in the cytoskeleton of bacteria during division. Endosymbionts of A. (S.) viridis are transovarially (i.e. via oocytes) transmitted from the mother to the offspring. 相似文献
9.
Activity and residues of imidacloprid applied to soil and tree trunks to control hemlock woolly adelgid (Hemiptera: Adelgidae) in forests 总被引:2,自引:0,他引:2
We studied imidacloprid application methods and timing to control the hemlock woolly adelgid, Adelges tsugae Annand (Hemiptera: Adelgidae), in forests. The methods compared were 1) soil injection near the trunk; 2) soil injection dispersed throughout the area under the canopy; 3) soil drench near the base of the trunk; and trunk injection with the 4) Arborjet, 5) Wedgle, and 6) Mauget systems. The applications were made in the fall and the following spring. Adelgid populations on the hemlocks (Tsuga spp.) were assessed in the fall of two successive years after the treatments. Relative to the untreated control trees, all the soil applications resulted in population reductions, but none of the trunk injections resulted in reductions. Fall and spring treatment efficacy did not differ. Reductions by the soil treatments were between 50 and 100% (avg 80%) by the first fall and 83-100% (avg 98.5%) by the second fall. Analysis of imidacloprid residues using enzyme-linked immunosorbent assay found residues in sap, needles, and twigs 1 mo to 3-yr after application. A laboratory dose-response bioassay using excised, adelgid-infested hemlock branches with cut ends immersed in serial dilutions of imidacloprid determined the LC50 value to be 300 ppb, based on an exposure of 20 d. A high degree of suppression of the adelgid on forest trees was associated with residues in hemlock tissue > 120 ppb 2 yr after soil treatment. Although precise relationships between residues and efficacy are elusive, it is clear that soil application of imidacloprid resulted in chronic residues of imidacloprid in tissues and suppression of adelgid populations for > 2 yr. 相似文献
10.
While the family Adelgidae (Homoptera) is typically holocyclic and periodically host-alternating between a primary and secondary host, some anholocyclic species may persist exclusively on the primary or secondary host. In this study, we investigated the life cycle of Adelges japonicus , an anholocyclic species that utilizes either Picea jezoensis and Picea sitchensis (Pinaceae) as the primary hosts. Transfer experiments conducted in Hokkaido, the northern-most island of Japan, revealed that A. japonicus also includes holocyclic forms that can migrate to the secondary host, Larix kaempferi . The holocyclic forms differed from anholocyclic forms in the date of gall dehiscence, oviposition preference of gallicolae and development of wax gland plates of gallicola adults. However, we treated these two forms as the same species because of a lack of information on their phylogenetic relationships and genetic isolation. Sequence of generations and developmental stages of each generation in the holocyclic forms were reported. Morphology of wax gland plates of first-instar exulis was consistent with those of the subgenus Cholodkovskya , but different from those of the subgenus Adelges , to which A. japonicus has been assigned. Morphological comparison of gallicola adults suggests that the holocyclic forms were introduced to Hokkaido from central Japan. 相似文献
11.
The sweetpotato whitefly, Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae), is one of the most important pests in tropical and subtropical agriculture and is a key pest in greenhouse production worldwide. Current management of B. tabaci relies upon frequent applications of insecticides. Insecticide use not only directly affects pest populations through acute toxicity but also has indirect (sublethal) effects on pest physiology or behavior. In this study, we described sublethal effects of imidacloprid on adult feeding, immature development, adult fecundity, and F1 development of B. tabaci. Honeydew excretion of adults feeding on leaves treated with LC20 and LC40 concentration was significantly lower than that on untreated leaf discs. Egg production of B. tabaci adults subject to LC20 and LC40 concentrations also was less than untreated individuals. Upon transfer to untreated leaves, honeydew excretion and egg production recovered well within 24 and 48 h, respectively. Exposure to LC20 and LC40 concentrations significantly affected developmental time of B. tabaci eggs and nymphs, whereas it did not affect adult molting rate. We did not find sublethal effects on longevity and fecundity of B. tabaci adults when exposed to LC90 and LC40 concentrations for 24 h, and on egg hatching rate, nymphal mortality, and molting rate of the subsequent F1 generation. Exposure to imidacloprid at LC40 concentration significantly decreased the number of females in the F1 generation. Imidacloprid negatively affects development and reproduction of exposed individuals, and sex ratio of subsequent (F1) generation of B. tabaci, which probably disrupts B. tabaci population dynamics, slows population increase, and reduces infestation levels. Therefore, it is necessary to consider potential impact from imidacloprid for integrated management of the pest. 相似文献
12.
Evolution of host specialization in the Adelgidae (Insecta: Hemiptera) inferred from molecular phylogenetics 总被引:1,自引:0,他引:1
The Adelgidae form a small group of insects in the Aphidoidea. They are cyclically parthenogenetic with host alternating, multiple-generation complex life cycles and are restricted to certain host genera in the Pinaceae. Species that host alternate always have Picea as the primary host where sexual reproduction and gall formation occur, and another genus in the Pinaceae as the secondary host where a series of parthenogenetic generations are produced. Other species that do not host alternate complete their entire life cycle on one host and only reproduce parthenogenetically. We studied relationships within Adelgidae using DNA sequences from the mitochondrial COI, COII, and cytb genes, and the nuclear EF1alpha gene. Analysis of the combined data resulted in a well-resolved phylogeny in which the major adelgid clades correspond neatly to their association with secondary host genera. Specialization on each secondary host genus occurred only once and was followed by diversification on the host genus. Molecular dating of divergence times in the Adelgidae suggest that diversification among host genera occurred in the Late Cretaceous and Early Tertiary when the Pinaceae genera were diverging. It is not clear, however, whether the Adelgidae and Pinaceae co-diversified because the relationships among the Pinaceae genera are not fully resolved. We discuss implications for adelgid taxonomy, life cycle evolution, and evolution of the interaction between adelgids and their host plants. 相似文献
13.
Predators associated with the hemlock woolly adelgid (Hemiptera: Adelgidae) in the Pacific Northwest 总被引:1,自引:0,他引:1
The hemlock woolly adelgid, Adelges tsugae Annand (Hemiptera: Adelgidae), is causing widespread mortality of eastern hemlock, Tsuga canadensis L. Carrière, in the eastern United States. In western North America, feeding by A. tsugae results in negligible damage to western hemlock, Tsuga heterophylla (Raf.) Sargent. Host tolerance and presence of endemic predators may be contributing to the relatively low levels of injury to T. heterophylla caused by A. tsugae. Field surveys of the predator community associated with A. tsugae infestations on 116 T. heterophylla at 16 sites in Oregon and Washington were conducted every 4-6 wk from March 2005 through November 2006. Fourteen uninfested T. heterophylla were also surveyed across 5 of the 16 sites. Each sample tree was assigned an A. tsugae population score ranging from 0 to 3. Predators collected from A. tsugae-infested T. heterophylla represent 55 species in 14 families, listed in order of abundance: Derodontidae, Chamaemyiidae, Hemerobiidae, Coccinellidae, Cantharidae, Reduviidae, Miridae, Syrphidae, Chrysopidae, Coniopterygidae, Staphylinidae, Anthocoridae, Nabidae, and Raphidiidae. Laricobius nigrinus Fender (Coleoptera: Derodontidae), Leucopis argenticollis Zetterstedt (Diptera: Chamaemyiidae), and Leucopis atrifacies (Aldrich) (Chamaemyiidae) were the most abundant predators; together comprising 59% of predator specimens recovered. Relationships among predators and A. tsugae were determined through community structure analysis. The abundances of Laricobius spp. larvae, L. nigrinus adults, Leucopis spp. larvae, and L. argenticollis adults were found to be positively correlated to A. tsugae population score. Predators were most abundant when the two generations of A. tsugae eggs were present. L. argenticollis and L. atrifacies were reared on A. tsugae in the laboratory, and host records show them to feed exclusively on Adelgidae. 相似文献
14.
The Adelgidae (Insecta: Hemiptera), a small group of insects, are known as severe pests on various conifers of the northern hemisphere. Despite of this, little is known about their bacteriocyte‐associated endosymbionts, which are generally important for the biology and ecology of plant sap‐sucking insects. Here, we investigated the adelgid species complexes Adelges laricis/tardus, Adelges abietis/viridis and Adelges cooleyi/coweni, identified based on their coI and ef1alpha genes. Each of these insect groups harboured two phylogenetically different bacteriocyte‐associated symbionts belonging to the Betaproteobacteria and the Gammaproteobacteria, respectively, as inferred from phylogenetic analyses of 16S rRNA gene sequences and demonstrated by fluorescence in situ hybridization. The betaproteobacterial symbionts of all three adelgid complexes (‘Candidatus Vallotia tarda’, ‘Candidatus Vallotia virida’ and ‘Candidatus Vallotia cooleyia’) share a common ancestor and show a phylogeny congruent with that of their respective hosts. Similarly, there is evidence for co‐evolution between the gammaproteobacterial symbionts (‘Candidatus Profftia tarda’, ‘Candidatus Profftia virida’) and A. laricis/tardus and A. abietis/viridis. In contrast, the gammaproteobacterial symbiont of A. cooleyi/coweni (‘Candidatus Gillettellia cooleyia’) is different from that of the other two adelgids but shows a moderate relationship to the symbiont ‘Candidatus Ecksteinia adelgidicola’ of A. nordmannianae/piceae. All symbionts were present in all adelgid populations and life stages analysed, suggesting vertical transmission from mother to offspring. In sharp contrast to their sister group, the aphids, adelgids do not consistently contain a single obligate (primary) symbiont but have acquired phylogenetically different bacterial symbionts during their evolution, which included multiple infections and symbiont replacement. 相似文献
15.
Nicole E. Soltis Sara Gomez Gary G. Leisk Patrick Sherwood Evan L. Preisser Pierluigi Bonello Colin M. Orians 《Annals of botany》2014,113(4):721-730
Background and Aims
Exotic herbivores that lack a coevolutionary history with their host plants can benefit from poorly adapted host defences, potentially leading to rapid population growth of the herbivore and severe damage to its plant hosts. The hemlock woolly adelgid (Adelges tsugae) is an exotic hemipteran that feeds on the long-lived conifer eastern hemlock (Tsuga canadensis), causing rapid mortality of infested trees. While the mechanism of this mortality is unknown, evidence indicates that A. tsugae feeding causes a hypersensitive response and alters wood anatomy. This study investigated the effect of A. tsugae feeding on biomechanical properties at different spatial scales: needles, twigs and branches.Methods
Uninfested and A. tsugae-infested samples were collected from a common garden experiment as well as from naturally infested urban and rural field sites. Tension and flexure mechanical tests were used to quantify biomechanical properties of the different tissues. In tissues that showed a significant effect of herbivory, the potential contributions of lignin and tissue density on the results were quantified.Key Results Adelges tsugae
infestation decreased the abscission strength, but not flexibility, of needles. A. tsugae feeding also decreased mechanical strength and flexibility in currently attacked twigs, but this effect disappeared in older, previously attacked branches. Lignin and twig tissue density contributed to differences in mechanical strength but were not affected by insect treatment.Conclusions
Decreased strength and flexibility in twigs, along with decreased needle strength, suggest that infested trees experience resource stress. Altered growth patterns and cell wall chemistry probably contribute to these mechanical effects. Consistent site effects emphasize the role of environmental variation in mechanical traits. The mechanical changes measured here may increase susceptibility to abiotic physical stressors in hemlocks colonized by A. tsugae. Thus, the interaction between herbivore and physical stresses is probably accelerating the decline of eastern hemlock, as HWA continues to expand its range. 相似文献16.
通过对铁杉(Tusga chinensis Pritz)-云杉(Picea retroflexac Mast)、铁杉-华山松(Pinus armardi Franch)、云南铁杉(Tusga domosa Eichler)-槭树(Acer mono Maxim)-桦木(Betula platyphylla Suk)四川主要铁杉林类型中铁杉球蚜Adelges tsugae Annand林间定株、种群随机抽样、室内饲养研究表明,铁杉球蚜在四川1年发生2代(越冬代和第1代),世代重叠,成虫营孤雌生殖。越冬代从4月上旬至第2年的4月下旬,产卵盛期在5月下旬,平均产卵量为15.58粒,1龄若虫具有滞育越夏习性;第1代从12月下旬至8月中旬,产卵盛期在3月下旬,平均产卵量为67.37粒,并可产生有翅成虫,但无转主危害现象。种群的发育与温度有相关性,温度高林分种群发育进度快于温度低林分。该虫的危害与生境有一定相关性,铁杉针阔混交林危害重于铁杉针叶林;同一树冠不同层次之间、不同方位之间危害程度差异不显著;当年受害严重的树株第2年受害不严重。 相似文献
17.
18.
Maternal effects have the potential to affect population dynamics and evolution. To affect population dynamics, maternal effects must influence offspring vital rates (birth, death, or movement). Here, we explore the magnitude of nongenetic maternal influence on the vital rates of an insect herbivore and explore predictability of maternal effects with reference to published studies. We experimentally studied the effects of maternal age, host plant species (two Asclepias spp.), and density on offspring vital rates in Aphis nerii, the oleander aphid. Older mothers produced offspring that lived shorter lives, consistent with the Lansing Effect. Older mothers also produced offspring that matured at a younger age. As maternal age increased, offspring mass at maturity decreased when mothers were on Asclepias syriaca. However, offspring mass was highest from intermediate aged mothers on A. viridis. The absence of maternal density effects seems to exclude maternal density as a potential source of delayed density dependence in A. nerii. Our results indicate that maternal effects have some influence on A. nerii vital rates. However, references to published studies suggest that only the Lansing Effect is a predictable response to maternal age in insects. Moreover, the magnitude of observed effects was generally low. 相似文献
19.
Biological studies on Laricobius nigrinus Fender (Coleoptera: Derodontidae) were conducted in the laboratory to obtain basic information on this littleknown predator. Laricobius nigrinus is acandidate biological control agent of thehemlock woolly adelgid, Adelges tsugaeAnnand (Homoptera: Adelgidae), an exotic peston eastern (Tsuga canadensis (L.)Carrière) and Carolina (T.caroliniana Engelmann) hemlocks in the easternUnited States. It is univoltine andundergoes an aestival diapause. Post-aestivation activity period was 36.6 and30.8 weeks for males and females, respectively. Adult activity and oviposition are wellsynchronized with the over-wintering generationof A. tsugae. Mean lifetime fecunditywas 100.8 eggs over a mean duration of 13.2weeks oviposition period. Within thetemperature range (12–18°C) studied,development was fastest at 18°C. Meandevelopment time from egg to adult was 88.8,64.8 and 46.6 days at 12, 15 and 18°C,respectively. Laricobius nigrinus hasfour larval instars. Mean larval consumptionwas 225.9 and 252.3 A. tsugae eggs at 12and 18°C, respectively. Thesefindings provide essential data on the rate ofdevelopment and feeding capacity of L. nigrinusat temperatures typical of ambientconditions during late winter/early spring inVirginia. Its rapid development at18°C indicates that it has potential asa biological control agent of A. tsugaebecause of its synchrony with the developmentof the over-wintering generation of A. tsugaein eastern United States. 相似文献
20.
Stamm MD Baxendale FP Heng-Moss TM Siegfried BD Blankenship EE Gaussoin RE 《Journal of economic entomology》2011,104(1):205-210
The western chinch bug, Blissus occiduus Barber (Hemiptera: Blissidae), has emerged as a serious pest of buffalograss, Buchlod dactyloides (Nuttall) Engelmann. In general, neonicotinoid insecticides effectively control a variety of turfgrass insects, particularly phloem-feeding pests. However, because of well documented inconsistencies in control, these compounds are generally not recommended for chinch bugs. This study was designed to document the contact and systemic toxicity of three neonicotinoid insecticides (clothianidin, imidacloprid, and thiamethoxam) to B. occiduus. In contact bioassays, thiamethoxam was approximately 20-fold less toxic than clothianidin or imidacloprid to B. occiduus nymphs and three-fold more toxic to adults. In adult systemic bioassays, thiamethoxam was up to five-fold more toxic than clothianidin or imidacloprid. Interestingly, thiamethoxam was significantly more toxic to adults than to nymphs in both contact and systemic bioassays. This was not observed with clothianidin or imidacloprid. Bifenthrin, used for comparative purposes, exhibited 1844-fold and 122-fold increase in toxicity to nymphs and adults, respectively. These results provide the first documentation of the relative toxicity of these neonicotinoid insecticides to B. occiduus. 相似文献