首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Transport of the co-substrate UDPGA (UDP-glucuronic acid) into the lumen of the endoplasmic reticulum is an essential step in glucuronidation reactions due to the intraluminal location of the catalytic site of the enzyme UGT (UDP-glucuronosyltransferase). In the present study, we have characterized the function of several NSTs (nucleotide sugar transporters) and UGTs as potential carriers of UDPGA for glucuronidation reactions. UDPGlcNAc (UDP-N-acetylglucosamine)-dependent UDPGA uptake was found both in rat liver microsomes and in microsomes prepared from the rat hepatoma cell line H4IIE. The latency of UGT activity in microsomes derived from rat liver and V79 cells expressing UGT1A6 correlated well with mannose-6-phosphatase latency, confirming the UGT in the recombinant cells retained a physiology similar to rat liver microsomes. In the present study, four cDNAs coding for NSTs were obtained; two were previously reported (UGTrel1 and UGTrel7) and two newly identified (huYEA4 and huYEA4S). Localization of NSTs within the human genome sequence revealed that huYEA4S is an alternatively spliced form of huYEA4. All the cloned NSTs were stably expressed in V79 (Chinese hamster fibroblast) cells, and were able to transport UDPGA after preloading of isolated microsomal vesicles with UDPGlcNAc. The highest uptake was seen with UGTrel7, which displayed a V(max) approx. 1% of rat liver microsomes. Treatment of H4IIE cells with beta-naphthoflavone induced UGT protein expression but did not affect the rate of UDPGA uptake. Furthermore, microsomes from UGT1-deficient Gunn rat liver showed UDPGA uptake similar to those from control rats. These data show that NSTs can act as UDPGA transporters for glucuronidation reactions, and indicate that UGTs of the 1A family do not function as UDPGA carriers in microsomes. The cell line H4IIE is a useful model for the study of UDPGA transporters for glucuronidation reactions.  相似文献   

2.
This work used an approach of enzyme engineering towards the improved production of baicalin as well as alteration of acceptor and donor substrate preferences in UGT73A16. The 3D model of Withania somnifera family-1 glycosyltransferase (UGT73A16) was constructed based on the known crystal structures of plant UGTs. Structural and functional properties of UGT73A16 were investigated using docking and mutagenesis. The docking studies were performed to understand the key residues involved in substrate recognition. In the molecular model of UGT73A16, substrates binding pockets are located between N- and C-terminal domains. Modeled UGT73A16 was docked with UDP-glucose, UDP-glucuronic acid (UDPGA), kaempferol, isorhamnetin, 3-hydroxy flavones, naringenin, genistein and baicalein. The protein–ligand interactions showed that His 16, Asp 246, Lys 255, Ala 337, Gln 339, Val 340, Asn 358 and Glu 362 amino acid residues may be important for catalytic activity. The kinetic parameters indicated that mutants A337C and Q339A exhibited 2–3 fold and 6–7 fold more catalytic efficiency, respectively than wild type, and shifted the sugar donor specificity from UDP-glucose to UDPGA. The mutant Q379H displayed large loss of activity with UDP-glucose and UDPGA strongly suggested that last amino acid residue of PSPG box is important for glucuronosylation and glucosylation and highly specific to sugar binding sites. The information obtained from docking and mutational studies could be beneficial in future to engineer this biocatalyst for development of better ones.  相似文献   

3.
Steroids enantiomers are interesting compounds for detailed exploration of drug metabolizing enzymes, such as the UDP-glucuronosyltransferases (UGTs). We have now studied the glucuronidation of the enantiomers of estradiol, androsterone and etiocholanolone by the 19 human UGTs of subfamilies 1A, 2A and 2B. The results reveal that the pattern of human UGTs of subfamily 2B that glucuronidate ent-17β-estradiol, particularly 2B15 and 2B17, resembles the glucuronidation of epiestradiol (17α-estradiol) rather than 17β-estradiol, the main physiological estrogen. The UGTs of subfamilies 1A and 2A exhibit higher degree of regioselectivity than enantioselectivity in the conjugation of these estradiols, regardless of whether the activity is primarily toward the non-chiral site, 3-OH (UGT1A1, UGT1A3, UGT1A7, UGT1A8 and, above all, UGT1A10), or the 17-OH (UGT1A4). In the cases of etiocholanolone and androsterone, glucuronidation of the ent-androgens, like the conjugation of the natural androgens, is mainly catalyzed by UGTs of subfamilies 2A and 2B. Nevertheless, the glucuronidation of ent-etiocholanolone and ent-androsterone by both UGT2B7 and UGT2B17 differs considerably from their respective activity toward the corresponding endogenous androgens, whereas UGT2A1-catalyzed conjugation is much less affected by the stereochemistry differences. Kinetic analyses reveal that the K(m) value of UGT2A1 for ent-estradiol is much higher than the corresponding value in the other two high activity enzymes, UGT1A10 and UGT2B7. Taken together, the results highlight large enantioselectivity differences between individual UGTs, particularly those of subfamily 2B.  相似文献   

4.
Flavonoids are most commonly conjugated with various sugar moieties by UDP-sugar:glycosyltransferases (UGTs) in a lineage-specific manner. Generally, the phylogenetics and regiospecificity of flavonoid UGTs are correlated, indicating that the regiospecificity of UGT differentiated prior to speciation. By contrast, it is unclear how the sugar donor specificity of UGTs evolved. Here, we report the biochemical, homology-modeled, and phylogenetic characterization of flavonoid 7-O-glucuronosyltransferases (F7GAT), which is responsible for producing specialized metabolites in Lamiales plants. All of the Lamiales F7GATs were found to be members of the UGT88-related cluster and specifically used UDP-glucuronic acid (UDPGA). We identified an Arg residue that is specifically conserved in the PSPG box in the Lamiales F7GATs. Substitution of this Arg with Trp was sufficient to convert the sugar donor specificity of the Lamiales F7GATs from UDPGA to UDP-glucose. Homology modeling of the Lamiales F7GAT suggested that the Arg residue plays a critical role in the specific recognition of anionic carboxylate of the glucuronic acid moiety of UDPGA with its cationic guanidinium moiety. These results support the hypothesis that differentiation of sugar donor specificity of UGTs occurred locally, in specific plant lineages, after establishment of general regiospecificity for the sugar acceptor. Thus, the plasticity of sugar donor specificity explains, in part, the extraordinary structural diversification of phytochemicals.  相似文献   

5.
6.
Increased levels of bile acids (BAs) due to the various hepatic diseases could interfere with the metabolism of xenobiotics, such as drugs, and endobiotics including steroid hormones. UDP-glucuronosyltransferases (UGTs) are involved in the conjugation and elimination of many xenobiotics and endogenous compounds. The present study sought to investigate the potential for inhibition of UGT enzymes by BAs. The results showed that taurolithocholic acid (TLCA) exhibited the strongest inhibition toward UGTs, followed by lithocholic acid. Structure-UGT inhibition relationships of BAs were examined and in vitro-in vivo extrapolation performed by using in vitro inhibition kinetic parameters (Ki) in combination with calculated in vivo levels of TLCA. Substitution of a hydrogen with a hydroxyl group in the R1, R3, R4, R5 sites of BAs significantly weakens their inhibition ability toward most UGTs. The in vivo inhibition by TLCA toward UGT forms was determined with following orders of potency: UGT1A4 > UGT2B7 > UGT1A3 > UGT1A1 ∼ UGT1A7 ∼ UGT1A10 ∼ UGT2B15. In conclusion, these studies suggest that disrupted homeostasis of BAs, notably taurolithocholic acid, found in various diseases such as cholestasis, could lead to altered metabolism of xenobiotics and endobiotics through inhibition of UGT enzymes.  相似文献   

7.
UDP-glucuronosyltransferases (UGTs) are highly expressed in liver, intestine and kidney, and catalyze the glucuronic acid conjugation of both endogenous compounds and xenobiotics. Using recombinant human UGT isoforms, we show that glucuronic acid conjugation of the model substrate, (−)-epicatechin, is catalyzed mainly by UGT1A8 and UGT1A9. In HepG2 cells, pretreatment with polyunsaturated fatty acids increased substrate glucuronidation. In the intestinal Caco-2/HT29-MTX co-culture model, overall relative glucuronidation rates were much higher than in HepG2 cells, and (−)-epicatechin was much more readily conjugated when applied to the basolateral side of the cell monolayer. Under these conditions, 95% of the conjugated product was effluxed back to the site of application, and none of the other phase 2-derived metabolites followed this distribution pattern. HT29-MTX cells contained >1000-fold higher levels of UGT1A8 mRNA than Caco-2 or HepG2 cells. Gene expression of UGT1A8 increased after treatment of cells with docosahexaenoic acid, as did UGT1A protein levels. Immunofluorescence staining and Western blotting showed the presence of UGT1A in the basal and lateral parts of the plasma membrane of HT29-MTX cells. These results suggest that some of the UGT1A8 enzyme is not residing in the endoplasmic reticulum but spans the plasma membrane, resulting in increased accessibility to compounds outside the cell. This facilitates more efficient conjugation of substrate and is additionally coupled with rapid efflux by functionally associated basolateral transporters. This novel molecular strategy allows the cell to carry out conjugation without the xenobiotic entering into the interior of the cell.  相似文献   

8.
Glucuronide conjugation of xenobiotics containing a carboxylic acid moiety represents an important metabolic pathway for these compounds in humans. Several human UDP-glucuronosyltransferases (UGTs) have been shown to catalyze the formation of acyl-glucuronides, including UGT2B7, UGT1A3, and UGT1A9. In this study, recombinant expressed UGT isoforms were investigated with many structurally related carboxylic acid analogues, and the UGT rank order for catalyzing the glucuronidation of carboxylic acids was UGT2B7?UGT1A3 approximately UGT1A9. Despite being a poor substrate with UGT1A3, coumarin-3-carboxylic acid was not a substrate for any other UGT isoform tested in this study, suggesting that it could be a specific substrate for UGT1A3. Interestingly, UGT1A7 and UGT1A10 also react with several carboxylic acid aglycones. Kinetic analysis showed that UGT2B7 exhibits much higher glucuronidation efficiency (Vmax/Km) with ibuprofen, ketoprofen, and others, compared to UGT1A3. These data indicate that UGT2B7 could be the major isoform involved in the glucuronidation of carboxylic acid compounds in humans.  相似文献   

9.
We have demonstrated the subcellular localization of the human UDP-glucuronosyltransferases (UGTs), UGT2B7 and UGT1A6, in endoplasmic reticulum (ER) and nuclear membrane from human hepatocytes and cell lines, by in situ immunostaining and Western blot. Double immunostaining for UGT2B7 and calnexin, an ER resident protein, showed that UGT2B7 was equally present in ER and nuclear membrane whereas calnexin was present almost exclusively in ER. Immunogold labeling of HK293 cells expressing UGT2B7 established the presence of UGT2B7 in both nuclear membranes. Enzymatic assays with UGT2B7 substrates confirmed the presence of functional UGT2B7 protein in ER, whole nuclei, and both outer and inner nuclear membranes. This study has identified, for the first time, the presence of UGT2B7 and UGT1A6 in the nucleus and of UGT2B7 in the inner and outer nuclear membranes. This localization may play an important functional role within nuclei: protection from toxic compounds and/or control of steady-state concentrations of nuclear receptor ligands.  相似文献   

10.
Human UDP-glucuronosyltransferases (UGT) are the dominant phase II conjugative drug metabolism enzymes that also play a central role in processing a range of endobiotic compounds. UGTs catalyze the covalent addition of glucuronic acid sugar moieties to a host of therapeutics and environmental toxins, as well as to a variety of endogenous steroids and other signaling molecules. We report the 1.8-A resolution apo crystal structure of the UDP-glucuronic acid binding domain of human UGT isoform 2B7 (UGT2B7), which catalyzes the conjugative elimination of opioid, antiviral, and anticancer drugs. This is the first crystal structure of any region of a mammalian UGT drug metabolism enzyme. Designated UGT2B7 mutants at residues predicted to interact with the UDP-glucuronic acid cofactor exhibited significantly impaired catalytic activity, with maximum effects observed for amino acids closest to the glucuronic acid sugar transferred to the acceptor molecule. Homology modeling of UGT2B7 with related plant flavonoid glucosyltransferases indicates human UGTs share a common catalytic mechanism. Point mutations at predicted catalytic residues in UGT2B7 abrogated activity, strongly suggesting human UGTs also utilize a serine hydrolase-like catalytic mechanism to facilitate glucuronic acid transfer.  相似文献   

11.
A major component of phase II drug metabolism is the covalent addition of glucuronic acid to metabolites and xenobiotics. This activity is carried out by UDP-glucuronosyltransferases (UGT) which bind the UDP-glucuronic acid donor and catalyze the covalent addition of glucuronic acid sugar moieties onto a wide variety of substrates. UGTs play important roles in drug detoxification and were recently shown to act in an inducible form of multi-drug resistance in cancer patients. Despite their biological importance, structural understanding of these enzymes is limited. The C-terminal domain is identical for all UGT1A family members and required for binding to UDP-glucuronic acid as well as involved in contacts with substrates. Here, we report the backbone assignments for the C-terminal domain of UGT1A. These assignments are a critical tool for the development of a deeper biochemical understanding of substrate specificity and enzymatic activity.  相似文献   

12.
The acyl-CoA-dependent modulation of hepatic microsomal UDP-glucuronosyltransferase (UGT) function in rats was studied. Oleoyl- and palmitoyl-CoAs inhibited UGT activity toward 4-methylumbelliferone in the presence of Brij 58. However, acyl-CoAs enhanced UGT activity in untreated microsomes. A maximum activation of about 8-fold over the control was observed at 15 microM oleoyl-CoA, whereas 50 microM or more oleoyl-CoA had an inhibitory effect on UGT function. Medium- and long-chain acyl-CoAs also exhibited similar effects. On the basis of resistance to tryptic digestion of UGTs, oleoyl-CoA at 15 microM has no ability to change the permeability of the endoplasmic reticulum (ER) membrane, although perturbation of the membrane occurred with 50 microM oleoyl-CoA. N-Ethylmaleimide and 5,5'-dithiobis(2-nitrobenzoic acid) abolished the oleoyl-CoA (15 microM)-dependent activation of microsomal UGT. These results suggest that: (1) acyl-CoAs play a role as an endogenous activator of UGTs, and (2) a sulfhydryl group is required for the activation of UGT by physiological concentrations of acyl-CoAs.  相似文献   

13.
Plant family 1 UDP-dependent glycosyltransferases (UGTs) catalyze the glycosylation of a plethora of bioactive natural products. In Arabidopsis thaliana, 120 UGT encoding genes have been identified. The crystal-based 3D structures of four plant UGTs have recently been published. Despite low sequence conservation, the UGTs show a highly conserved secondary and tertiary structure. The sugar acceptor and sugar donor substrates of UGTs are accommodated in the cleft formed between the N- and C-terminal domains. Several regions of the primary sequence contribute to the formation of the substrate binding pocket including structurally conserved domains as well as loop regions differing both with respect to their amino acid sequence and sequence length. In this review we provide a detailed analysis of the available plant UGT crystal structures to reveal structural features determining substrate specificity. The high 3D structural conservation of the plant UGTs render homology modeling an attractive tool for structure elucidation. The accuracy and utility of UGT structures obtained by homology modeling are discussed and quantitative assessments of model quality are performed by modeling of a plant UGT for which the 3D crystal structure is known. We conclude that homology modeling offers a high degree of accuracy. Shortcomings in homology modeling are also apparent with modeling of loop regions remaining as a particularly difficult task.  相似文献   

14.
15.
The stereoselective binding and transformation of optically pure bicyclic alcohols by human UDP-glucuronosyltransferases from subfamily 2B were investigated. The enantiomers of 1-indanol, 1-tetralol, and 1-benzosuberol were synthesized by asymmetric Corey-Bakshi-Shibata reduction and subjected to glucuronidation assays. The alcohols studied were primarily glucuronidated by UGT2B7 and UGT2B17. The catalytic transformation by UGT2B17 was highly stereoselective, favoring conjugation of the (R)-enantiomers. UGT2B7, on the other hand, did not exhibit stereoselectivity toward 1-benzosuberol, the best substrate in this series. To assess binding affinities to the enzymes, the six different compounds were tested for their efficiency as inhibitors of either UGT2B7 or UGT2B17. The results of the latter analyses indicated that the affinities of both enantiomers of each pair towards UGT2B7 and UGT2B17 were of the same order of magnitude. Therefore, the findings of this study suggest that the spatial arrangement of the hydroxy group plays an important role in the glucuronic acid transfer reaction, but not necessarily in substrate binding to the UGTs.  相似文献   

16.
UDP-glucuronosyltransferase 2B15 (UGT2B15) is a crucial phase II drug-metabolizing enzyme, which glucuronidates various compounds, including clinical drugs and hormones. Mutants might affect glucuronidation, leading to a disruption of drug metabolism in vivo and decrease of therapeutic effect. Here, we mainly analyzed two representative mutants, H401P and L446S, on UGT2B15 activity using glucuronidation assays, molecular dynamic (MD) simulation and X-ray diffraction methods. The enzyme activity of L446S obviously increased six-fold than the wild type, although the enzyme activities of P191L, T374A, and H401P were lost apparently. Furthermore, we used MD simulations to calculate the energy change in the catalytic process of H401P and L446S, and the results indicated the free binding energies of H401P mutant to oxazepam and UDPGA were ?30.98 ± 1.00 kcal/mol and ?36.42 ± 1.04 kcal/mol, respectively, increased obviously compared to wild type, suggesting the mutation on position 401 had a crucial effect on the catalysis. Moreover, the three-dimensional structure of UGT2B15 C-terminal domain L446S was determined through protein crystallography and X-ray diffraction technology and the results suggested that one more hydrogen bonding between S446 and K410 was formed in the S446 crystal structure, compared to the wild type. Isothermal titration calorimetry assay further revealed the Kd values of C-terminal domain of UGT2B15 harbored L446S towards the cofactor UDPGA was similar to the value of wild type. Above all, our results pointed out that H401P and L446S affected the enzyme activity by different mechanism. Our work provided a helpful mechanism for variance explained in the UGTs catalyzation process.  相似文献   

17.
Recent reports suggest that linoleic acid (LA) epoxides and diols are associated with important physiological, pharmacological, and pathological events in vivo. We have shown recently that LA-diols are excellent substrates for human liver microsomal UDP-glucuronosyltransferases (UGTs); however, it is not known if other human tissues glucuronidate LA-diols or which UGT isozyme(s) is involved. The present studies with human intestinal microsomes indicate that glucuronidation of LA-diols occurs throughout the gastrointestinal tract, with the highest activity in the small intestine. LA-diols yielded exclusively hydroxyl-linked glucuronides, whereas LA yielded the carboxyl-linked glucuronide. Studies with human recombinant UGTs demonstrated that only UGT2B7 glucuronidated LA and LA-diols. Kinetic analysis with UGT2B7 yielded apparent K(m) values in the range of 40-70 microM and V(max) values from 4.5 to 5.4 nmol/mg x min. These studies indicate that LA and LA-diols are excellent substrates for intestinal UGTs and provide the first evidence for UGT2B7 being the major isoform involved.  相似文献   

18.
The soyabean isoflavones genistein and daidzein, which may protect against some cancers, cardiovascular disease and bone mineral loss, undergo substantial Phase 2 metabolism, predominantly glucuronidation. We observed a correlation between rates of metabolism of marker substrates of specific UGTs and rates of glucuronidation of genistein and daidzein in vitro by a panel of human liver microsomes, demonstrating that UGT1A1 and UGT1A9, but not UGT1A4, make a major contribution to the metabolism of these isoflavones by human liver. These findings were substantiated by observations that recombinant human UGT1A1 and UGT1A9, but not UGT1A4, catalysed the production of the major glucuronides of both genistein and daidzein in vitro. Recombinant human UGT1A8 also metabolised both genistein and daidzein, whereas UGT1A6 was specific to genistein and UGTs 2B7 and 2B15 were inactive, or only marginally active, with either isoflavone as substrate. The intestinal isoform UGT1A10 metabolised either both isoflavones or genistein only, depending on the commercial supplier of the recombinant enzyme, possibly as a result of a difference in amino acid sequence, which we were unable to confirm. Daidzein (16 microM) increased cell death in the MCF-7 human breast cancer cell line and this effect was reversed by glucuronidation. In view of a well-characterised functional polymorphism in UGT1A1, these observations may have implications for inter-individual variability in the potential health-beneficial effects of isoflavone consumption.  相似文献   

19.
The extrahepatic expression of UDP-glucuronosyltransferases (UGTs) is important in the detoxification of a number of endogenous and exogenous compounds, including 5-hydroxytryptamine and morphine. Studies were designed to investigate the extrahepatic expression of human UGTs using RT-PCR techniques and to determine the UGTs involved in the glucuronidation of 5-hydroxytryptamine. Human UGT2B7 expression was found in the human liver, kidney, pancreas, and brain, while UGT1A6 expression is found in the liver, kidney, and brain. This is the first observation of UGTs present in the human central nervous system. Using glucuronidation assays, a significant amount of 5-hydroxytryptamine glucuronide was found to be catalyzed by UGT1A6. These studies suggest that UGT2B7 may play an important role in the overall contribution of morphine analgesia by serving to generate the potent morphine-6-O-glucuronide in situ. UGT1A6 could play an important role in the glucuronidation of 5-hydroxytryptamine in vivo, therefore terminating the actions of the neurotransmitter.  相似文献   

20.
Narayanan R  LeDuc B  Williams DA 《Life sciences》2004,74(20):2527-2539
The purposes of this study were to develop a HPLC method to assay for haloperidol glucuronide (HALG); to apply this assay method to the in vitro determination of haloperidol (HAL) UDP-glucuronosyltransferase (UGT) enzyme kinetics in rat liver microsomes (RLM); and to identify the UGT isoforms catalyzing glucuronidation of HAL in rats. Incubation of Brij-activated RLM with HAL and UDP-glucuronic acid (UDPGA) in TRIS pH 7.4 buffer resulted in the formation of a single peak in the HPLC chromatogram at 270 nm. The identity of this peak was confirmed to be that of HALG by 1) β-glucuronidase hydrolysis; 2) incubation without UDPGA; 3) UV spectral analysis; and 4) LC/MS/MS to yield the expected mass of 552.1. Enzyme kinetic studies using single enzyme Michaelis-Menton model showed an apparent Vmax = 271.9 ± 10.1 pmoles min−1 mg protein−1 and Km = 61 ± 7.2 μM. Glucuronidation activity in homozygous Gunn (j/j) rats was approximately 80% as compared to Sprague-Dawley RLM. HALG formation was approximately doubled in PB-induced RLM. There was no increase in glucuronidation activities in 3MC-induced RLM. The Gunn rat and the PB-induced RLM data suggest predominant but not exclusive involvement of the UGT2B family in the formation of HALG. Because the UGTs exhibit overlapping substrate specificities and most substrates are glucuronidated by more than one isoform, inhibition studies with UGT2B1 substrate probe testosterone and the UGT2B12 substrate probe borneol were conducted. UGT2B1 and UGT2B12 exhibited 40% and 90% inhibition of HAL glucuronidation, respectively. Thus, UGT2B12 and UGT 2B1 isoforms are responsible for catalyzing HAL glucuronidation in rats. Our HPLC assay provides a specific and sensitive technique for the measurement of in vitro HAL-UGT activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号