首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mortality of western corn rootworm, Diabrotica virgifera virgifera LeConte, larvae due to MIR604 transgenic corn, Zea mays L., expressing the modified Cry3A (mCry3A) protein relative to survivorship on corn with the same genetic background without the gene (isoline corn) was evaluated at three Missouri sites in both 2005 and 2006. We made these comparisons by using wild-type western corn rootworm at three different egg densities (6,000, 3,000, and 1,500 eggs per m) so that the role of density-dependent mortality would be known. The mortality due to the mCry3A protein was 94.88% when averaged across all environments and both years. Fifty percent emergence of beetles was delayed approximately 5.5 d. Beetles were kept alive and their progeny evaluated on MIR604 and isoline corn in the greenhouse to determine whether survivorship on MIR604 in the field for one generation increased survivorship on MIR604 in the greenhouse in the subsequent generation. There was no significant difference in survivorship on MIR604 in greenhouse assays between larvae whose parents survived isoline and larvae whose parents survived MIR604 in the field the previous generation, indicating that many susceptible beetles survived MIR604 in the field the previous season along with any potentially resistant beetles. The data are discussed in terms of rootworm insect resistance management.  相似文献   

2.
Mortality of the western corn rootworm, Diabrotica virgifera virgifera LeConte, larvae due to feeding on maize, Zea mays L., expressing Bacillus thuringiensis Berliner (Bt) was evaluated in five Missouri sites in 2007, 2008, and 2009. Specifically, eCry3.1Ab (5307), mCry3A (MIR604), and eCry3.1Ab plus mCry3A proteins relative to survivorship on maize with the same genetic background without these genes (isoline maize) was evaluated. An average of 890.8 +/- 152.3 beetles emerged from isoline plots, whereas average beetle emergence from 5307, MIR604, and 5307 x MIR604 was 1.9 +/- 0.6, 19.3 +/- 6.3, and 0.8 +/- 0.3, respectively, when averaged across 22 replications in five environments. Overall, 66, 50, 61, and 51% of beetles recovered from 5307, MIR604, 5307 x MIR604, and isoline maize, respectively, were female, and there was no significant difference between the number of male and female beetles that emerged from any of these treatments. Mortality due to 5307, MIR604, and 5307 x MIR604 was 99.79, 97.83, and 99.91%, respectively. There was an 8.0-d delay in time to 50% beetle emergence from 5307 compared with isoline maize, which was significantly later than to the other three maize lines. The average delay to 50% emergence from MIR604 and 5307 x MIR604 averaged 4.1 and 4.6 d, respectively later than 50% emergence from isoline maize. Female beetles had a significant delay in time to 50% emergence compared with male beetles from all treatments with the exception of 5307 x MIR604. Data are discussed in terms of insect resistance management in relation to other control measures for western corn rootworm.  相似文献   

3.
The establishment and survival of western corn rootworm, Diabrotica virgifera virgifera LeConte, was evaluated on transgenic Bacillus thuringiensis Berliner maize, Zea mays L., expressing the mCry3A protein (MIR604) and non-Bt maize with the same genetic background (isoline maize) at different stages of development in 2007 and 2008. Overall, western corn rootworm larval recovery, root damage, and adult emergence were significantly higher on isoline maize compared with MIR604. The number of larvae and adults collected from MIR604 did not significantly differ among egg hatch dates from each maize developmental stage evaluated in either year. In 2007, damage to isoline maize roots was lower than expected and never exceeded 0.24 nodes of damage. In 2008, over 0.60 nodes of damage occurred on isoline maize roots. The mean weight and head capsule width of larvae and adults recovered from MIR604 and isoline maize were generally not significantly different. Results are discussed in relation to insect resistance management of western corn rootworm.  相似文献   

4.
Transgenic corn producing the Bacillus thuringiensis (Bt) toxin Cry3Bb1 has been useful for controlling western corn rootworm, Diabrotica virgifera virgifera LeConte, one of the most economically important crop pests in the United States. However, rapid evolution of resistance by this beetle to Bt corn producing Cry3Bb1 has been reported previously from the laboratory, greenhouse, and field. Here we selected in the greenhouse for resistance to Cry3Bb1 corn in three colonies of WCR derived from Kansas, Minnesota, and Wisconsin, respectively. Three generations of rearing on Cry3Bb1 corn significantly increased larval survival on Cry3Bb1 corn, resulting in similar survival in the greenhouse for selected colonies on Cry3Bb1 corn and isoline corn that does not produce Bt toxin. After four to seven generations of rearing on Cry3Bb1 corn, survival in the field on Cry3Bb1 corn relative to isoline corn more than doubled for selected colonies (72%) compared with control colonies (33%). For both selected and control colonies, survival in the field was significantly lower on Cry3Bb1 corn than on isoline corn. On isoline corn, most fitness components were similar for selected colonies and control colonies. However, fecundity was significantly lower for selected colonies than control colonies, indicating a fitness cost associated with resistance. The rapid evolution of resistance by western corn rootworm to Bt corn reported here and previously underlines the importance of effective resistance management for this pest.  相似文献   

5.
Event DAS‐59122‐7 is a novel transgenic trait designed to protect the roots and yield potential of maize from the insect pest corn rootworm Diabrotica spp. (Col.: Chrysomelidae). The increased pest status of corn rootworm, exceptional efficacy of this trait, and anticipated increases in farm efficiency and grower and environmental safety will drive adoption of this trait. Strong grower acceptance of this trait highlights the importance of science‐based and practical resistance management strategies. A non‐diapause trait was introgressed into two laboratory colonies of Diabrotica virgifera virgifera collected from geographically distinct locations: Rochelle, IL and York, NE. Both colonies were divided and each reared on maize containing event DAS‐59122‐7 or its near isoline. Selected and unselected colonies were evaluated for phenotypic change in larval development, injury potential and survival to adulthood during 10 and 11 generations. The F1 generation of both selected colonies displayed increased larval development, survivorship and measurable, but economically insignificant increases in injury potential on DAS‐59122‐7 maize. Survival rates of 0.4 and 1.3% in F1 generations of both selected colonies corroborate field estimates of survival on DAS‐59122‐7 maize. Over later generations, total phenotypic variation declined gradually and irregularly. Despite the absence of random mating, the tolerance trait could not be fixed in either population after 10 or 11 generations of selection. An allele conferring major resistance to DAS‐59122‐7 was not identified in either selected colony. The assessment also concluded that major resistance gene(s) are rare in populations of D. v. virgifera in the United States, and that a minor trait(s) conferring a low level of survival on DAS‐59122‐7 maize was present. The tolerance trait identified in this study was considered minor with respect to its impact on DAS‐59122‐7 maize efficacy, and the role this trait may play in total effective refuge for major resistance genes with recessive inheritance is the basis of future work.  相似文献   

6.
Abstract:  Event MIR604 maize expresses a modified Cry3A protein (mCry3A), for control of corn rootworm. As part of the environmental safety assessment of MIR604 maize, risks to non-target organisms of mCry3A were assessed. The potential exposure of non-target organisms to mCry3A following cultivation of MIR604 maize was determined, and the hypothesis that such exposure is not harmful was tested. The hypothesis was tested rigorously by making worst-case or highly conservative assumptions about exposure, along with laboratory testing for hazards using species taxonomically related to the target pest and species expected to have high exposure to mCry3A, or both. Further rigour was introduced by study designs incorporating long exposures and measurements of sensitive endpoints. No adverse effects were observed in any study, and in most cases exposure to mCry3A in the study was higher than the worst-case expected exposure. In all cases, exposure in the study was higher than realistic, but still conservative, estimates of exposure. These results indicate minimal risk of MIR604 maize to non-target organisms.  相似文献   

7.
Abstract Maize production in the United States is dominated by plants genetically modified with transgenes from Bacillus thuringiensis (Bt). Cry3Bb delta endotoxins expressed by Bt maize specifically target corn rootworms (genus Diabrotica) and have proven highly efficacious. However, development of resistance to Bt maize, especially among western corn rootworm (Diabrotica virgifera virgifera) populations, poses a significant threat to the future viability of this pest control biotechnology. The structured refuge insect resistance management (IRM) strategy implemented in the United States for Bt maize adopts a conservative approach to managing resistance by assuming no fitness costs of Bt resistance, even though these trade‐offs strongly influence the dynamics of Bt resistance within numerous agricultural pest species. To investigate the effects of Bt resistance on fitness components of western corn rootworm, we compared survivorship, fecundity and viability of five Bt‐resistant laboratory lines reared on MON863 (YieldGard Rootworm), a Bt maize product that expresses Cry3Bb1 delta endotoxin, and on its non‐transgenic isoline. Analysis of performance on the isoline maize demonstrated no fitness costs associated with Bt resistance. In fact, resistant lines emerged approximately 2–3 days earlier than control lines when reared on both MON863 and the isoline, indicating that selection for Bt resistance resulted in a general increase in the rate of larval development. In addition, resistant lines reared on Bt maize displayed higher fecundity than those reared on the isoline, which may have significant management implications. These data will be valuable for formulating improved IRM strategies for a principal agricultural pest of maize.  相似文献   

8.
SUM2162 is the first known example of a naturally occurring maize, Zea mays L., genotype with antixenosis (nonpreference) resistance to western corn rootworm, Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae), larval feeding. Behavioral responses of neonate western corn rootworm larvae were evaluated in laboratory bioassays with seven maize genotypes selected for native resistance to rootworm feeding damage. Two susceptible maize genotypes and one transgenic (Bacillus thuringiensis) maize genotype were included as controls. In soil bioassays with cut roots, no larvae entered the roots of the resistant variety SUM2162, but at least 75% of the larvae entered the roots of every other maize type. Larvae made significantly fewer feeding holes in the roots of SUM2162 than in all the other maize genotypes, except the isoline control. In feeding bioassays, larval feeding varied significantly among maize genotypes, but there was no significant difference between the resistant varieties and the susceptible controls. There were no significant differences among any of the genotypes in host recognition (search) behavior of larvae after exposure to the roots. Little variation in feeding stimulant blends was observed among maize genotypes, indicating minimal contribution to the observed antixenosis.  相似文献   

9.
Insect resistance management (IRM) can extend the lifetime of management options, but depends on extensive knowledge of the biology of the pest species involved for an optimal plan. Recently, the Environmental Protection Agency (EPA) registered seed blends refuge for two of the transgenic Bacillus thuringiensis (Bt) corn products targeting the western corn rootworm, Diabrotica virgifera virgifera LeConte. Larval movement between Bt and isoline plants can be detrimental to resistance management for high dose Bt products because the larger larvae can be more tolerant of the Bt toxins. We assessed movement of western corn rootworm larvae among four spatial arrangements of SmartStax corn (expressing both the Cry34/35Ab1 and Cry3Bb1 proteins) and isoline plants by infesting specific plants with wild type western corn rootworm eggs. Significantly fewer western corn rootworm larvae, on average, were recovered from infested SmartStax plants than infested isoline plants, and the SmartStax plants were significantly less damaged than corresponding isoline plants. However, when two infested isoline plants surrounded a SmartStax plant, a significant number of larvae moved onto the SmartStax plant late in the season. These larvae caused significant damage both years and produced significantly more beetles than any other plant configuration in the study (including isoline plants) in the first year of the study. This plant configuration would occur rarely in a 5% seed blend refuge and may produce beetles of a susceptible genotype because much of their initial larval development was on isoline plants. Results are discussed in terms of their potential effects on resistance management.  相似文献   

10.
Laboratory-reared western corn rootworms, Diabrotica virgifera virgifera, from colonies maintained at the North Central Agricultural Research Laboratory (NCARL) in Brookings, SD, are used extensively by many researchers in studies of the biology, ecology, behavior, and genetics of this major insect pest. A nondiapause colony developed through artificial selection in the early 1970s is particularly attractive for many studies because its generation time is much shorter than that of typical diapause colonies. However, the nondiapause colony has been in culture for approximately 190 generations without out-crossing. We compared variation at six microsatellite loci among individuals from the NCARL nondiapause colony (approximately 190 generations), main diapause colony (approximately 22 generations), four regional diapause colonies (3-8 generations), and four wild populations. Genetic diversity was very similar among the diapause laboratory colonies and wild populations. However, the nondiapause colony showed approximately 15-39% loss of diversity depending on the measure. Pairwise estimates of F(ST) were very low, revealing little genetic differentiation among laboratory colonies and natural populations. The nondiapause colony showed the greatest genetic differentiation with an average pairwise F(ST) of 0.153. There was little evidence that the laboratory colonies had undergone genetic bottlenecks except for the nondiapause colony. The nondiapause colony has suffered a moderate loss in genetic diversity and is somewhat differentiated from wild populations. This was not unexpected given its history of artificial selection for the nondiapause trait, and the large number of generations in culture. In contrast, the results indicate that the diapause colonies maintained at NCARL are genetically similar to wild populations.  相似文献   

11.
Dispersal of larvae of the western corn rootworm, Diabrotica virgifera virgifera LeConte, in specific combinations of transgenic corn expressing the Cry3Bb1 protein and nontransgenic, isoline corn was evaluated in a 2-yr field study. In total, 1,500 viable western corn rootworm eggs were infested in each subplot. Each year, plant damage and larval recovery were evaluated among four pedigree combinations (straight transgenic; straight nontransgenic corn; nontransgenic corn with a transgenic central, infested plant; and transgenic corn with a nontransgenic central, infested plant) on six sample dates between egg hatch and pupation. For each subplot, the infested plant, three successive plants down the row (P1, P2, and P3), the closest plant in the adjacent row of the plot, and a control plant were sampled. The number of western corn rootworm larvae recovered from transgenic rootworm-resistant plants adjacent to infested nontransgenic plants was low and not statistically significant in either 2001 or 2002. In 2001, significantly fewer larvae were recovered from transgenic rootworm-resistant plants than from nontransgenic plants when both were adjacent to infested, nontransgenic plants. In 2002, significantly more neonate western corn rootworm larvae were recovered from nontransgenic plants adjacent to infested, transgenic rootworm-resistant plants than nontransgenic plants adjacent to infested, nontransgenic plants on the second sample date. Together, these data imply that both neonate and later instar western corn rootworm larvae prefer nontransgenic roots to transgenic rootworm-resistant roots when a choice is possible. However, when damage to the infested, nontransgenic plant was high, western corn rootworm larvae apparently moved to neighboring transgenic rootworm-resistant plants and caused statistically significant, although only marginally economic, damage on the last sample date in 2001. Implications of these data toward resistance management plan are discussed.  相似文献   

12.
Three greenhouse experiments were conducted to evaluate western corn rootworm, Diabrotica virgifera virgifera LeConte, beetle emergence from individual pots containing glyphosate-tolerant transgenic corn, Zea mays L., expressing the Cry3Bbl endotoxin from the soil bacterium Bacillus thuringiensis Berliner (MON863), nontransgenic glyphosate-tolerant isoline corn, grassy weeds (giant foxtail, Setariafaberi R.A.W. Herrm; and large crabgrass, Digitaria sanguinalis (L.) Scop.), and combinations thereof infested with 40 neonate larvae. In the first two experiments, pots with corn and weed combinations were treated with glyphosate 5 d after larval infestation to kill the weeds. The third experiment was similar to the first two except that untreated corn-weed combinations were added. In all three experiments beetle emergence varied significantly. Beetle recovery generally did not vary between the nontransgenic, nontransgenic + weeds, and MON863 + weeds. Significantly more beetles were recovered from MON863 + weeds than MON863 alone or weeds alone. Beetle emergence from MON863 + weeds was likely enhanced by larvae that initially survived on weeds before application of glyphosate. Preliminary data indicated that fecundity was highest from beetles reared on nontransgenic isoline corn and fewer eggs were laid by beetles reared on MON863 alone. Egg viability was generally lowest from beetles reared on MON863. The implications of these results in relation to insect resistant management are discussed.  相似文献   

13.
Five short-diapause laboratory lines of western corn rootworm, Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae), were selected for resistance to MON863, a variety of corn genetically modified with the Bacillus thuringiensis Berliner (Bt) transgene that expresses the Cry3Bb1 delta-endotoxin. Three of the selected lines were developed by incremental increase in the duration of exposure to MON863 over 11 generations (moderate selected lines). Two selected lines were developed from a control group by constant exposure to MON863 for at least 14 d posthatch over seven generations (intense selected lines). At the end of the experiment, survivorship, as measured by adult emergence, was approximately 4 times higher in each of the selected lines reared on MON863 compared with control lines. Estimates of realized heritabilities (h2) were 0.16 and 0.15 for the moderate and intense selected lines, respectively, and are consistent with h2 estimates reported previously from a variety of pest insects. These lines provide data necessary for evaluating the potential for Bt resistance within diabroticite beetles and will be useful for developing improved insect resistance management strategies.  相似文献   

14.
If registered, transgenic corn, Zea mays L., with corn rootworm resistance will offer a viable alternative to insecticides for managing Diabrotica spp. corn rootworms. Resistance management to maintain susceptibility is in the interest of growers, the Environmental Protection Agency, and industry, but little is known about many aspects of corn rootworm biology required for an effective resistance management program. The extent of larval movement by the western corn rootworm, Diabrotica virgifera virgifera LeConte, that occurs from plant-to-plant or row-to-row after initial establishment was evaluated in 1998 and 1999 in a Central Missouri cornfield. Post-establishment movement by western corn rootworm larvae was clearly documented in two of four treatment combinations in 1999 where larvae moved up to three plants down the row and across a 0.46-m row. Larvae did not significantly cross a 0.91-m row after initial host establishment in 1998 or 1999, whether or not the soil had been compacted by a tractor and planter. In the current experiment, western corn rootworm larvae moved from highly damaged, infested plants to nearby plants with little to no previous root damage. Our data do not provide significant insight into how larvae might disperse after initial establishment when all plants in an area are heavily damaged or when only moderate damage occurs on an infested plant. A similar situation might also occur if a seed mixture of transgenic and isoline plants were used and if transgenic plants with rootworm resistance are not repellent to corn rootworm larvae.  相似文献   

15.
Field studies were conducted in 2003 and 2004 to determine the effects of grassy weeds, postemergence grass control, transgenic rootworm-resistant corn, Zea mays L., expressing the Cry3Bb1 endotoxin and glyphosate herbicide tolerance (Bt corn), and the interactions of these factors on western corn rootworm, Diabrotica virgifera virgifera LeConte, damage and adult emergence. Three insect management tactics (Bt corn, its nontransgenic isoline, and isoline plus tefluthrin) were evaluated with two weed species (giant foxtail, Setaria faberi Herrm, and large crabgrass, Digitaria sanquinalis L. Scop), and four weed management regimes (weed free, no weed management, early [V3-4] weed management and late [V5-6] weed management) in a factorial arrangement of a randomized split split-plot design. In each case, the isoline was also tolerant to glyphosate. Root damage was significantly affected by insect management tactics in both years, but weed species and weed management did not significantly affect damage to Bt corn in either year. Adult emergence was significantly affected by insect management tactics in both years and by weed species in 2003, but weed management and the interaction of all three factors was not significant in either year. The sex ratio of female beetles produced on Bt corn without weeds was generally greater than when weeds were present and this difference was significant for several treatments each year. Average dry weight of male and female beetles emerging from Bt corn was greater than the weights of beetles emerging from isoline or isoline plus tefluthrin in 2003, but there was no difference for females in 2004 and males weighed significantly less than other treatments in 2004. The implications of these results in insect resistance management are discussed.  相似文献   

16.
The coleopteran insect western corn rootworm (WCR, Diabrotica virgifera virgifera) is an economically important pest in North America and Europe. Transgenic corn plants producing Bacillus thuringiensis (Bt) insecticidal proteins have been useful against this devastating pest, but evolution of resistance has reduced their efficacy. Here, we report the discovery of a novel insecticidal protein, PIP‐47Aa, from an isolate of Pseudomonas mosselii. PIP‐47Aa sequence shows no shared motifs, domains or signatures with other known proteins. Recombinant PIP‐47Aa kills WCR, two other corn rootworm pests (Diabrotica barberi and Diabrotica undecimpunctata howardi) and two other beetle species (Diabrotica speciosa and Phyllotreta cruciferae), but it was not toxic to the spotted lady beetle (Coleomegilla maculata) or seven species of Lepidoptera and Hemiptera. Transgenic corn plants expressing PIP‐47Aa show significant protection from root damage by WCR. PIP‐47Aa kills a WCR strain resistant to mCry3A and does not share rootworm midgut binding sites with mCry3A or AfIP‐1A/1B from Alcaligenes that acts like Cry34Ab1/Cry35Ab1. Our results indicate that PIP‐47Aa is a novel insecticidal protein for controlling the corn rootworm pests.  相似文献   

17.
Susceptibility to Cry3Bb1 toxin from Bacillus thuringiensis (Bt) was determined for western corn rootworm, Diabrotica virgifera virgifera LeConte, neonates from both laboratory and field populations collected from across the Corn Belt. Rootworm larvae were exposed to artificial diet treated with increasing Cry3Bb1 concentrations, and mortality and growth inhibition were evaluated after 4-7 d. The range of variation in Bt susceptibility indicated by growth inhibition was similar to that indicated by mortality. Although interpopulation variation in susceptibility was observed, the magnitude of the differences was comparable with the variability observed between generations of the same population. In general, the toxin was not highly toxic to larvae and estimated LC50 and EC50 values were several times higher than those reported for lepidopteran-specific Cry toxins by using similar bioassay techniques. These results suggest that the observed susceptibility differences reflect natural variation in Bt susceptibility among rootworm populations and provide a baseline for estimating potential shifts in susceptibility that might result from selection and exposure to Cry3Bb1-expressing corn hybrids.  相似文献   

18.
Mortality of western corn rootworm (Diabrotica virgifera virgifera LeConte) due to feeding on MON863 transgenic maize (Zea mays L.) expressing the Cry3Bb1 protein was evaluated at three Missouri sites in both 2003 and 2004 and at one site each in South Dakota, Nebraska and Iowa in 2004. To do this, survivorship relative to survivorship on isoline maize (i.e. the same genetic background, but without Cry3Bb1) was evaluated. Comparisons were made using low (1650–2500 eggs/m) and high (3300–3500 eggs/m) western corn rootworm egg densities. Significantly fewer beetles were recovered from MON863 than from isoline maize. Emergence from MON863 as a percentage of viable eggs ranged from 0.02% to 0.10%, whereas percentage emergence from isoline maize ranged from 1.09% to 7.14%. Survivorship on MON863 relative to survivorship on isoline averaged 1.51% when averaged across all environments and both years, so mortality because of the Cry3Bb1 protein averaged 98.49%. The average time delay to 50% cumulative beetle emergence from MON863 was 18.3 days later than from isoline maize. Females comprised 56% and 71% of total beetles recovered from MON863 in 2003 and 2004, respectively. Results are discussed in relation to insect resistance management (IRM) of western corn rootworm.  相似文献   

19.
Crops engineered to produce insecticidal toxins derived from the bacterium Bacillus thuringiensis (Bt) provide an effective management tool for many key insect pests. However, pest species have repeatedly demonstrated their ability to adapt to management practices. Results from laboratory selection experiments illustrate the capacity of pest species to evolve Bt resistance. Furthermore, resistance has been documented to Bt sprays in the field and greenhouse, and more recently, by some pests to Bt crops in the field. In 2009, fields were discovered in Iowa (USA) with populations of western corn rootworm, Diabrotica virgifera virgifera LeConte, that had evolved resistance to maize that produces the Bt toxin Cry3Bb1. Fields with resistant insects in 2009 had been planted to Cry3Bb1 maize for at least three consecutive years and as many as 6years. Computer simulation models predicted that the western corn rootworm might evolve resistance to Bt maize in as few as 3years. Laboratory and field data for interactions between western corn rootworm and Bt maize indicate that currently commercialized products are not high-dose events, which increases the risk of resistance evolution because non-recessive resistance traits may enhance survival on Bt maize. Furthermore, genetic analysis of laboratory strains of western corn rootworm has found non-recessive inheritance of resistance. Field studies conducted in two fields identified as harboring Cry3Bb1-resistant western corn rootworm found that survival of western corn rootworm did not differ between Cry3Bb1 maize and non-Bt maize and that root injury to Cry3Bb1 maize was higher than injury to other types of Bt maize or to maize roots protected with a soil insecticide. These first cases of field-evolved resistance to Bt maize by western corn rootworm provide an early warning and point to the need to apply better integrated pest management practices when using Bt maize to manage western corn rootworm.  相似文献   

20.
In the United States of America, the western corn rootworm, Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae), is commonly managed with transgenic corn (Zea mays L.) expressing insecticidal proteins from the bacteria Bacillus thuringiensis Berliner (Bt). Colonies of this pest have been selected in the laboratory on each commercially available transformation event and several resistant field populations have also been identified; some field populations are also resistant. In this study, progeny of a western corn rootworm population collected from a Minnesota corn field planted to SmartStax® corn were evaluated for resistance to corn hybrids expressing Cry3Bb1 (event MON88017) or Cry34/35Ab1 (event DAS‐59122‐7) and to the individual constituent proteins in diet‐overlay bioassays. Results from these assays suggest that this population is resistant to Cry3Bb1 and is incompletely resistant to Cry34/35Ab1. In diet toxicity assays, larvae of the Minnesota (MN) population had resistance ratios of 4.71 and >13.22 for Cry34/35Ab1 and Cry3Bb1 proteins, respectively, compared with the control colonies. In all on‐plant assays, the relative survival of the MN population on the DAS‐59122‐7 and MON88017 hybrids was significantly greater than the control colonies. Larvae of the MN population had inhibited development when reared on DAS‐59122‐7 compared with larvae reared on the non‐Bt hybrid, indicating resistance was incomplete. Overall, these results document resistance to Cry3Bb1 and an incomplete resistance to Cry34/35Ab1 in a population of WCR from a SmartStax® performance problem field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号