首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
AC microsatellites have proved particularly useful as genetic markers. For some purposes, such as in population biology, the inferences drawn depend on the quantitative values of their mutation rates. This, together with intrinsic biological interest, has led to widespread study of microsatellite mutational mechanisms. Now, however, inconsistencies are appearing in the results of marker-based versus non-marker-based studies of mutational mechanisms. The reasons for this have not been investigated, but one possibility, pursued here, is that the differences result from structural differences between markers and genomic microsatellites. Here we report a comparison between the CEPH AC marker microsatellites and the global population of AC microsatellites in the human genome. AC marker microsatellites are longer than the global average. Controlling for length, marker microsatellites contain on average fewer interruptions, and have longer segments, than their genomic counterparts. Related to this, marker microsatellites show a greater tendency to concentrate the majority of their repeats into one segment. These differences plausibly result from scientists selecting markers for their high polymorphism. In addition to the structural differences, there are differences in the base composition of flanking sequences, marker flanking regions being richer in C and G and poorer in A and T. Our results indicate that there are profound differences between marker and genomic microsatellites that almost certainly affect their mutation rates. There is a need for a unified model of mutational mechanisms that accounts for both marker-derived and genomic observations. A suggestion is made as to how this might be done.Reviewing Editor: Dr. Magnto Nordborg  相似文献   

2.
含WD重复功能域的蛋白能够参与信号传导、转录调控、RNA剪切、细胞的凋亡等多种功能,在病原菌与寄主植物蛋白互作的过程中扮演着重要的角色。本研究分析了稻瘟病菌基因组中94个WD功能域基因编码区和调控区中SSR的组成、分布,并检测了7个蛋白编码区中SSR的变异及其对蛋白二级结构的影响。结果表明,WD功能域基因的编码区和调控区中都含有大量的SSR,但是SSR在这些基因的外显子区、内含子区、5’一UTR和3’一UTR区中SSR的组成和分布均不相同;编码区中三碱基和六碱基SSR分布较多,这些SSR基序大都表现为GC含量较高和其所编码的亲水性氨基酸出现的频率远远高于疏水性氨基酸的特点。且检测的7个WD功能域基因的编码区中的SSR位点均具有丰富的多态性,通过Antheprot(DPM)软件预测发现:SSR的变异对蛋白的二级结构有一定影响。这暗示着SSR的变异对致病相关基因的变异起着十分重要的作用。  相似文献   

3.
Polyglutamine repeats within proteins are common in eukaryotes and are associated with neurological diseases in humans. Many are encoded by tandem repeats of the codon CAG that are likely to mutate primarily by replication slippage. However, a recent study in the yeast Saccharomyces cerevisiae has indicated that many others are encoded by mixtures of CAG and CAA which are less likely to undergo slippage. Here we attempt to estimate the proportions of polyglutamine repeats encoded by slippage-prone structures in species currently the subject of genome sequencing projects. We find a general excess over random expectation of polyglutamine repeats encoded by tandem repeats of codons. We nevertheless find many repeats encoded by nontandem codon structures. Mammals and Drosophila display extreme opposite patterns. Drosophila contains many proteins with polyglutamine tracts but these are generally encoded by interrupted structures. These structures may have been selected to be resistant to slippage. In contrast, mammals (humans and mice) have a high proportion of proteins in which repeats are encoded by tandem codon structures. In humans, these include most of the triplet expansion disease genes. Received: 17 August 2000 / Accepted: 20 November 2000  相似文献   

4.
By exploiting three-dimensional structure comparison, which is more sensitive than conventional sequence-based methods for detecting remote homology, we have identified a set of 140 ancestral protein domains using very restrictive criteria to minimize the potential error introduced by horizontal gene transfer. These domains are highly likely to have been present in the Last Universal Common Ancestor (LUCA) based on their universality in almost all of 114 completed prokaryotic (Bacteria and Archaea) and eukaryotic genomes. Functional analysis of these ancestral domains reveals a genetically complex LUCA with practically all the essential functional systems present in extant organisms, supporting the theory that life achieved its modern cellular status much before the main kingdom separation (Doolittle 2000). In addition, we have calculated different estimations of the genetic and functional versatility of all the superfamilies and functional groups in the prokaryote subsample. These estimations reveal that some ancestral superfamilies have been more versatile than others during evolution allowing more genetic and functional variation. Furthermore, the differences in genetic versatility between protein families are more attributable to their functional nature rather than the time that they have been evolving. These differences in tolerance to mutation suggest that some protein families have eroded their phylogenetic signal faster than others, hiding in many cases, their ancestral origin and suggesting that the calculation of 140 ancestral domains is probably an underestimate. Electronic Supplementary Material Electronic Supplementary material is available for this article at and accessible for authorised users. [Reviewing Editor: Dr. Rafael Zarobya]  相似文献   

5.
6.
Hef is an archaeal protein that probably functions mainly in stalled replication fork repair. The presence of an unstructured region was predicted between the two distinct domains of the Hef protein. We analyzed the interdomain region of Thermococcus kodakarensis Hef and demonstrated its disordered structure by CD, NMR, and high speed atomic force microscopy (AFM). To investigate the functions of this intrinsically disordered region (IDR), we screened for proteins interacting with the IDR of Hef by a yeast two-hybrid method, and 10 candidate proteins were obtained. We found that PCNA1 and a RecJ-like protein specifically bind to the IDR in vitro. These results suggested that the Hef protein interacts with several different proteins that work together in the pathways downstream from stalled replication fork repair by converting the IDR structure depending on the partner protein.  相似文献   

7.
Chiobanu  D.  Roudykh  I. A.  Ryabinina  N. L.  Grechko  V. V.  Kramerov  D. A.  Darevsky  I. S. 《Molecular Biology》2002,36(2):223-231
The genetic relatedness of several bisexual and of four unisexual Lacerta saxicola complex lizards was studied, using monomer sequences of the complex-specific CLsat tandem repeats and anonymous RAPD markers. Genomes of parthenospecies were shown to include different satellite monomers. The structure of each such monomer is specific for a certain pair of bisexual species. This fact might be interpreted in favor of co-dominant inheritance of these markers in bisexual species hybridogenesis. This idea is supported by the results obtained with RAPD markers; i.e., unisexual species genomes include only the loci characteristic of certain bisexual species. At the same time, in neither case parthenospecies possess specific, autoapomorphic loci that were not present in this or that bisexual species.  相似文献   

8.
By electron microscopic and immunobiochemical analyses we have confirmed earlier evidence that Nautilus pompilius hemocyanin (NpH) is a ring-like decamer (Mr = ∼3.5 million), assembled from 10 identical copies of an ∼350-kDa polypeptide. This subunit in turn is substructured into seven sequential covalently linked functional units of ∼50 kDa each (FUs a–g). We have cloned and sequenced the cDNA encoding the complete polypeptide; it comprises 9198 bp and is subdivided into a 5′ UTR of 58 bp, a 3′ UTR of 365 bp, and an open reading frame for a signal peptide of 21 amino acids plus a polypeptide of 2903 amino acids (Mr = 335,881). According to sequence alignments, the seven FUs of Nautilus hemocyanin directly correspond to the seven FU types of the previously sequenced hemocyanin “OdH” from the cephalopod Octopus dofleini. Thirteen potential N-glycosylation sites are distributed among the seven Nautilus hemocyanin FUs; the structural consequences of putatively attached glycans are discussed on the basis of the published X-ray structure for an Octopus dofleini and a Rapana thomasiana FU. Moreover, the complete gene structure of Nautilus hemocyanin was analyzed; it resembles that of Octopus hemocyanin with respect to linker introns but shows two internal introns that differ in position from the three internal introns of the Octopus hemocyanin gene. Multiple sequence alignments allowed calculation of a rather robust phylogenetic tree and a statistically firm molecular clock. This reveals that the last common ancestor of Nautilus and Octopus lived 415 ± 24 million years ago, in close agreement with fossil records from the early Devonian. [Reviewing Editor: Dr. Axel Meyer] The sequence reported in this paper has been deposited in the EMBL/GenBank database under accession number AJ619741.  相似文献   

9.
Widely used models of protein evolution ignore protein structure. Therefore, these models do not predict spatial clustering of amino acid replacements with respect to tertiary structure. One formal and biologically implausible possibility is that there is no tendency for amino acid replacements to be spatially clustered during evolution. An alternative to this is that amino acid replacements are spatially clustered and this spatial clustering can be fully explained by a tendency for similar rates of amino acid replacement at sites that are nearby in protein tertiary structure. A third possibility is that the amount of clustering exceeds that which can be explained solely on the basis of independently evolving protein sites with spatially clustered replacement rates. We introduce two simple and not very parametric hypothesis tests that help distinguish these three possibilities. We then apply these tests to 273 homologous protein families. The null hypothesis of no spatial clustering is rejected for 102 of 273 families. The explanation of spatially clustered rates but independent change among sites is rejected for 43 families. These findings need to be reconciled with the common practice of basing evolutionary inferences on models that assume independent change among sites. [Reviewing Editior: Dr. David Pollock]  相似文献   

10.
后基因组研究中蛋白结构与功能的预测   总被引:2,自引:0,他引:2  
阐述蛋白质结构建模和功能预测的基本方法以及最新研究进展,展望了蛋白质预测技术的前景。  相似文献   

11.
Intein-mediated protein splicing raises questions and creates opportunities in many scientific areas. Evolutionary biologists question whether inteins are primordial enzymes or simply selfish elements, whereas biochemists seek to understand how inteins work. Synthetic chemists exploit inteins in the semisynthesis of proteins with or without nonribosomal modifications, whereas biotechnologists use modified inteins in an ever increasing variety of applications. The four minireviews in this series explore these themes. The first minireview focuses on the evolution and biological function of inteins, whereas the second describes the mechanisms that underlie the remarkable ability of inteins to perform complex sets of choreographed enzymatic reactions. The third explores the relationship between the three-dimensional structure and dynamics of inteins and their biochemical capabilities. The fourth describes intein applications that have moved beyond simple technology development to utilizing inteins in more sophisticated applications, such as biosensors for identifying ligands of human hormone receptors or improved methods of biofuel and plant-based sugar production.  相似文献   

12.
Summary Intermediate filaments are composed of a family of proteins that evolved from a common ancestor. The proteins consist of three domains: a central, alpha-helical domain similar in all intermediate filaments, bracketed by two domains that are variable in length and structure. Within the intermediate-filament family, several subfamilies have been recognized by immunologic and nucleic acid hybridization techniques. In this paper we present the sequence of the genomic DNA coding for a 65-kilodalton human keratin and compare it with the sequences of other intermediate-filament proteins. While the central, alpha-helical domains of these proteins show homologies that indicate a common ancestor, the sequences of the variable terminal domains indicate that the variable domains evolved through a series of tandem duplications and possibly by gene-conversion mechanisms.  相似文献   

13.
Our efforts to classify the functional units of many proteins, the modules, are reviewed. The data from the sequencing projects for various model organisms are extremely helpful in deducing the evolution of proteins and modules. For example, a dramatic increase of modular proteins can be observed from yeast to C. elegans in accordance with new protein functions that had to be introduced in multicellular organisms. Our sequence characterization of modules relies on sensitive similarity search algorithms and the collection of multiple sequence alignments for each module. To trace the evolution of modules and to further automate the classification, we have developed a sequence and a module alerting system that checks newly arriving sequence data for the presence of already classified modules. Using these systems, we were able to identify an unexpected similarity between extracellular C1Q modules with bacterial proteins.  相似文献   

14.
Mutation and selection are the essential steps of evolution. Researchers have long used in vitro mutagenesis, expression, and selection techniques in laboratory bacteria and yeast cultures to evolve proteins with new properties, termed directed evolution. Unfortunately, the nature of mammalian cells makes applying these mutagenesis and whole-organism evolution techniques to mammalian protein expression systems laborious and time consuming. Mammalian evolution systems would be useful to test unique mammalian cell proteins and protein characteristics, such as complex glycosylation. Protein evolution in mammalian cells would allow for generation of novel diagnostic tools and designer polypeptides that can only be tested in a mammalian expression system. Recent advances have shown that mammalian cells of the immune system can be utilized to evolve transgenes during their natural mutagenesis processes, thus creating proteins with unique properties, such as fluorescence. On a more global level, researchers have shown that mutation systems that affect the entire genome of a mammalian cell can give rise to cells with unique phenotypes suitable for commercial processes. This review examines the advances in mammalian cell and protein evolution and the application of this work toward advances in commercial mammalian cell biotechnology.  相似文献   

15.
Protein kinases phosphorylating Ser/Thr/Tyr residues in several cellular proteins exert tight control over their biological functions. They constitute the largest protein family in most eukaryotic species. Protein kinases classified based on sequence similarity in their catalytic domains, cluster into subfamilies, which share gross functional properties. Many protein kinases are associated or tethered covalently to domains that serve as adapter or regulatory modules, aiding substrate recruitment, specificity, and also serve as scaffolds. Hence the modular organisation of the protein kinases serves as guidelines to their functional and molecular properties. Analysis of genomic repertoires of protein kinases in eukaryotes have revealed wide spectrum of domain organisation across various subfamilies of kinases. Occurrence of organism-specific novel domain combinations suggests functional diversity achieved by protein kinases in order to regulate variety of biological processes. In addition, domain architecture of protein kinases revealed existence of hybrid protein kinase subfamilies and their emerging roles in the signaling of eukaryotic organisms. In this review we discuss the repertoire of non-kinase domains tethered to multi-domain kinases in the metazoans. Similarities and differences in the domain architectures of protein kinases in these organisms indicate conserved and unique features that are critical to functional specialization.  相似文献   

16.
高等植物光敏色素的分子结构、生理功能和进化特征   总被引:1,自引:0,他引:1  
王静  王艇 《植物学通报》2007,24(5):649-658
光敏色素是植物感受外界环境变化的最重要光受体之一,对红光和远红外光非常敏感。本文综述了光敏色素的分子结构、它所包含的结构域和相应功能以及植物各主要类群中光敏色素基因家族的成员组成与进化关系;重点在分子水平上介绍了光敏色素的生理功能与作用机制。最后,基于最新的研究进展提出了将来的研究方向。  相似文献   

17.
蛋白质定向进化是非理性改造蛋白质的一种有效方法。利用蛋白质定向进化技术可以改变代谢流,扩展或构建新的代谢途径,弱化或消除不必要或有害的代谢途径,从而达到提高某种代谢产物产率或降解有害物质的目的。蛋白质定向进化技术在代谢调控中的应用有效拓宽了代谢工程的应用范围。本文介绍了主要的蛋白质定向进化技术如易错PCR技术、DNA改组技术、交错延伸技术和临时模板随机嵌合技术等,评述了蛋白质定向进化技术对微生物细胞代谢中的关键蛋白进行定向改造,从而改善其代谢能力,调控微生物代谢等的应用。  相似文献   

18.
The dengue virus (DENV) NS3 protein is essential for viral polyprotein processing and RNA replication. It contains an N-terminal serine protease region (residues 1–168) joined to an RNA helicase (residues 180–618) by an 11-amino acid linker (169–179). The structure at 3.15 Å of the soluble NS3 protein from DENV4 covalently attached to 18 residues of the NS2B cofactor region (NS2B18NS3) revealed an elongated molecule with the protease domain abutting subdomains I and II of the helicase (Luo, D., Xu, T., Hunke, C., Grüber, G., Vasudevan, S. G., and Lescar, J. (2008) J. Virol. 82, 173–183). Unexpectedly, using similar crystal growth conditions, we observed an alternative conformation where the protease domain has rotated by ∼161° with respect to the helicase domain. We report this new crystal structure bound to ADP-Mn2+ refined to a resolution of 2.2 Å. The biological significance for interdomain flexibility conferred by the linker region was probed by either inserting a Gly residue between Glu173 and Pro174 or replacing Pro174 with a Gly residue. Both mutations resulted in significantly lower ATPase and helicase activities. We next increased flexibility in the linker by introducing a Pro176 to Gly mutation in a DENV2 replicon system. A 70% reduction in luciferase reporter signal and a similar reduction in the level of viral RNA synthesis were observed. Our results indicate that the linker region has evolved to an optimum length to confer flexibility to the NS3 protein that is required both for polyprotein processing and RNA replication.  相似文献   

19.
Crimean-Congo hemorrhagic fever virus (CCHFV) is an emerging tick-borne virus of the Bunyaviridae family that is responsible for a fatal human disease for which preventative or therapeutic measures do not exist. We solved the crystal structure of the CCHFV strain Baghdad-12 nucleocapsid protein (N), a potential therapeutic target, at a resolution of 2.1 Å. N comprises a large globular domain composed of both N- and C-terminal sequences, likely involved in RNA binding, and a protruding arm domain with a conserved DEVD caspase-3 cleavage site at its apex. Alignment of our structure with that of the recently reported N protein from strain YL04057 shows a close correspondence of all folds but significant transposition of the arm through a rotation of 180 degrees and a translation of 40 Å. These observations suggest a structural flexibility that may provide the basis for switching between alternative N protein conformations during important functions such as RNA binding and oligomerization. Our structure reveals surfaces likely involved in RNA binding and oligomerization, and functionally critical residues within these domains were identified using a minigenome system able to recapitulate CCHFV-specific RNA synthesis in cells. Caspase-3 cleaves the polypeptide chain at the exposed DEVD motif; however, the cleaved N protein remains an intact unit, likely due to the intimate association of N- and C-terminal fragments in the globular domain. Structural alignment with existing N proteins reveals that the closest CCHFV relative is not another bunyavirus but the arenavirus Lassa virus instead, suggesting that current segmented negative-strand RNA virus taxonomy may need revision.  相似文献   

20.
The extraordinary properties of natural proteins demonstrate that life-like protein engineering is both achievable and valuable. Rapid progress and impressive results have been made towards this goal using rational design and random techniques or a combination of both. However, we still do not have a general theory on how to specify a structure that is suited to a target function nor can we specify a sequence that folds to a target structure. There is also overreliance on the Darwinian blind search to obtain practical results. In the long run, random methods cannot replace insight in constructing life-like proteins. For the near future, however, in enzyme development, we need to rely on a combination of both.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号