首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 16 毫秒
1.
The sampling and assay of bioaerosols are important ina number of industrial and health-care applications. Airborne microorganisms are notoriously difficult toenumerate accurately under such conditions and nosingle procedure is suitable for all applications. Problems are compounded by the differences in assaymethod or sampler type selected, making theinterpretation of results difficult.Understanding the airborne behaviour of microorganismsover a range of environmental conditions is vital ifprocedures are to be defined and recommended for theassessment of bioaerosols. Microorganisms that arerobust over a wide range of conditions are ideal astracer particles. Unfortunately, the large majorityof non-fungal bioaerosols are susceptible to damage. A predictable assessment procedure is required whichwill not affect the viability of the collectedsample.This paper examines how aerosolisation may affect the characteristics of two speciesof microorganism (Pseudomonas fluorescens andMS2 coliphage). It forms part of a larger programmeto develop standards for the assessment of biologicalparticles. The aim of the work was to develop procedures toexamine the effects of aerosolisation onmicroorganisms, with particular reference topre-aerosolisation protocol (spray suspension age) andpost-sampling handling protocol (aerosol age incollection solution). These procedures were then usedto examine the effect of recovery agents, addedto the spray suspension prior to aerosolisation, onthe culturability of E.coli.Aerosolisation reduces the culturability of P. fluorescensand the viability of viability of MS2coliphage. Pre-sampling and post-collection handlingand storage of these aerosolised microorganisms werealso found to have an effect. This and earlierstudies have shown that the culturable fraction ofmicroorganisms can be affected by the same factorsdescribed above. Of five microorganisms tested so farin the main programme, only Penicillium expansumspores were shown to be robust and stable with aconstant culturable fraction. Therefore, recommendinga particular microorganism (apart from P. expansum) as an airborne biological standard foraerosol studies is not advised. It is recommendedthat a microorganism, representative of the envisagedapplication, be characterised it in terms of theaerosolisation parameters, storage time and conditionsin the manner reported in this study. This can beachieved using the experimental equipment described.The addition of 0.1 mM concentrations of the sugarsinositol, trehalose and raffinose to spray suspensionsof Escherichia coli, prior to aerosolisation,made no significant difference to the culturablefraction of the aerosol.  相似文献   

2.
The objective was to reveal the effects of ozone treatment on quality maintenance and resistance to Botrytis cinerea and Penicillium expansum in kiwifruit during postharvest storage. Kiwifruits were treated with 79.44 ppm gaseous ozone for 1 hr once a day for 7 day at 0°C to determine the effects of ozone treatment on the quality and disease incidence caused by B. cinerea and P. expansum in vivo and the growth of B. cinerea and P. expansum in vitro. Ozone treatment significantly reduced the disease incidence of kiwifruit and inhibited the mycelial development and spore germination of B. cinerea and P. expansum. High levels of fruit firmness and titratable acidity were maintained in the ozone‐treated kiwifruit, and the activities of the defence‐related enzymes were remarkably enhanced. Therefore, ozone treatment may be an effective method to maintain the quality of kiwifruit and control its decay during postharvest storage.  相似文献   

3.
Recombinant Pichia pastoris yeasts expressing cecropin A (GS115/CEC), was evaluated for the control of the blue mold of apple caused by Penicillium expansum due to cecropin A peptide’s effective antimicrobial effects on P. expansum spores by the thiazolyl blue (MTT) assay. Then, the protein concentration was determined and it was expressed at high levels up to 14.2 mg/L in the culture medium. Meanwhile, the population growth was assayed in vivo. The population growth of recombinant strain GS115/CEC was higher than that of non-transformed strain GS115 in red Fuji apples wounds. Recombinant yeast strains GS115/CEC significantly inhibited growth of germinated P. expansum spores in vitro and inhibited decay development caused by P. expansum in apple fruits in vivo when compared with apple fruits inoculated with sterile water or the yeast strain GS115/pPIC (plasmid pPIC9k transformed in GS115). This study demonstrated the potential of expression of the antifungal peptide in yeast for the control of postharvest blue mold infections on pome fruits.  相似文献   

4.
The effects of nitric oxide (NO) on spore germination of Penicillium expansum were investigated and a possible mechanism was evaluated. The results indicated that NO released by sodium nitroprusside (SNP) significantly suppressed fungal growth. With the use of an oxidant sensitive probe and Western blot analysis, an increased level of intracellular reactive oxygen species (ROS) and enhanced carbonylation damage were detected in spores of P. expansum under NO stress. Exogenous superoxide dismutase (SOD) and ascorbic acid (Vc) could increase the resistance of the spore to the inhibitory effect of NO. The activities of SOD and catalase (CAT), as well as ATP content in spores under NO stress were also lower than those in the control. We suggest that NO in high concentration induces the generation of ROS which subsequently causes severe oxidative damage to proteins crucial to the process of spore germination of P. expansum.  相似文献   

5.
Control of Postharvest Diseases of Sweet Cherry with Ethanol and Hot Water   总被引:2,自引:0,他引:2  
Complete inhibition of the germination of spores of Penicillium expansum occurred after 10 s exposure to 40% ethanol or more at ambient temperature, while spores of Botrytis cinerea were completely inhibited by 30% ethanol or more. Mortality of the spores of P. expansum and B. cinerea in heated 10% ethanol was higher than in water at the same temperatures. Immersion of naturally inoculated fruit in 20, 30, 40, or 50% ethanol reduced the decay present after storage for 10 days at 20°C similarly and by approximately 60–85%. Immersion of fruit that had been inoculated with the spores of P. expansum and B. cinerea reduced decay by both pathogens after storage for 30 days at 0°C and 5 days at 20°C when 30% or higher concentrations of ethanol were used. The incidence of decay after immersion in water alone for 30 s at 24, 50, 55, or 60°C was 57.7, 44.7, 46.2, and 35.7%, respectively, while 10% ethanol at these temperatures the decay incidence to 52.2, 33.9, 32.8, or 14.7%, respectively. Water treatments at 50, 55, or 60°C alone were not effective against P. expansum, while their efficacies were significantly increased by the addition of 10% ethanol. The most effective treatment was immersion in 10% ethanol at 60°C. Ethanol treatments at 20, 30, 40, or 50% and water treatments at 55 or 60°C significantly reduced natural fungal populations on the surfaces of fruit in all of the experiments. Addition of 10% ethanol to water significantly increased the efficacy of water in reducing the fungal populations at elevated temperatures. None of these treatments caused surface injuries to the fruit or adversely affected stem colour.  相似文献   

6.
Summary A bioaerosol research chamber was constructed and used to evaluate wind-gust release of previously depositedPseudomonas syringae, spores ofBacillus subtilis var.niger, and fluorescent microspheres (FM) on oat plants, and the airborne survival of the releasedP. syringae. Observations of wind gusts on the releasedBacillus spores and FM showed they had similar particle size distributions and therefore FM could act as bacterial sized surrogates in particle dispersion. Microscopic examination of the released FM containing particles revealed that 84% were associated with either fungal spores and hyphae were epiphytic on the plant, or with plant and soil debris. The release rate ofBacillus spores decreased as the number of gusts experienced by the plants increased, with a greater proportion of larger particles removed. The larger the particle associated with the releasedP. syringae, the longer the bacteria survived.  相似文献   

7.
Elevated levels of tropospheric ozone and their effects on plants have been studied for a great number of years. Ozone is a gaseous pollutant and acts as a phytotoxin. Even though ozone is known to change the physiology of plants, little attention has been given to the indirect effects of ozone on plant-insect interactions. This paper addresses this question by investigating the interactive effects of ozone and plant genotype on insects. Lines of rapid-cycling Brassica rapa (L.) selected for their contrasting sensitivity to ozone and Pieris brassicae (L.) (Lepidoptera: Pieridae) were used as a model system. The effect of differences in ozone sensitivity and ozone fumigation on the plant's carbon and nitrogen pools, the feeding preference, and behaviour of P. brassicae larvae were investigated. The results show that the plant's susceptibility to ozone interacts in a complex way with ozone induced alterations in the suitability of the plant for the insect. Only the larval performance on the sensitive line was affected by ozone exposure. Biochemical changes in the resistant B. rapa line made the plant a better food source for the insects, since the digestibility of this plant was significantly higher than that of the sensitive line, and the larvae pupated more quickly and were heavier.  相似文献   

8.
Summary The effect of ozone exposure on Saccharomyces cerevisiae was studied. Factors such as ozone concentration, treatment time, media, initial cell concentration and growth phase were shown to influence ozone response in this organism. Logarithmic phase cells were much more sensitive than stationary phase cells to the lethal effect of ozone.The radiation-sensitive mutants rad3, rad6, rad51 and rad52 of S. cerevisiae were exposed, in water, to 50 ppm of ozone for 30 min. On comparing their survival curves, the rad51 and the rad52 mutants showed a greater sensitivity to ozone exposure than the wild type.  相似文献   

9.
Postharvest diseases cause considerable losses of harvested fruits during transportation and storage. Many yeast species have been reported as good antagonists against postharvest pear pathogens. In this work, we used a novel selection strategy that involves the isolation of yeasts from washing fluids, showing biocontrol activity against a regional Penicillium expansum strain (primary screening), originally obtained from fruit wounds after long time storage at ?1/0°C. About 26 isolates representative of the 11 yeast species identified in the 27 selected washing waters were chosen to be evaluated in a secondary screening against a regional Botrytis cinerea strain on pear wounds. Among yeasts tested, 38% showed complete control of P. expansum, but only 15% reduced the decay incidence of B. cinerea to 60–80% at ?1/0°C. These results reveal that some of the yeasts found can be biological alternatives to fungicides in the control of P. expansum and B. cinerea infections. Based on the data obtained, our strategy seems to be much more effective than the previously reported methods in obtaining successful biocontrol agents.  相似文献   

10.
Effects of volatile and gaseous metabolites of swelling seeds of pea, bean, wheat, corn, cucumber, tomato, lentil, carrot, red pepper and lettuce on germination of spores of five genera of fungi were found to depend rather on the fungal than on the plant genus. Germination of spores ofBotrytis cinerea, Mucor racemosus andTrichoderma viride was most severely inhibited. Spores ofVerticillium dahliae were less sensitive and germination of spores ofFusarium oxysporum was inhibited only in two cases. On the other hand, exudates of pea and bean stimulated germination of spores ofFusarium oxysporum. Also spores ofTrichoderma viride germinated better in an atmosphere enriched with exuded metabolites of swelling lettuce seeds. When carbon dioxide produced by the swelling seeds was absorbed in potassium hydroxide, spores ofTrichoderma viride andVerticillium dahliae did not germinate at all, the inhibitory effects of volatile and gaseous exudates on germination of spores ofMucor racemosus were accentuated, and also the percentage of germinated spores ofFusarium oxysporum decreased. Germination of spores ofBotrytis cinerea was not influenced. Absorption of volatile and gaseous metabolites in a solution of potassium permanganate decreased in most cases their inhibitory effects, particularly inBotrytis cinerea.  相似文献   

11.
The ability of ozone gas to reduce food spoilage is relatively well documented, but the developmental effects of the gas on food spoilage fungi are not well known. In this study two model aspergilli, Aspergillus nidulans and Aspergillus ochraceus were used to study the effects of ozone on spore germination, sporulation and biomass production. These effects were examined under three levels of ozone; two high level ozone exposures (200 and 300 μmol mol−1) and one low level exposure (0.2 μmol mol−1). The two species behaved noticeably different to each other. Ozone was more effective in reducing growth from spore inocula than mycelia. No spore production could be detected in A. nidulans exposed to continuous low level O3, whereas the same treatment reduced spores produced in A. ochraceus by 94%. Overall the work suggests that ozone exposure is an effective method to prevent spread of fungal spores in a food storage situation.  相似文献   

12.
The bactericidal effect of atmospheric gas plasma (AGP) on Escherichia coli K12 cells in 0.9% [w/v] sodium chloride was investigated under normal atmospheric pressure. A plasma‐generating unit was supplied with working gas (air) at 25 °C and a relative humidity (RH) of 0, 14, 32, 43, 50, 60 or 70%. Gas plasma was generated using radio frequency discharge (20 kHz) under atmospheric pressure, and blown onto the surface of an E. coli cell suspension. Seven log‐cycles of cells were completely inactivated within 15 minutes of the start of AGP treatments using working gas at 32, 43, 50 or 60% RH. AGP at 14% RH inactivated only 2 log‐cycles of cells, but no inactivation was observed when air at 0% or 70% RH was used. The inactivation curves were biphasic and the rate constants for both stages were closely related to the RH of the working gas. The rate of cell inactivation was at its maximum at an RH of 43%. The bactericidal effect of the AGP treatment was not a result of ozone generation, however, the moisture content of the working gas was a significant factor in ensuring that E. coli K12 inactivation occurred. The interpretation of these data was that chemical species generated from the water molecules in the working gas were bactericidal in their effects.  相似文献   

13.
Summary Cyclic variations in resistance to ozone-inactivation were observed during the cell cycle of a haploid strain of Saccharomyces cerevisiae. The lag and G1 phases showed the highest sensitivity to ozone whereas there was a progressive increase in resistance from the S to G2 phases as the proportion of dividing cells increased. A related series of S. cerevisiae varying in ploidy from haploid to tetraploid was exposed to ozone. The results demonstrated clearly an enhancement of ozone resistance directly related to the ploidy of the cells.Taken together these data suggest that resistance to ozone is dependent upon the action of an efficient repair mechanism. Similarities and differences between the biological action of ozone and ionizing radiations in S. cerevisiae are discussed.  相似文献   

14.
Sun L  Su H  Zhu Y  Xu M 《Plant cell reports》2012,31(1):179-185
Exposure to ozone induced a rapid increase in the levels of the sesquiterpene phytohormone abscisic acid (ABA) and the isoflavone puerarin in suspension cell cultures of Pueraria thomsnii Benth. The observed increases in ABA and puerarin were dependent on the concentration of ozone applied to P. thomsnii cell cultures. In order to examine the role of ABA in ozone-induced puerarin production, cell suspensions were pretreated with the ABA biosynthetic inhibitor fluridone. Following ozone exposure, fluridone treatment suppressed ABA accumulation suggesting ABA was normally synthesized de novo through the carotenoid pathway. Fluridone also blocked ozone-induced puerarin production, which could be reversed through application of exogenous ABA. However, in the absence of ozone, ABA itself had no effect on puerarin accumulation in the suspension cells. Taken together, the data indicate that ozone is an efficient elicitor of puerarin production and may be particularly applicable for improving puerarin production in plant cell cultures. Furthermore, we demonstrate that ABA is one factor associated with ozone-induced puerarin production in P. thomsnii cell cultures.  相似文献   

15.
In this study, Torulaspora delbrueckii alone and in combination with silicon were evaluated for the control of apple blue mould disease caused by Penicillium expansum. In vitro, the antagonistic effects of T. delbrueckii in controlling mycelial growth of P. expansum on potato-dextrose-agar (PDA) in dual cultures, and the growth of P. expansum alone with cell-free metabolites and volatile components of T. delbrueckii were assayed. In vitro, to evaluate the direct effect of silicon on mycelial growth of pathogen, silicon at different concentrations (0.2, 0.4, 0.6, 1 and 2% (wt./vol.)) was added to PDA medium. Silicon at 0.6% (wt./vol.) and above concentrations completely inhibited the mycelial growth of P. expansum. However, it had no significant effect on population dynamics of yeast in vitro and in apple wounds. In vivo, silicon at 0.2 and 1% (wt./vol.) in combination with antagonistic yeast (1 × 108 cell/ml) was a more effective approach to reduce the lesion diameter of blue mould decay of apples than the application of silicon or T. delbrueckii alone at 20 and 4°C, respectively.  相似文献   

16.
A study was made of the link between time of day, weather variables and the hourly content of certain fungal spores in the atmosphere of the city of Szczecin, Poland, in 2004–2007. Sampling was carried out with a Lanzoni 7-day-recording spore trap. The spores analysed belonged to the taxa Alternaria and Cladosporium. These spores were selected both for their allergenic capacity and for their high level presence in the atmosphere, particularly during summer. Spearman correlation coefficients between spore concentrations, meteorological parameters and time of day showed different indices depending on the taxon being analysed. Relative humidity (RH), air temperature, air pressure and clouds most strongly and significantly influenced the concentration of Alternaria spores. Cladosporium spores correlated less strongly and significantly than Alternaria. Multivariate regression tree analysis revealed that, at air pressures lower than 1,011 hPa the concentration of Alternaria spores was low. Under higher air pressure spore concentrations were higher, particularly when RH was lower than 36.5%. In the case of Cladosporium, under higher air pressure (>1,008 hPa), the spores analysed were more abundant, particularly after 0330 hours. In artificial neural networks, RH, air pressure and air temperature were the most important variables in the model for Alternaria spore concentration. For Cladosporium, clouds, time of day, air pressure, wind speed and dew point temperature were highly significant factors influencing spore concentration. The maximum abundance of Cladosporium spores in air fell between 1200 and 1700 hours.  相似文献   

17.
Some organic and inorganic salts could inhibit the growth of many pathogens. Selenium (Se), as an essential micronutrient, was effective in improving the plant resistance and antioxidant capacity at a low concentration. Penicillium expansum is one of the most important postharvest fungal pathogens, which can cause blue mold rot in various fruits and vegetables. In this study, the inhibitory effect of Se against P. expansum was evaluated. The result showed that Se strongly inhibited spore germination, germ tube elongation, and mycelial spread of P. expansum in the culture medium. The inhibitory effect was positively related to the concentration of Se used. Fluorescence microscopy observation of P. expansum conidia stained with propidium iodide (PI) indicated that the membrane integrity decreased to 37 % after the conidia were treated with Se (20 mg/l) for 9 h. With the use of an oxidant-sensitive probe 2,7-dichlorofluorescin (DCHF-DA), we found that Se at 15 mg/l could induce the generation of intracellular reactive oxygen species (ROS). Furthermore, methane dicarboxylic aldehyde (MDA) content, hydrogen peroxide (H2O2), and superoxide anion (O2 ?) production rate in P. expansum spores exposed to Se increased markedly. Compared with the control, the activities of superoxide dismutase (SOD) and the content of glutathione (GSH) were reduced, confirming that damage of Se to cellular oxygen-eliminating system is the main reason. These results suggest that Se might serve as a potential alternative to synthetic fungicides for the control of the postharvest disease of fruit and vegetables caused by P. expansum.  相似文献   

18.
The observed deposition pattern from a field spray ofBacillus subtilus var.niger spores is compared with that of a computer simulated bioaerosol particle dispersion model. Using the same meteorological conditions as the field spray, the model produced a bioaerosol deposition pattern estimated to be reasonably similar (R 2=0.66) to the observed field pattern. Reasons for the differences between the deposition patterns are discussed. The comparison indicates that viable airborne particle deposition models may, with future testing, be useful tools for predicting near source aerial microbial dispersal and deposition. Mention of trade names or commercial products does not constitute endorsement or recommendation for use.  相似文献   

19.
In this study, the effects of gamma irradiation on the resistance of pear fruit against Penicillium expansum, the causal agent of blue mould disease, were investigated. A low dose of gamma irradiation for 14 days increased the disease resistance and firmness of pear fruits. Remarkably, exposure to 200 Gy of gamma irradiation significantly maintained fruit firmness, markedly reduced disease incidence and enhanced the activity of defence‐related enzymes (e.g., β‐1,3‐glucanase, phenylalanine ammonia lyase, peroxidase and polyphenol oxidase) and expression of pathogenesis‐related (PR) genes (e.g., PR‐1, PR‐3 and PR‐4). Therefore, the gamma irradiation‐induced resistance against P. expansum involves both metabolic changes and the induction of expression of defence‐related genes. In addition, scanning electron microscopic analysis revealed that gamma irradiation significantly inhibits the growth of P. expansum. These results suggest that exposure of mature harvested pear fruits to artificial gamma irradiation confers fungal disease resistance; therefore, gamma irradiation represents an important strategy for controlling postharvest diseases in pear fruit.  相似文献   

20.
Abstract Biocontrol activities of a total of 103 yeast isolates were tested against postharvest diseases of peaches. Seven isolates, with the best efficacy in reducing the number of infected wounds or lesion sizes of Penicillium expansum and Botrytis cinerea, were selected for further large‐scale experiments. In large‐scale experiments, all selected isolates were significantly effective (P ≤ 0.05) in reducing the number of infected wounds and the diameter of lesions caused by P. expansum, B. cinerea, and Monilinia fructicola. DR52 was significantly superior to all the other yeasts in effectiveness against all three pathogens. The efficacy of the other yeast antagonists against B. cinerea and P. expansum was almost equal, while the control of M. fructicola was inferior. DR52 was selected for further storage experiment because its efficacy was higher against the three pathogens and it also showed a different random amplified polymorphic DNA‐polymerase chain reaction pattern compared with other isolates. DR52 was identified by Centraalbureau voor Schimmeelcultures (Baarn, The Netherlands) as Kloeckera apiculata. K. apiculata completely controlled both pathogens after 30 days of storage. Its efficacy declined to an 83.4% reduction in B. cinerea incidence and an 87.5% reduction in P. expansum incidence after 45 days of storage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号