首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The sulphur-containing radioprotectors mercaptoethylamine (MEA), aminoethylisothiourea (AET), 2-aminothiazoline, 4-oxo-2-aminothiazoline, and S-S-3-oxapentane-1,5-diisothiourea, and the radioprotective biogenic amines serotonin, histamine, and dopamine, caused the elevation of cAMP content and intensified the rate of cAMP-dependent protein phosphorylation in tissues of animals following intraperitoneal injection at radioprotective doses. Biogenic amines stimulated the adenylate cyclase activity in membrane preparations from liver, spleen, and small-intestine mucosa; sulphur-containing radioprotectors caused no such effects. None of the radioprotectors affected cAMP and cGMP phosphodiesterases in vitro. AET and MEA inhibited guanylate cyclase in vitro, whereas serotonin and dopamine stimulated the enzyme. A biphasic change in the level of cGMP was observed in tissues after the administration of MEA and AET (more than 2-fold fall by 1–3 min after the administration of drug and 1.4-fold rise after 15–20 min); serotonin and dopamine caused a slow rise in the cGMP level; the cAMP/cGMP ratio in liver showed biphasic changes in level during the 20 min following injection of serotonin.The data obtained support the conclusion that the action of radioprotectors on cellular metabolism in animals may be mediated by the cAMP system. The reciprocal regulation of radioresistance by cAMP and cGMP is unlikely to exist.  相似文献   

2.
The cytosolic phosphoenolpyruvate carboxykinase (PEPCK) gene is expressed in multiple tissues and is regulated in a complex tissue-specific manner. To map the cis-acting DNA elements that direct this tissue-specific expression, we made transgenic mice containing truncated PEPCK-human growth hormone (hGH) fusion genes. The transgenes contained PEPCK promoter fragments with 5' endpoints at -2088, -888, -600, -402, and -207 bp, while the 3' endpoint was at +69 bp. Immunohistochemical analysis showed that the -2088 transgene was expressed in the correct cell types (hepatocytes, proximal tubular epithelium of the kidney, villar epithelium of the small intestine, epithelium of the colon, smooth muscle of the vagina and lungs, ductal epithelium of the sublingual gland, and white and brown adipocytes). Solution hybridization of hGH mRNA expressed from the transgenes indicated that white and brown fat-specific elements are located distally (-2088 to -888 bp) and that liver-, gut-, and kidney-specific elements are located proximally (-600 to +69 bp). However, elements outside of the region tested are necessary for the correct developmental pattern and level of PEPCK expression in kidney. Both the -2088 and -402 transgenes responded in a tissue-specific manner to dietary stimuli, and the -2088 transgene responded to glucocorticoid stimuli. Thus, different tissues utilize distinct cell-specific cis-acting elements to direct and regulate the PEPCK gene.  相似文献   

3.
Transgenic mice were used to investigate sequences within the promoter of the gene for the cytosolic form of phosphoenolpyruvate carboxykinase (GTP) from the rat (EC 4.1.1.32) (PEPCK) which are involved in tissue-specific and developmental regulation of gene expression. Segments of the PEPCK promoter between -2000 and -109 were linked to the structural gene for bovine growth hormone (bGH) and introduced into the germ line of mice by microinjection. Bovine growth hormone mRNA was found in tissues that express the endogenous PEPCK gene, mainly in the liver but to a lesser extent in the kidney, adipose tissue, small intestine, and mammary gland. In the liver the chimeric PEPCK/bGH(460) gene was expressed in periportal cells, which is consistent with the zonation of endogenous PEPCK. The PEPCK/bGH gene was not transcribed in the livers of fetal mice until immediately before birth; at birth the concentration of bGH mRNA increased 200-fold. Our results indicate that the region of the PEPCK promoter from -460 to +73 base pairs contains regulatory sequences required for tissue-specific and developmental regulation of PEPCK gene expression. Mice transgenic for PEPCK/bGH(460) were not hyperglycemic or hyperinsulinemic in response to elevated bGH, as were transgenic mice with the MT/bGH gene. The number of insulin receptors in skeletal muscle was no different in mice transgenic for MT/bGH when compared with mice transgenic for PEPCK/bGH(460) and control animals. However, mRNA abundance for the insulin-sensitive glucose transporter in skeletal muscle was decreased in mice transgenic for the MT/bGH gene. The differences in glucose homeostasis noted with the two types of transgenic mice may be the result of the relative site of expression, the different developmental pattern, or hormonal regulation of expression of the bGH gene.  相似文献   

4.
5.
Extracellular cAMP induces chemotaxis and cell aggregation in dictyostelium discoideum cells. cAMP added to a cell suspension is rapidly hydrolyzed (half-life of 10 s) and induces a rapid increase of intracellular cGMP levels, which reach a peak at 10 s and recover prestimulated levels at about 30 s. This recovery is not due to removal of the stimulus because the nonhydrolyzable analogue adenosine 3’,5’-monophosphorothioate-Sp- stereoisomer (cAMPS) induced a comparable cGMP response, which peaked at 10 s, even at subsaturating cAMPS concentrations. When cells were stimulated twice with the same cAMP concentration at a 30-s interval, only the first stimulus produced a cGMP response. Cells did respond to the second stimulus when the concentration of the second stimulus was higher than that of the first stimulus. By increasing the interval between two identical stimuli, the response to the second stimulus gradually increased. Recovery from the first stimulus showed first-order kinetics with a half-life of 1-2 min. The stimulation period was shortened by adding phosphodieterase to the cell suspension. The cGMP response was unaltered if the half-life of cAMP was reduced to 2 S. The peak of the transient cGMP accumulation still appeared at 10 s even when the half- life of cAMP was 0.4 s; however, the height of the cGMP peak was reduced. The cGMP response at 10 s after stimulation was diminished by 50 percent when the half-life of 10(-7) M cAMP was 0.5 s or when the half-life of 10(-8) M cAMP was 3.0 s. These results show that the cAMP signal is transduced to two opposing processes: excitation and adaptation. Within 10 s after addition of cAMP to a cell suspension the level of adaptation reaches the level of excitation, which causes the extinction of the transduction of the signal. Deadaptation starts as soon as the signal is removed, and it has first-order kinetics with a half-life of 1-2 min.  相似文献   

6.
7.
8.
9.
The role of glucocorticoids and second messenger systems in the regulation of the vasopressin (VP) gene was studied in the human small cell lung carcinoma cell line GLC-8. Small cell lung carcinoma GLC-8 cells express VP mRNA and contain both glucocorticoid and mineralocorticoid receptors. Treatment with the synthetic glucocorticoid dexamethasone when added alone at 10(-8) M had no effect on the VP mRNA level and decreased the level by 30% at 10(-6) M. However, the effect of dexamethasone changed to positive when cells were simultaneously treated with cAMP-enhancing agents. VP mRNA levels, which were elevated by 1.5- to 2-fold by the cAMP-enhancing agents alone, increased a further 1.5- to 3-fold by dexamethasone. Thus, the combined effect of dexamethasone and cAMP stimulation was a 3- to 7.5-fold increase in VP mRNA levels. Long term treatment with the phorbol ester 12-O-tetradecanoyl-phorbol-13-acetate (TPA) reduced the VP mRNA level by 75%. The TPA-suppressed VP mRNA levels could be up-regulated about 6-fold by simultaneous treatment with 8-bromo-cAMP. Dexamethasone did not alter the TPA-suppressed VP mRNA levels. These results indicate that both cAMP and protein kinase-C pathways as well as glucocorticoid receptors are involved in the regulation of VP mRNA levels and that these factors interact. This leads to a negative or positive response of VP gene expression to glucocorticoids in a state-dependent manner. The interactions may be of significance in a physiological context and relate to the different regulation of VP-expressing systems in the brain.  相似文献   

10.
The temporal relationships among increases in adenosine 3',5'-cyclic monophosphate (cAMP) levels, myosin dephosphorylation, and relaxation were investigated to clarify the mechanisms of airway muscle relaxation. Canine tracheal muscles isometrically contracted (82% of maximum force) with 10(-6) M methacholine were relaxed by adding either 4 x 10(-7) M atropine or 4 x 10(-5) M forskolin. Atropine had no effect on cAMP levels; myosin phosphorylation and force, however, decayed at the same rates and these two parameters returned to their basal pre-methacholine levels within 5 min. Forskolin treatment results in about a 10-fold increase in cAMP levels; myosin phosphorylation and force decayed simultaneously to their respective steady-state levels by 10 min but neither parameter returned to its pre-methacholine level. The addition of forskolin to muscles maximally contracted with 10(-4) M methacholine leads to about a 30-fold increase in cAMP levels. However, there are minimal decreases in myosin phosphorylation and force in these muscles. Thus myosin dephosphorylation appears to be essential for airway muscle relaxation, whereas an increase in cAMP in the absence of myosin dephosphorylation is insufficient to cause relaxation. Moreover, myosin dephosphorylation appears to be a common step in the cAMP-independent and cAMP-dependent mechanisms for airway muscle relaxation.  相似文献   

11.
The secretion of 3H-cyclic adenosine 3',5'-monophosphate (cAMP) by prelabeled and suitably differentiated Dictyostelium discoideum amoebae was elicited in a perfusion apparatus by 10(-10) to 10(-5) M [14C]cAMP stimuli of defined magnitude and duration. Exogenous stimuli evoked an immediate increase in the rate of [3H]cAMP secretion which accelerated continuously to reach a peak of up to 100 times the unstimulated rate after 2--3 min of stimulation. Withdrawal of the stimulus at any time during the response led to a rapid decline to basal levels. Furthermore, a spontaneous decline in secretion rate was observed during prolonged cAMP stimulation, with a return to basal levels after 3--8 min of stimulation. After the initial secretory event, cells did not respond further to the continued presence of external [14C]cAMP unless (a) it was interrupted by a brief recovery period or (b) the level of the stimulus was increased sufficiently. Since the second increment could follow the first at any time, continuous secretion of [3H]cAMP could be sustained for up to 30 min by progressively increasing the stimulus between 10(-10) and 10(-5) M cAMP. The total magnitude of spontaneously terminated responses depended on the size of the increment in applied cAMP, larger stimuli evoking both a more rapid acceleration and a slower deceleration in [3H]cAMP secretion rate. The integrated response to a given increment in stimulus level was apparently independent of its "shape" - i.e., the duration, magnitude, and number of sub-steps in the increment. These data support two mechanistic inferences: that amoebae respond in proportion to relative increases in extracellular cAMP concentration, but adapt to the concentration of cAMP itself. The data further suggest that the initiation and termination of the response are mediated by cellular component(s) beyond cAMP-occupied receptors.  相似文献   

12.
13.
14.
15.
16.
In the present study we have examined the effect of long-term stimulation with (Bu)2cAMP on mRNA levels for the hormone responsive regulatory subunit (RII beta) of cAMP-dependent protein kinase in cultured rat Sertoli cells. The effects of the same treatment on two other mRNAs [androgen binding protein (ABP) and cellular retinol binding protein (cRBP)], shown to be regulated by cAMP, were examined simultaneously. The addition of (Bu)2cAMP (0.1 mM) to primary Sertoli cell cultures, for 14 and 24 h, caused a 50- to 60-fold stimulation in the steady state levels of mRNA for RII beta. During the same period of stimulation, we also observed a significant increase (2- to 3-fold) in the mRNA levels for ABP, and a 80% decrease in the mRNA levels for cRBP. Continued stimulation for 36 and 48 h was associated with a significant time-dependent decrease in the mRNA level for RII beta, in spite of the continuous presence of (Bu)2cAMP (0.1 mM) in the medium. This reduced response by long term stimulation with (Bu)2cAMP appears to be specific for RII beta, since mRNA for ABP remained elevated and mRNA for cRBP remained depressed during the entire period of cAMP stimulation. Our data demonstrate the presence of a biphasic type of regulation at the mRNA level, specific for the regulatory subunit RII beta of cAMP-dependent protein kinase. This response may be analogous to the desensitization mechanisms observed at other levels of the cAMP signalling pathway. For proteins constituting part of the signal transduction pathway this type of biphasic regulation, may be particularly important in maintaining homeostasis in the cell.  相似文献   

17.
Refinement of a perfusion technique permitted the simultaneous measurement of cAMP-elicited [3H]cAMP secretion and intracellular [3H]cAMP levels in sensitive D. discoideum amoebae. These data were compared with measurements of the rate of [32P]cAMP synthesis by extracts of amoebae sonicated at different times during the cAMP signaling response. cAMP stimulation of intact cells led to a transient activation of adenylate cyclase, which was blocked if 10(-4) M NaN3 was added with the stimulus. During responses elicited by 10(-6) M cAMP, 10(-8) M cAMP, and an increment in cAMP from 10(-8) M to 10(-7) M, the rate of cAMP secretion was proportional to the intracellular cAMP concentration. Removal of a 10(-6) M cAMP stimulus 2 min after the initiation of the response led to a precipitous decline in intracellular cAMP. This decline was more rapid than could be accounted for by secretion alone, suggesting intracellular phosphodiesterase destruction of newly synthesized cAMP. Employing these data and a simple rate equation, estimates of the time-course of the transient activation of adenylate cyclase and the rate constants for cAMP secretion and intracellular phosphodiesterase activity were obtained. The calculated rate of cAMP synthesis rose for approximately 1 to 2 min, peaked, and declined to approach prestimulus levels after 3 to 4 min. This time-course agreed qualitatively with direct measurements of the time-course of activation, indicating that the activation of adenylate cyclase is a major in determining the time-course of the cAMP secretion response.  相似文献   

18.
The role of protein synthesis in the control of phosphoenolpyruvate carboxykinase (PEPCK; 4.1.1.32) mRNA turnover was studied in FTO-2B rat hepatoma cells. A previous study demonstrated that incubation of these cells with cAMP prolongs the half-life of the otherwise short-lived PEPCK mRNA. The decay rate of PEPCK mRNA was also slowed in cells incubated with cycloheximide, but not in cells incubated with other translation inhibitors, such as puromycin or pactamycin, even though protein synthesis was inhibited 85-95% by these agents. No correlation was noted between the rate of L-[3H]valine incorporation into cellular proteins and PEPCK mRNA half-life, suggesting that protein synthesis per se is not required for breakdown of the mRNA. Exposure of cells to the translation initiation inhibitor pactamycin together with cycloheximide abolished the "slowing" effect of cycloheximide, and PEPCK mRNA decayed at the same rate as in cells incubated in the presence of pactamycin alone. In contrast, pactamycin did not reverse the effect of cAMP, and the mRNA decayed at the same slow rate in cells incubated in the presence of either (Bu)2cAMP alone or (Bu)2cAMP together with pactamycin. Since pactamycin promotes polysomes dissociation, these results suggest that cAMP enhances the stability of a polysome-free PEPCK mRNA. Furthermore, these results strongly indicate that neither the rapid decay of PEPCK mRNA nor the cAMP-mediated stabilization of the mRNA requires on-going protein synthesis.  相似文献   

19.
In dictyostelium discoideum, extracellular cAMP activates adenylate cyclase, which leads to an increase in intracellular cAMP and the rate of cAMP secretion. The signaling response to a constant cAMP stimulus is terminated after several minutes by an adaptation mechanism. The time- course of adaptation stimuli of 10(-6) or 10(-7) M cAMP was assessed. We used a perfusion technique to deliver defined cAMP stimuli to [(3)H]adenosine-labeled amoebae and monitored their secretion of [(3)H]cAMP. Amoebae were pretreated with 10(-6) or 10(-7) M cAMP to periods of 0.33-12 minutes, and then immediately given test stimuli of 10(-8) M to 2.5 x 10(-7) M cAMP. The response to a given test stimulus was progressively attenuated and finally extinguished as the duration of the pretreatment stimulus increased. During concentration of the test stimulus. The responses to test stimuli of 10(-8), 5 x 10(-8), 10(-7), or 2.5 x 10(-7) M cAMP were extinguished after approximately 1, 2.25,2.5, and 10 min, respectively. 1.5 min of stimulation with 10(-7) M cAMP was necessary to extinguish the response of a test stimulus of 10(-8) M cAMP. Our data suggest that adaptation begins within 20 s of stimulation, rises rapidly for approximately 2.5 min, and reaches a plateau after approximately 10 min. The absolute rate of rise was faster during pretreatment with 10(-6) than with 10(-7) M cAMP. These results support a working hypothesis in which the occupancy of surface cAMP receptors leads to changes in two opposing cellular processes, excitation and adaptation, that control the activity of D. discoideum adenylate cyclase.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号