共查询到20条相似文献,搜索用时 0 毫秒
1.
A new enzyme electrode for the determination of alcohols was developed by immobilizing alcohol oxidase in polvinylferrocenium matrix coated on a Pt electrode surface. The amperometric response due to the electrooxidation of enzymatically generated H(2)O(2) was measured at a constant potential of +0.70 V versus SCE. The effects of substrate, buffer and enzyme concentrations, pH and temperature on the response of the electrode were investigated. The optimum pH was found to be pH 8.0 at 30 degrees C. The steady-state current of this enzyme electrode was reproducible within +/-5.0% of the relative error. The sensitivity of the enzyme electrode decreased in the following order: methanol>ethanol>n-butanol>benzyl alcohol. The linear response was observed up to 3.7 mM for methanol, 3.0 mM for ethanol, 6.2 mM for n-butanol, and 5.2 mM for benzyl alcohol. The apparent Michaelis-Menten constant (K(Mapp)) value and the activation energy, E(a), of this immobilized enzyme system were found to be 5.78 mM and 38.07 kJ/mol for methanol, respectively. 相似文献
2.
Dimcheva N Horozova E Jordanova Z 《Zeitschrift für Naturforschung. C, Journal of biosciences》2002,57(9-10):883-889
A xanthine oxidase enzyme electrode (xanthine oxidase immobilized on electrochemically modified graphite and conveniently coated with gelatine electrode working surface) for quantitative analysis of xanthine is proposed. The detection of thus developed electrochemical system is based on the electroreduction of hydrogen peroxide generated in enzyme layer and offered L-ascorbic and uric acid reducing interference effect on the substrate determination. At a working potential -50 mV (vs. Ag/AgCl) the detection limit of 4.5 microM and the linearity of the amperometric signal up to substrate concentration of about 40 microM were found. At that working potential, the electrode is practically inert towards L-ascorbic- and uric acid present. The response time did not exceed 2 min. 相似文献
3.
The level of uric acid (UA) has a high relationship with gout, hyperuricemia and Lesch-Nyan syndrome. The determination of UA is an important indicator for clinics and diagnoses of kidney failure. An amperometric UA biosensor based on an Ir-modified carbon (Ir-C) working electrode with immobilizing uricase (EC 1.7.3.3) was developed by thick film screen printing technique. This is the first time to report the utilization of an uricase/Ir-C electrode for the determination of UA by using chronoamperometric (CA) method. The high selectivity of UA biosensor was achieved due to the reduction of H(2)O(2) oxidation potential based on Ir-C electrode. Using uricase/Ir-C as the sensing electrode, the interference from the electroactive biological species, such as ascorbic acid (AA) and UA (might be directly oxidized on the sensing electrode) was slight at the sensing potential of 0.25 V (versus Ag/AgCl). UA was detected amperometrically based on uricase/Ir-C electrode with a sensitivity of 16.60 microAmM(-1) over the concentration range of 0.1-0.8 mMUA, which was within the normal range in blood. The detection limit of UA biosensor was 0.01 mM (S/N=6.18) in pH 7 phosphate buffer solution (PBS) at 37 degrees C. The effects of pH, temperature, and enzymatic loading on the sensing characteristics of the UA biosensor were also investigated in this study. 相似文献
4.
A mathematical model of amperometric enzyme electrodes in which chemical amplification by cyclic substrate conversion takes place in a single enzyme membrane has been developed. The model is based on non-stationary diffusion equations containing a non-linear term related to Michaelis-Menten kinetic of the enzymatic reaction. The digital simulation was carried out using the finite difference technique. The influence of the substrate concentration, the maximal enzymatic rate as well as the membrane thickness on the biosensor response was investigated. The numerical experiments demonstrate significant (up to dozens of times) gain in biosensor sensitivity at low concentrations of substrate when the biosensor response is under diffusion control. 相似文献
5.
A new enzyme electrode is described to measure continuously acetylcholine concentration. A coating containing active acetylcholinesterase is produced on a pH-glass electrode. The mean thickness of the coating is 50 micrometer. Optimal operational conditions with respect to buffer concentration, ionic strength, linearity, stability, sensitivity, pH of the bulk solution, and response time are studied and discussed. The use of acetylcholinesterase-containing membranes as sensors could offer several novel advantages. 相似文献
6.
A simple method of enzyme immobilization was investigated, which is useful for development of enzyme electrodes based on polyvinylferrocenium perchlorate coated Pt electrode surface. Enzymes were incorporated into the polymer matrix via ion exchange process by immersing polyvinylferrocenium perchlorate coated Pt electrode in enzyme solution for several times. Choline and acetylcholine enzyme electrodes were developed by co-immobilizing choline oxidase and acetylcholinesterase in polyvinylferrocenium perchlorate matrix coated on a Pt electrode surface. The amperometric responses of the enzyme electrodes were measured at +0.70 V versus SCE, which was due to the electrooxidation of enzymatically produced H2O2. The effects of the thickness of the polymeric film, pH, temperature, substrate and enzyme concentrations on the response of the enzyme electrode were investigated. The optimum pH was found to be pH 7.4 at 25 degrees C. The steady-state current of these enzyme electrodes were reproducible within +/-5.0% of the relative error. Response time was found to be 30-50s and upper limit of the linear working portions was found to be 1.2mM choline and acetylcholine concentrations in which produced detectable currents were 1.0 x 10(-6)M substrate concentrations. The apparent Michaelis-Menten constant and the activation energy of this immobilized enzyme system were found to be 1.74 mM acetylcholine and 14.9 kJ mol(-1), respectively. The effects of interferents and stability of the enzyme electrodes were also investigated. 相似文献
7.
8.
S Ronchi M Galliano L Minchiotti B Curti N G Rudie D J Porter H J Bright 《The Journal of biological chemistry》1980,255(13):6044-6046
The flavoenzyme D-amino acid oxidase (Eo) is rapidly chlorinated by N-chloro-D-leucine (Rudie, N.G., Porter, D.J.T., and Bright, H.J. (1980) J. Biol. Chem. 255, 498-508). We have carried out chymotryptic digestion of E0-36Cl2 and find that all of the radiolabel is located in a heptapeptide having [3.5-36Cl2]chlorotyrosine as the COOH-terminal residue. This heptapeptide, having the sequence -Asp-Leu-Glu-Arg-Gly-Ile-Tyr-, is located within a larger fragment obtained previously from cyanogen bromide cleavage of E0. These results demonstrate that the target for chlorination in E0 must be a single tyrosine residue and provide, when taken together with previous findings, the first clear evidence for the identity and location of an active site residue in the polypeptide chain of D-amino oxidase. 相似文献
9.
10.
Hans Nilsson Klaus Mosbach Sven-Olof Enfors Nils Molin 《Biotechnology and bioengineering》1978,20(4):527-539
A penicillin sensitive enzyme electrode has been used to analyze the concentration of benzylpenicillin in fermentation broth. The electrode response time was in the region of 2 min and the response to penicillin concentration was linear within the range of 1 to 10mM. The buffering capacity of the medium influenced the sensitivity of the electrode. At low buffer capacity the sensitivity of the enzyme electrode to penicillin was very high, but then the sensitivity to small changes in buffer capacity was relatively large. At high buffer capacity the sensitivity to penicillin was reduced and the electrode became less dependent on changes to buffer capacity. Constant calibration curves were repeatedly obtained with the electrode when used for 2 hr daily in a fermentation medium over a six day period. Three methods devised to calibrate the electrode for use in fermentation media were investigated. Methods one and two, based on the relationship between electrode sensitivity and buffer capacity in phosphate buffer and in sterile media, gave rather high penicillin concentration values. The third method based on an internal standard was the most satisfactory. 相似文献
11.
Rosini E Molla G Rossetti C Pilone MS Pollegioni L Sacchi S 《Journal of biotechnology》2008,135(4):377-384
Determination of the D-amino acid content in foods and in biological samples is a very important task. In order to achieve this goal we developed a biosensor employing the flavoenzyme D-amino acid oxidase from the yeast Rhodotorula gracilis. To produce a device in which the D-amino acid composition does not alter the results, both the wild-type and a number of mutants obtained by rational design and directed evolution approaches were used. An analysis of D-amino acid oxidase mutants activity on D-amino acid mixtures containing various ratios of neutral, acidic, and basic substrates identified the Amberzyme-immobilized T60A/Q144R/K152E and M213G mutants as the best choice: their response shows an only limited dependence on the solution composition when at least 20% of the D-amino acid is made up of D-alanine (standard error is approximately 5-9%). This is the first report, to our knowledge, demonstrating that the entire D-amino acid content can be determined by using a screen-printed electrode amperometric biosensor, with a detection limit of 0.25 mM and a mean response time of 10-15 min. The D-amino acid assay based on R. gracilis DAAO-biosensor is inexpensive, simple to perform, and rapid: the D-amino acid concentration of a variety of biological samples can be investigated using this assay. 相似文献
12.
The implantable enzyme amperometric biosensor continues as the dominant in vivo format for the detection, monitoring and reporting of biochemical analytes related to a wide range of pathologies. Widely used in animal studies, there is increasing emphasis on their use in diabetes care and management, the management of trauma-associated hemorrhage and in critical care monitoring by intensivists in the ICU. These frontier opportunities demand continuous indwelling performance for up to several years, well in excess of the currently approved seven days. This review outlines the many challenges to successful deployment of chronically implantable amperometric enzyme biosensors and emphasizes the emerging technological approaches in their continued development. The foreign body response plays a prominent role in implantable biotransducer failure. Topics considering the approaches to mitigate the inflammatory response, use of biomimetic chemistries, nanostructured topographies, drug eluting constructs, and tissue-to-device interface modulus matching are reviewed. Similarly, factors that influence biotransducer performance such as enzyme stability, substrate interference, mediator selection and calibration are reviewed. For the biosensor system, the opportunities and challenges of integration, guided by footprint requirements, the limitations of mixed signal electronics, and power requirements, has produced three systems approaches. The potential is great. However, integration along the multiple length scales needed to address fundamental issues and integration across the diverse disciplines needed to achieve success of these highly integrated systems, continues to be a challenge in the development and deployment of implantable amperometric enzyme biosensor systems. 相似文献
13.
14.
Since a stable alcohol oxidase with a high specific activity is not commercially available, we propose to produce and purify this enzyme from a strain of the yeast Hansenula polymorpha. This alcohol oxidase was immobilized into a gelatin matrix and its activity was estimated by a pO(2) sensor. The enzyme electrode obtained was then used in a continuous flow system to measure methanol or ethanol concentrations. The sample oxygen content dependence of the signal was minimized by the support properties. Measuring time for each sample were less than two minutes including response data treatment and rinsing step. The enzyme electrode response was set for ethanol from 0.5mM to 15mM and for methanol from 10mM to 300mM. On repeated use, the electrode signal for 10mM of ethanol was stable for at least 500 assays. Analysis have been performed in different beverages such as wine and beer, and the results compared to those obtained with classical methods of analysis. 相似文献
15.
A new type of enzyme electrode has been developed for electrochemical measurements which allows discrimination between ascorbic acid and catecholamines and their metabolites. The electrode employs the enzyme ascorbic acid oxidase held between the voltammetric electrode and solution by a dialysis membrane or immobilized on the outer surface of serous membrane from rat small intestine. The electrode gives linear calibration curves for all catecholamines and metabolites independent of any ascorbic acid concentrations significant in physiological measurements. The electrode has been tested in brain slice measurements and shown to respond to releases of catecholamines initiated by potassium ion stimulation. 相似文献
16.
Cytochemical localization of a D-amino acid oxidizing enzyme in peroxisomes of Drosophila melanogaster 总被引:1,自引:0,他引:1
A peroxide generating oxidase is demonstrated cytochemically in the peroxisomes of adult and larval Drosophila melanogaster, Oregon R and Rosy-506 strains. This enzyme activity is demonstrable using D-pipecolate or D-proline, but not L-proline, as substrate and is inhibited by kojic acid. Thus this enzyme shares cytochemical characteristics with vertebrate D-amino acid oxidase. 相似文献
17.
The hemoflavoenzyme cellobiose dehydrogenase (CDH, EC 1.1.99.18) from Phanerochaete chrysosporium has been used in an amperometric redox polymer-based biosensor. Used in conjugation with a FIA system this biosensor can replace colorimetric assays for measuring cellobiose liberated from cellulose in a series of cellulase-containing samples. The biosensor gave the same result as the Somogyi-Nelson method in a less time-consuming and laborious manner. The two methods showed about the same precision. 相似文献
18.
A membrane-based high-throughput screening (HTS) assay for active d-amino acid oxidase (DAAO) in liquid samples as well as in intact Escherichia coli cells has been developed and optimized. The detection limit of the assay was less than 1 ng per sample. The method proposed can be used for quantitative DAAO determination in the range of 0.13 to 3.60 ng enzyme per probe. The protocol was successfully tested to screen a library of E. coli clones containing mutant DAAOs active toward target substrates. 相似文献
19.
20.
Porcine D-amino acid oxidase: production of the biologically active enzyme in Escherichia coli 总被引:4,自引:0,他引:4
E Ciccarelli M Massaer J P Guillaume A Herzog R Loriau A Cravador P Jacobs A Bollen 《Biochemical and biophysical research communications》1989,161(2):865-872
DNA molecules coding either for mature porcine D-amino acid oxidase or for truncated forms of the enzyme have been obtained by stepwise addition of synthetic oligonucleotides to a partial cDNA. Under the control of the lambda PL thermoregulatable promoter, these DNAs were respectively expressed in Escherichia coli as 36, 28 and 25 kilodalton polypeptides, specifically recognised by antibodies raised against the natural enzyme. None of the truncated proteins were biologically active whereas the mature recombinant species was able to hydrolyze D-alanine in vitro as efficiently as the natural product. 相似文献