首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
We investigated the effects of copper on the structure and physiology of freshwater biofilm microbial communities. For this purpose, biofilms that were grown during 4 weeks in a shallow, slightly polluted ditch were exposed, in aquaria in our laboratory, to a range of copper concentrations (0, 1, 3, and 10 μM). Denaturing gradient gel electrophoresis (DGGE) revealed changes in the bacterial community in all aquaria. The extent of change was related to the concentration of copper applied, indicating that copper directly or indirectly caused the effects. Concomitantly with these changes in structure, changes in the metabolic potential of the heterotrophic bacterial community were apparent from changes in substrate use profiles as assessed on Biolog plates. The structure of the phototrophic community also changed during the experiment, as observed by microscopic analysis in combination with DGGE analysis of eukaryotic microorganisms and cyanobacteria. However, the extent of community change, as observed by DGGE, was not significantly greater in the copper treatments than in the control. Yet microscopic analysis showed a development toward a greater proportion of cyanobacteria in the treatments with the highest copper concentrations. Furthermore, copper did affect the physiology of the phototrophic community, as evidenced by the fact that a decrease in photosynthetic capacity was detected in the treatment with the highest copper concentration. Therefore, we conclude that copper affected the physiology of the biofilm and had an effect on the structure of the communities composing this biofilm.  相似文献   

2.
The heterogeneous nature of lotic habitats plays an important role in the complex ecological and evolutionary processes that structure the microbial communities within them. Due to such complexity, our understanding of lotic microbial ecology still lacks conceptual frameworks for the ecological processes that shape these communities. We explored how bacterial community composition and underlying ecological assembly processes differ between lotic habitats by examining community composition and inferring community assembly processes across four major habitat types (free-living, particle-associated, biofilm on benthic stones and rocks, and sediment). This was conducted at 12 river sites from headwater streams to the main river in the River Thames, UK. Our results indicate that there are distinct differences in the bacterial communities between four major habitat types, with contrasting ecological processes shaping their community assembly processes. While the mobile free-living and particle-associated communities were consistently less diverse than the fixed sediment and biofilm communities, the latter two communities displayed higher homogeneity across the sampling sites. This indicates that the relative influence of deterministic environmental filtering is elevated in sediment and biofilm communities compared with free-living and particle-associated communities, where stochastic processes play a larger role.  相似文献   

3.
We investigated the effects of copper on the structure and physiology of freshwater biofilm microbial communities. For this purpose, biofilms that were grown during 4 weeks in a shallow, slightly polluted ditch were exposed, in aquaria in our laboratory, to a range of copper concentrations (0, 1, 3, and 10 microM). Denaturing gradient gel electrophoresis (DGGE) revealed changes in the bacterial community in all aquaria. The extent of change was related to the concentration of copper applied, indicating that copper directly or indirectly caused the effects. Concomitantly with these changes in structure, changes in the metabolic potential of the heterotrophic bacterial community were apparent from changes in substrate use profiles as assessed on Biolog plates. The structure of the phototrophic community also changed during the experiment, as observed by microscopic analysis in combination with DGGE analysis of eukaryotic microorganisms and cyanobacteria. However, the extent of community change, as observed by DGGE, was not significantly greater in the copper treatments than in the control. Yet microscopic analysis showed a development toward a greater proportion of cyanobacteria in the treatments with the highest copper concentrations. Furthermore, copper did affect the physiology of the phototrophic community, as evidenced by the fact that a decrease in photosynthetic capacity was detected in the treatment with the highest copper concentration. Therefore, we conclude that copper affected the physiology of the biofilm and had an effect on the structure of the communities composing this biofilm.  相似文献   

4.
To examine the relationship between plant species composition and microbial community diversity and structure, we carried out a molecular analysis of microbial community structure and diversity in two field experiments. In the first experiment, we examined bacterial community structure in bulk and rhizosphere soils in fields exposed to different plant diversity treatments, via a 16S rRNA gene clone library approach. Clear differences were observed between bacterial communities of the bulk soil and the rhizosphere, with the latter containing lower bacterial diversity. The second experiment focused on the influence of 12 different native grassland plant species on bacterial community size and structure in the rhizosphere, as well as the structure of Acidobacteria and Verrucomicrobia community structures. In general, bacterial and phylum-specific quantitative PCR and PCR-denaturing gradient gel electrophoresis revealed only weak influences of plant species on rhizosphere communities. Thus, although plants did exert an influence on microbial species composition and diversity, these interactions were not specific and selective enough to lead to major impacts of vegetation composition and plant species on below-ground microbial communities.  相似文献   

5.
Aims:  To understand the interactions between anaerobic biofilm development and process performances during the start-up period of methanogenic biofilm reactor.
Methods and Results:  Two methanogenic inverse turbulent bed reactors have been started and monitored for 81 days. Biofilm development (adhesion, growth, population dynamic) and characteristics (biodiversity, structure) were investigated using molecular tools (PCR–SSCP, FISH-CSLM). Identification of the dominant populations, in relation to process performances and to the present knowledge of their metabolic activities, was used to propose a global scheme of the degradation routes involved. The inoculum, which determines the microbial species present in the biofilm influences bioreactor performances during the start-up period. FISH observations revealed a homogeneous distribution of the Archaea and bacterial populations inside the biofilm.
Conclusion:  This study points out the link between biodiversity, functional stability and methanogenic process performances during start-up of anaerobic biofilm reactor. It shows that inoculum and substrate composition greatly influence biodiversity, physiology and structure of the biofilm.
Significance and Impact of the Study:  The combination of molecular techniques associated to a biochemical engineering approach is useful to get relevant information on the microbiology of a methanogenic growing biofilm, in relation with the start-up of the process.  相似文献   

6.
The effect that culture methods have on the diversity of degradative microbial communities is not well understood. We compared conventional batch enrichment with a biofilm culture method for the isolation of polycyclic aromatic hydrocarbon (PAH)-degrading microbial communities from a PAH-contaminated soil. The two methods were assessed by comparing: (i) the diversity of culturable bacteria; (ii) the diversity of PAH-catabolic genes in isolated bacteria; (iii) the inter- and intraspecific diversity of active PAH-catabolic gene classes; (iv) the diversity of bacteria present in 16S rRNA gene libraries generated from RNA extracted from the two communities and soil; and (v) the estimated diversity of active bacteria in the soil and culture systems. Single-strand conformation polymorphism analysis showed that the biofilm culture yielded 36 bacterial and two fungal species compared with 12 bacterial species from the enrichment culture. Application of accumulation and non-parametric estimators to clone libraries generated from 16S rRNA confirmed that the biofilm community contained greater diversity. Sequencing of clones showed that only species from the Proteobacteria were active in the enrichment culture, and that these species were expressing an identical nahAc-like naphthalene dioxygenase. 16S rRNA clones generated from the biofilm community indicated that species from the Cytophaga/Flavobacterium, high G+C bacteria and Proteobacteria were active at the time of sampling, expressing cndA-, nahAc- and phnAc-like naphthalene dioxygenases. The diversity of active species in the biofilm culture system closely matched that in the PAH-contaminated source soil. The results of this study showed that biofilm culture methods are more appropriate for the study of community-level interactions in PAH-degrading microbial communities. The study also indicated that cultivation of microbial communities on solid media might be the primary source of bias in the recovery of diverse species.  相似文献   

7.
Understanding the effects of spaceflight on microbial communities is crucial for the success of long-term, manned space missions. Surface-associated bacterial communities, known as biofilms, were abundant on the Mir space station and continue to be a challenge on the International Space Station. The health and safety hazards linked to the development of biofilms are of particular concern due to the suppression of immune function observed during spaceflight. While planktonic cultures of microbes have indicated that spaceflight can lead to increases in growth and virulence, the effects of spaceflight on biofilm development and physiology remain unclear. To address this issue, Pseudomonas aeruginosa was cultured during two Space Shuttle Atlantis missions: STS-132 and STS-135, and the biofilms formed during spaceflight were characterized. Spaceflight was observed to increase the number of viable cells, biofilm biomass, and thickness relative to normal gravity controls. Moreover, the biofilms formed during spaceflight exhibited a column-and-canopy structure that has not been observed on Earth. The increase in the amount of biofilms and the formation of the novel architecture during spaceflight were observed to be independent of carbon source and phosphate concentrations in the media. However, flagella-driven motility was shown to be essential for the formation of this biofilm architecture during spaceflight. These findings represent the first evidence that spaceflight affects community-level behaviors of bacteria and highlight the importance of understanding how both harmful and beneficial human-microbe interactions may be altered during spaceflight.  相似文献   

8.
A coupling of above-ground plant diversity and below-ground microbial diversity has been implied in studies dedicated to assessing the role of macrophyte diversity on the stability, resilience, and functioning of ecosystems. Indeed, above-ground plant communities have long been assumed to drive below-ground microbial diversity, but to date very little is known as to how plant species composition and diversity influence the community composition of micro-organisms in the soil. We examined this relationship in fields subjected to different above-ground biodiversity treatments and in field experiments designed to examine the influence of plant species on soil-borne microbial communities. Culture-independent strategies were applied to examine the role of wild or native plant species composition on bacterial diversity and community structure in bulk soil and in the rhizosphere. In comparing the influence of Cynoglossum officinale (hound's tongue) and Cirsium vulgare (spear thistle) on soil-borne bacterial communities, detectable differences in microbial community structure were confined to the rhizosphere. The colonisation of the rhizosphere of both plants was highly reproducible, and maintained throughout the growing season. In a separate experiment, effects of plant diversity on bacterial community profiles were also only observed for the rhizosphere. Rhizosphere soil from experimental plots with lower macrophyte diversity showed lower diversity, and bacterial diversity was generally lower in the rhizosphere than in bulk soil. These results demonstrate that the level of coupling between above-ground macrophyte communities and below-ground microbial communities is related to the tightness of the interactions involved. Although plant species composition and community structure appear to have little discernible effect on microbial communities inhabiting bulk soil, clear and reproducible changes in microbial community structure and diversity are observed in the rhizosphere. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

9.
Ecology, with a traditional focus on plants and animals, seeks to understand the mechanisms underlying structure and dynamics of communities. In microbial ecology, the focus is changing from planktonic communities to attached biofilms that dominate microbial life in numerous systems. Therefore, interest in the structure and function of biofilms is on the rise. Biofilms can form reproducible physical structures (i.e. architecture) at the millimetre‐scale, which are central to their functioning. However, the spatial dynamics of the clusters conferring physical structure to biofilms remains often elusive. By experimenting with complex microbial communities forming biofilms in contrasting hydrodynamic microenvironments in stream mesocosms, we show that morphogenesis results in ‘ripple‐like’ and ‘star‐like’ architectures – as they have also been reported from monospecies bacterial biofilms, for instance. To explore the potential contribution of demographic processes to these architectures, we propose a size‐structured population model to simulate the dynamics of biofilm growth and cluster size distribution. Our findings establish that basic physical and demographic processes are key forces that shape apparently universal biofilm architectures as they occur in diverse microbial but also in single‐species bacterial biofilms.  相似文献   

10.
11.
This study aimed to investigate the possible influence of bacterial intra- and interspecies interactions on the ability of Listeria monocytogenes and Salmonella enterica to develop mixed-culture biofilms on an abiotic substratum, as well as on the subsequent resistance of sessile cells to chemical disinfection. Initially, three strains from each species were selected and left to attach and form biofilms on stainless steel (SS) coupons incubated at 15°C for 144 h, in periodically renewable tryptone soy broth (TSB), under either monoculture or mixed-culture (mono-/dual-species) conditions. Following biofilm formation, mixed-culture sessile communities were subjected to 6-min disinfection treatments with (i) benzalkonium chloride (50 ppm), (ii) sodium hypochlorite (10 ppm), (iii) peracetic acid (10 ppm), and (iv) a mixture of hydrogen peroxide (5 ppm) and peracetic acid (5 ppm). Results revealed that both species reached similar biofilm counts (ca. 10(5) CFU cm(-2)) and that, in general, interspecies interactions did not have any significant effect either on the biofilm-forming ability (as this was assessed by agar plating enumeration of the mechanically detached biofilm bacteria) or on the antimicrobial resistance of each individual species. Interestingly, pulsed-field gel electrophoresis (PFGE) analysis clearly showed that the three L. monocytogenes strains did not contribute at the same level either to the formation of mixed-culture sessile communities (mono-/dual species) or to their antimicrobial recalcitrance. Additionally, the simultaneous existence inside the biofilm structure of S. enterica cells seemed to influence the occurrence and resistance pattern of L. monocytogenes strains. In sum, this study highlights the impact of microbial interactions taking place inside a mixed-culture sessile community on both its population dynamics and disinfection resistance.  相似文献   

12.
The combination of ecological diversity with genetic and experimental tractability makes Drosophila a powerful model for the study of animal-associated microbial communities. Despite the known importance of yeasts in Drosophila physiology, behavior, and fitness, most recent work has focused on Drosophila-bacterial interactions. In order to get a more complete understanding of the Drosophila microbiome, we characterized the yeast communities associated with different Drosophila species collected around the world. We focused on the phylum Ascomycota because it constitutes the vast majority of the Drosophila-associated yeasts. Our sampling strategy allowed us to compare the distribution and structure of the yeast and bacterial communities in the same host populations. We show that yeast communities are dominated by a small number of abundant taxa, that the same yeast lineages are associated with different host species and populations, and that host diet has a greater effect than host species on yeast community composition. These patterns closely parallel those observed in Drosophila bacterial communities. However, we do not detect a significant correlation between the yeast and bacterial communities of the same host populations. Comparative analysis of different symbiont groups provides a more comprehensive picture of host-microbe interactions. Future work on the role of symbiont communities in animal physiology, ecological adaptation, and evolution would benefit from a similarly holistic approach.  相似文献   

13.
14.
Correlation network analysis applied to complex biofilm communities   总被引:2,自引:0,他引:2  
The complexity of the human microbiome makes it difficult to reveal organizational principles of the community and even more challenging to generate testable hypotheses. It has been suggested that in the gut microbiome species such as Bacteroides thetaiotaomicron are keystone in maintaining the stability and functional adaptability of the microbial community. In this study, we investigate the interspecies associations in a complex microbial biofilm applying systems biology principles. Using correlation network analysis we identified bacterial modules that represent important microbial associations within the oral community. We used dental plaque as a model community because of its high diversity and the well known species-species interactions that are common in the oral biofilm. We analyzed samples from healthy individuals as well as from patients with periodontitis, a polymicrobial disease. Using results obtained by checkerboard hybridization on cultivable bacteria we identified modules that correlated well with microbial complexes previously described. Furthermore, we extended our analysis using the Human Oral Microbe Identification Microarray (HOMIM), which includes a large number of bacterial species, among them uncultivated organisms present in the mouth. Two distinct microbial communities appeared in healthy individuals while there was one major type in disease. Bacterial modules in all communities did not overlap, indicating that bacteria were able to effectively re-associate with new partners depending on the environmental conditions. We then identified hubs that could act as keystone species in the bacterial modules. Based on those results we then cultured a not-yet-cultivated microorganism, Tannerella sp. OT286 (clone BU063). After two rounds of enrichment by a selected helper (Prevotella oris OT311) we obtained colonies of Tannerella sp. OT286 growing on blood agar plates. This system-level approach would open the possibility of manipulating microbial communities in a targeted fashion as well as associating certain bacterial modules to clinical traits (e.g.: obesity, Crohn's disease, periodontal disease, etc).  相似文献   

15.
The hyporheic zone of stream ecosystems is a critical habitat for microbial communities. However, the factors influencing hyporheic bacterial communities along spatial and seasonal gradients remain poorly understood. We sought to characterize patterns in bacterial community composition among the sediments of a small stream in southern Ontario, Canada. We used sampling cores to collect monthly hyporheic water and sediment microbial communities in 2006 and 2007. We described bacterial communities terminal-restriction fragment length polymorphism (TRFLP) and tested for spatial and seasonal relationships with physicochemical parameters using multivariate statistics. Overall, the hyporheic zone appears to be a DOC, oxygen, and nitrogen sink. Microbial communities were distinct from those at the streambed surface and from soil collected in the adjacent watershed. In the sediments, microbial communities were distinct between the fall, spring, and summer seasons, and bacterial communities were more diverse at streambed surface and near-surface sites compared with deeper sites. Moreover, bacterial communities were similar between consecutive fall seasons despite shifting throughout the year, suggesting recurring community assemblages associated with season and location in the hyporheic zone. Using canonical correspondence analysis, seasonal patterns in microbial community composition and environmental parameters were correlated in the following way: temperature was related to summer communities; DOC (likely from biofilm and allochthonous inputs) influenced most fall communities; and nitrogen associated strongly with winter and spring communities. Our results also suggest that labile DOC entering the hyporheic zone occurred in concert with shifts in the bacterial community. Generally, seasonal patterns in hyporheic physicochemistry and microbial biodiversity remain largely unexplored. Therefore, we highlight the importance of seasonal and spatial resolution when assessing surface- and groundwater interactions in stream ecosystems.  相似文献   

16.
Microbes can engage in social interactions ranging from cooperation to warfare. Biofilms are structured, cooperative microbial communities. Like all cooperative communities, they are susceptible to invasion by selfish individuals who benefit without contributing. However, biofilms are pervasive and ancient, representing the first fossilized life. One hypothesis for the stability of biofilms is spatial structure: Segregated patches of related cooperative cells are able to outcompete unrelated cells. These dynamics have been explored computationally and in bacteria; however, their relevance to eukaryotic microbes remains an open question. The complexity of eukaryotic cell signaling and communication suggests the possibility of different social dynamics. Using the tractable model yeast, Saccharomyces cerevisiae, which can form biofilms, we investigate the interactions of environmental isolates with different social phenotypes. We find that biofilm strains spatially exclude nonbiofilm strains and that biofilm spatial structure confers a consistent and robust fitness advantage in direct competition. Furthermore, biofilms may protect against killer toxin, a warfare phenotype. During biofilm formation, cells are susceptible to toxin from nearby competitors; however, increased spatial use may provide an escape from toxin producers. Our results suggest that yeast biofilms represent a competitive strategy and that principles elucidated for the evolution and stability of bacterial biofilms may apply to more complex eukaryotes.  相似文献   

17.
The impact of substratum surface property change on biofilm community structure was investigated using laboratory biological aerated filter (BAF) reactors and molecular microbial community analysis. Two substratum surfaces that differed in surface properties were created via surface coating and used to develop biofilms in test (modified surface) and control (original surface) BAF reactors. Microbial community analysis by 16S rRNA gene-based PCR-denaturing gradient gel electrophoresis (DGGE) showed that the surface property change consistently resulted in distinct profiles of microbial populations during replicate reactor start-ups. Pyrosequencing of the bar-coded 16S rRNA gene amplicons surveyed more than 90% of the microbial diversity in the microbial communities and identified 72 unique bacterial species within 19 bacterial orders. Among the 19 orders of bacteria detected, Burkholderiales and Rhodocyclales of the Betaproteobacteria class were numerically dominant and accounted for 90.5 to 97.4% of the sequence reads, and their relative abundances in the test and control BAF reactors were different in consistent patterns during the two reactor start-ups. Three of the five dominant bacterial species also showed consistent relative abundance changes between the test and control BAF reactors. The different biofilm microbial communities led to different treatment efficiencies, with consistently higher total organic carbon (TOC) removal in the test reactor than in the control reactor. Further understanding of how surface properties affect biofilm microbial communities and functional performance would enable the rational design of new generations of substrata for the improvement of biofilm-based biological treatment processes.  相似文献   

18.
Biofilms, or surface-attached communities of cells encapsulated in an extracellular matrix, represent a common lifestyle for many bacteria. Within a biofilm, bacterial cells often exhibit altered physiology, including enhanced resistance to antibiotics and other environmental stresses. Additionally, biofilms can play important roles in host-microbe interactions. Biofilms develop when bacteria transition from individual, planktonic cells to form complex, multi-cellular communities. In the laboratory, biofilms are studied by assessing the development of specific biofilm phenotypes. A common biofilm phenotype involves the formation of wrinkled or rugose bacterial colonies on solid agar media. Wrinkled colony formation provides a particularly simple and useful means to identify and characterize bacterial strains exhibiting altered biofilm phenotypes, and to investigate environmental conditions that impact biofilm formation. Wrinkled colony formation serves as an indicator of biofilm formation in a variety of bacteria, including both Gram-positive bacteria, such as Bacillus subtilis, and Gram-negative bacteria, such as Vibrio cholerae, Vibrio parahaemolyticus, Pseudomonas aeruginosa, and Vibrio fischeri. The marine bacterium V. fischeri has become a model for biofilm formation due to the critical role of biofilms during host colonization: biofilms produced by V. fischeri promote its colonization of the Hawaiian bobtail squid Euprymna scolopes. Importantly, biofilm phenotypes observed in vitro correlate with the ability of V. fischeri cells to effectively colonize host animals: strains impaired for biofilm formation in vitro possess a colonization defect, while strains exhibiting increased biofilm phenotypes are enhanced for colonization. V. fischeri therefore provides a simple model system to assess the mechanisms by which bacteria regulate biofilm formation and how biofilms impact host colonization. In this report, we describe a semi-quantitative method to assess biofilm formation using V. fischeri as a model system. This method involves the careful spotting of bacterial cultures at defined concentrations and volumes onto solid agar media; a spotted culture is synonymous to a single bacterial colony. This 'spotted culture' technique can be utilized to compare gross biofilm phenotypes at single, specified time-points (end-point assays), or to identify and characterize subtle biofilm phenotypes through time-course assays of biofilm development and measurements of the colony diameter, which is influenced by biofilm formation. Thus, this technique provides a semi-quantitative analysis of biofilm formation, permitting evaluation of the timing and patterning of wrinkled colony development and the relative size of the developing structure, characteristics that extend beyond the simple overall morphology.  相似文献   

19.
Plant and soil types are usually considered as the two main drivers of the rhizosphere microbial communities. The aim of this work was to study the effect of both N availability and plant genotype on the plant associated rhizosphere microbial communities, in relation to the nutritional strategies of the plant-microbe interactions, for six contrasted Medicago truncatula genotypes. The plants were provided with two different nutrient solutions varying in their nitrate concentrations (0 mM and 10 mM). First, the influence of both nitrogen availability and Medicago truncatula genotype on the genetic structure of the soil bacterial and fungal communities was determined by DNA fingerprint using Automated Ribosomal Intergenic Spacer Analysis (ARISA). Secondly, the different nutritional strategies of the plant-microbe interactions were evaluated using an ecophysiological framework. We observed that nitrogen availability affected rhizosphere bacterial communities only in presence of the plant. Furthermore, we showed that the influence of nitrogen availability on rhizosphere bacterial communities was dependent on the different genotypes of Medicago truncatula. Finally, the nutritional strategies of the plant varied greatly in response to a modification of nitrogen availability. A new conceptual framework was thus developed to study plant-microbe interactions. This framework led to the identification of three contrasted structural and functional adaptive responses of plant-microbe interactions to nitrogen availability.  相似文献   

20.
Studies of microorganisms have traditionally focused on single species populations, which have greatly facilitated our understanding of the genetics and physiology that underpin microbial growth, adaptation and biofilm development. However, given that most microorganisms exist as multispecies consortia, the field is increasingly exploring microbial communities using a range of technologies traditionally limited to populations, including meta‐omics based approaches and high resolution imaging. The experimental communities currently being explored range from relatively low diversity, for example, two to four species, to significantly more complex systems, comprised of several hundred species. Results from both defined and undefined communities have revealed a number of emergent properties, including improved stress tolerance, increased biomass production, community level signalling and metabolic cooperation. Based on results published to date, we submit that community‐based studies are timely and increasingly reveal new properties associated with multispecies consortia that could not be predicted by studies of the individual component species. Here, we review a range of defined and undefined experimental systems used to study microbial community interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号