首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Short single-stranded DNA fragments carrying a GCGAAAGC sequence were found to move unexpectedly faster than other fragments of the same length in electrophoresis on a polyacrylamide gel containing a denaturing agent. The fragments were noted to have a stable structure even in 7M urea solution, but the stability cannot be explained simply on the basis of base pair formation alone. Physical characterization of the GCGAAAGC fragment indicated that it takes a hairpin-like structure in spite of the short chain length with only two G-C base pairs, comprised of GCG and AAAGC subsegments, each possessing a helical configuration independent of the others. Some biological implications of this unusual structure are discussed.  相似文献   

2.
The self-complementary octamers d(CGCTAGCG) and d(CGaCTAGCG) (aC, arabinofuranosylcytidine) were studied by means of NMR spectroscopy. It is shown that d(CGaCTAGCG), under suitable conditions of oligonucleotide concentration, ionic strength and temperature, exclusively adopts a hairpin structure. However, under the same experimental conditions (5 mM DNA, no added salt, 295 K) d(CGCTAGCG) mainly adopts a B-DNA-type duplex. At lower temperatures (less than or equal to 290 K) the hairpin form of d(CGaCTAGCG) occurs in slow exchange with an intact B-DNA-type duplex. When the DNA concentration of d(CGCTAGCG) is dramatically reduced (less than or equal to 0.5 mM) the hairpin form becomes highly favoured at the expense of the dimer. Moreover, proton-chemical-shift considerations indicate that the structural features of the hairpin structure of d(CGCTAGCG) mimic, in part, those of the modified octamer d(CGaCTAGCG), i.e. a loop comprising only the two central residues with the thymine located into the minor groove (Pieters, J. M. L., de Vroom, E., van der Marel, G. A., van Boom, J. H., Koning, T. M. G., Kaptein, R. and Altona, C. unpublished results). Thermodynamic analysis of d(CGCTAGCG) yields an average Tmd value of 342 K (1 M DNA) and a delta Hod value of -266 kJ/mol for the dimer/coil transition and an average Tmh value of 321 K and delta Hoh - 102 kJ/mol for the hairpin/coil equilibrium. For the duplex/coil equilibrium of d(CGaCTAGCG) an average Tmd value of 336 K (1 M DNA) and delta Hod value of -253 kJ/mol are deduced. The hairpin/coil transition of d(CGaCTAGCG) is characterized by a delta Hoh value of -104 kJ/mol and an average Tmh value of 331 K. It is concluded that incorporation of an arabinofuranosylcytidine in the octamer d(CGaCTAGCG) results in stabilization of the hairpin form, whereas the dimer is destablized by two aC.dG base pairs.  相似文献   

3.
Temperature-Gradient Gel Electrophoresis (TGGE) was employed to determine the thermal stabilities of 28 DNA fragments, 373 bp long, with two adjacent mismatched base pairs, and eight DNAs with Watson-Crick base pairs at the same positions. Heteroduplex DNAs containing two adjacent mismatches were formed by melting and reannealing pairs of homologous 373 bp DNA fragments differing by two adjacent base pairs. Product DNAs were separated based on their thermal stability by parallel and perpendicular TGGE. The polyacrylamide gel contained 3.36 M urea and 19.2 % formamide to lower the DNA melting temperatures. The order of stability was determined in the sequence context d(CXYG).d(CY'X'G) where X.X' and Y.Y" represent the mismatched or Watson-Crick base pairs. The identity of the mismatched bases and their stacking interactions influence DNA stability. Mobility transition melting temperatures (T u) of the DNAs with adjacent mismatches were 1.0-3.6 degrees C (+/-0.2 degree C) lower than the homoduplex DNA with the d(CCAG).d(CTGG) sequence. Two adjacent G.A pairs, d(CGAG).d(CGAG), created a more stable DNA than DNAs with Watson-Crick A.T pairs at the same sites. The d(GA).d(GA) sequence is estimated to be 0.4 (+/-30%) kcal/mol more stable in free energy than d(AA).d(TT) base pairs. This result confirms the unusual stability of the d(GA).d(GA) sequence previously observed in DNA oligomers. All other DNAs with adjacent mismatched base pairs were less stable than Watson-Crick homoduplex DNAs. Their relative stabilities followed an order expected from previous results on single mismatches. Two homoduplex DNAs with identical nearest neighbor sequences but different next-nearest neighbor sequences had a small but reproducible difference in T u value. This result indicates that sequence dependent next neighbor stacking interactions influence DNA stability.  相似文献   

4.
NMR and model-building studies were carried out on the duplex d(CTGGTGCGG).d(CCGCCCAG), referred to as (9+8)-mer, which contains an unpaired thymidine residue. Resonances of the base and of several sugar protons of the (9+8)-mer were assigned by means of a NOESY experiment. Interresidue NOEs between dG(4) and dT(5) as well as between dT(5) and dG(6) provided evidence that the extra dT is stacked into the duplex. Thermodynamic analysis of the chemical shift vs temperature profiles yielded an average TmD value of 334 K and delta HD of -289 kJmol-1 for the duplex in equilibrium random-coil transition. The shapes of the shift profiles as well as the thermodynamic parameters obtained for the extra dT residue and its neighbours again indicate that the unpaired dT base is incorporated inside an otherwise intact duplex. This conclusion is further supported by (a) the observation of an imino-proton resonance of the unpaired dT; (b) the relatively small dispersion in 31P chemical shifts (approximately 0.5 ppm) for the (9+8)-mer, which indicates the absence of t/g or g/t combinations for the phosphate diester torsion angles alpha/zeta. An energy-minimized model of the (9+8)-mer, which fits the present collection of experimental data, is presented.  相似文献   

5.
6.
A single-helical B-type geometry is presented based on 1H NMR observations on d(TATA) and several other small single-helical DNA fragments. The structure is extended to one complete turn of double-helical DNA and its characteristics are compared with other known B-type structures.  相似文献   

7.
Hydrogen exchange rates of the imino protons of the thrombin-binding 15 mer DNA aptamer d(G(1)G(2)T(3)T(4)G(5)G(6)T(7)G(8)T(9)G(10)G(11)T(12)T(13)G(14)G(15)) in the presence of Sr(2+) were measured. In the temperature range 15-35 degrees C, the exchange rates of the eight iminos in the quadruplex core were not uniform, with the G(2), G(11) and G(15) iminos exchanging faster, the G(1), G(5), G(10) and G(14) iminos exchanging slower, and the G(6) imino exchanging at a medium rate. In the quadruplex G(1), G(5), G(10) and G(14) adopted syn glycosidic conformation, while G(2), G(6), G(11) and G(15) adopted anti-conformation. It was found that the four slowly exchanging iminos, which were all the syn-iminos, happened to be located in the TT loops that were not easy to open to the solvent. The anti-iminos exchanged faster, but the G(6) imino exchanged slower than other anti-iminos, because its hydrogen bond with the G(10)O6 was stabilized by the TGT loop. The fact that the G(6) imino exchanged at a faster rate than those syn-iminos in the TT loops suggested that the TGT loop was less stable than the TT loops. Unfolding mechanism for the quadruplex was thus proposed: The quadruplex first uncoupled the three base pairs: G(1)-G(15), G(2)-G(14) and G(5)-G(11), which were not protected by any loops. Then it opened the TGT loop. Finally, it opened the TT loops and the sequence became an unstructured random coil that exchanged with the quadruplex conformation. The conformational exchange between the quadruplex and random coil had been detected.  相似文献   

8.
Our recent binding studies with oligomers derived from base replacements on d(CGTCGTCG) had led to the finding that actinomycin D (ACTD) binds strongly to d(TGTCATTG) of apparent single-stranded conformation without GpC sequence. A fold-back binding model was speculated in which the planar phenoxazone inserts at the GTC site with a loop-out T base whereas the G base at the 3'-terminus folds back to form a basepair with the internal C and stacks on the opposite face of the chromophore. To provide a more concrete support for such a model, ACTD equilibrium binding studies were carried out and the results are reported herein on oligomers of sequence motifs d(TGTCT(n)G) and d(TGT(n)GTC). These oligomers are not expected to form dimeric duplexes and contain no canonical GpC sequences. It was found that ACTD binds strongly to d(TGTCTTTTG), d(TGTTTTGTC), and d(TGTTTTTGTC), all exhibiting 1:1 drug/strand binding stoichiometry. The fold-back binding model with displaced T base is further supported by the finding that appending TC and TCA at the 3'-terminus of d(TGTCTTTTG) results in oligomers that exhibit enhanced ACTD affinities, consequence of the added basepairing to facilitate the hairpin formation of d(TGTCTTTTGTC) and d(TGTCTTTTGTCA) in stabilizing the GTC/GTC binding site for juxtaposing the two G bases for easy stacking on both faces of the phenoxazone chromophore. Further support comes from the observation of considerable reduction in ACTD affinity when GTC is replaced by GTTC in an oligomer, in line with the reasoning that displacing two T bases to form a bulge for ACTD binding is more difficult than displacing a single base. Based on the elucidated binding principle of phenoxazone ring requiring its opposite faces to be stacked by the 3'-sides of two G bases for tight ACTD binding, several oligonucleotide sequences have been designed and found to bind well.  相似文献   

9.
The preparation and spectroscopic characterization of duplex decamers containing site-specific cis-syn and trans-syn thymine dimers are described. Three duplex decamers, d(CGTATTATGC).d(GCATAATACG), d(CGTAT[c,s]TATGC).d(GCATAATACG), and d(CGTAT[t,s]TATGC).d(GCATAATACG), were prepared by solid-phase phosphoramidite synthesis utilizing cis-syn and trans-syn cyclobutane thymine dimer building blocks (Taylor et al., 1987; Taylor & Brockie, 1988). NMR spectra (500 MHz 2D 1H and 202 MHz 1D 31P) were obtained in "100%" D2O at 10 degrees C, and 1D exchangeable 1H spectra were obtained in 10% D2O at 10 degrees C. 1H NMR assignments for H5, H6, H8, CH3, H1', H2', and H2" were made on the basis of standard sequential NOE assignment strategies and verified in part by DQF COSY data. Comparison of the chemical shift data suggests that the helix structure is perturbed more to the 3'-side of the cis-syn dimer and more to the 5'-side of the trans-syn dimer. Thermodynamic parameters for the helix in equilibrium coil equilibrium were obtained by two-state, all or none, analysis of the melting behavior of the duplexes. Analysis of the temperature dependence of the T5CH3 1H NMR signal gave delta H = 44 +/- 4 kcal and delta S = 132 +/- 13 eu for the trans-syn duplex. Analysis of the concentration and temperature dependence of UV spectra gave delta H = 64 +/- 6 kcal and delta S = 178 +/- 18 eu for the parent duplex and delta H = 66 +/- 7 kcal and delta S = 189 +/- 19 eu for cis-syn duplex. It was concluded that photodimerization of the dTpdT unit to give the cis-syn product causes little perturbation of the DNA whereas dimerization to give the trans-syn product causes much greater perturbation, possibly in the form of a kink or dislocation at the 5'-side of the dimer.  相似文献   

10.
R M Wartell  W S Reznikoff 《Gene》1980,9(3-4):307-319
A new method of in vitro recombination was employed to construct plasmids containing lac promoter fragments 64 bp and 144 bp long. The 64 bp HpaII-HhaI fragment contains the binding site for the catabolite activator protein (CAP). The HpaII-HaeIII 144 bp fragment includes the binding sites for RNA polymerase, the lac repressor and CAP. The method utilizes the ability of T4 DNA polymerase to make flush-ended DNA either by filling in a recessed 3'-end or by exonucleolytic removal of a protruding 3'-end. The treated fragments were then blunt-end ligated to the filled-in EcoRI cloning sites of the plasmids pVH51 and pBR322 using T4 ligase. In this process, the EcoRI sites were regenerated on the fragment ends thus facilitating the subsequent isolation of the fragments from their cloning vectors.  相似文献   

11.
The interactions between a novel antitumor drug nogalamycin with the self-complementary DNA hexamer d(CGTACG) have been studied by 500 MHz two dimensional proton nuclear magnetic resonance spectroscopy. When two nogalamycins are mixed with the DNA hexamer duplex in a 2:1 ratio, a symmetrical complex is formed. All non-exchangeable proton resonances (except H5' & H5") of this complex have been assigned using 2D-COSY and 2D-NOESY methods at pH 7.0. The observed NOE cross peaks are fully consistent with the 1.3 A resolution x-ray crystal structure (Liaw et al., Biochemistry 28, 9913-9918, 1989) in which the elongated aglycone chromophore is intercalated between the CpG steps at both ends of the helix. The aglycone chromophore spans across the GC Watson-Crick base pairs with its nogalose lying in the minor groove and the aminoglucose lying in the major groove of the distorted B-DNA double helix. The binding conformation suggests that specific hydrogen bonds exist in the complex between the drug and guanine-cytosine bases in both grooves of the helix. When only one drug per DNA duplex is present in solution, there are three molecular species (free DNA, 1:1 complex and 2:1 complex) in slow exchange on the NMR time scale. This equilibrium is temperature dependent. At high temperature the free DNA hexamer duplex and the 1:1 complex are completely destabilized such that at 65 degrees C only free single-stranded DNA and the 2:1 complex co-exist. At 35 degrees C the equilibrium between free DNA and the 1:1 complex is relatively fast, while that between the 1:1 complex and the 2:1 complex is slow. This may be rationalized by the fact that the binding of nogalamycin to DNA requires that the base pairs in DNA open up transiently to allow the bulky sugars to go through. A separate study of the 2:1 complex at low pH showed that the terminal GC base pair is destabilized.  相似文献   

12.
The hydration properties of the non-palindromic duplex d(CTACTGCTTTAG). d(CTAAAGCAGTAG) were investigated by NMR spectroscopy. The oligonucleotide possesses a heterogeneous B-DNA structure. The H2(n)-H1'(m+1) distances reflect a minor groove narrowing within the TTT/AAA segment (approximately 3.9A) and a sudden widening at the T10:A15 base-pair (approximately 5.3A), the standard B-DNA distance being approximately 5A. The facing T10pA11 and T14pA15 steps at the end of the TTTA/AAAT segment have completely different behaviors. Only A15 ending the AAA run displays NMR features comparable to those shown by adenines of TpA steps occupying the central position of TnAn (n> or =2) segments. These involve particular chemical shifts and line broadening of the H2 and H8 protons. Positive NOESY cross-peaks were measured between the water protons and the H2 protons of A15, A16 and A17 reflecting the occurrence of hydration water molecules with residence times longer than 500 picoseconds along the minor groove of the TTT/AAA segment. In contrast no water molecules with long residence times were observed neither for A3, A20 and A23 nor for A11 ending the 5'TTTA run. We confirm thus that the binding of water molecules with long residence time to adenine residues correlates with the minor groove narrowing. In contrast, the widening of the minor groove at the A11:T14 base-pair ending the TTTA/TAAA segment, likely associated to a high negative propeller twist value at this base-pair, prevents the binding of a water molecule with long residence time to A11 but not to A15 of the preceding T10:A15 base-pair. Thus, in our non-palindromic oligonucleotide the water molecules bind differently to A11 and A15 although both adenines are part of a TpA step. The slower motions occurring at A15 compared to A11 are also well explained by the present results.  相似文献   

13.
A comparison is presented of the imino proton NMR spectra of the double stranded octamer d(GCGTTGCG).d(CGCAACGC) and the same octamer in which the two central thymine residues occur as a cis-syn thymine dimer. Except for the terminal base pairs all imino protons were detected and assigned in the NMR spectrum. The spectra show that in the thymine dimer duplex, contrary to common belief, all base pairs occur in a hydrogen bonded form, although the hydrogen bonds of the two central AT base pairs are substantially weakened. The melting temperature decreases about 13 degrees C on thymine dimer formation.  相似文献   

14.
L J Rinkel  I Tinoco  Jr 《Nucleic acids research》1991,19(13):3695-3700
One- and two-dimensional nuclear magnetic resonance (NMR) experiments were used to study the conformation of the DNA hexadecanucleotide d(CACGTGTGTGCGTGCA) in aqueous solution. NMR spectra were recorded for the compound in D2O and in H2O/D2O (90/10) over the temperature range 1 degree C-60 degrees C. Assignments of imino proton resonances and of non-exchangeable proton resonances (except for some H4', H5' and H5" resonances) are given. The 1H-NMR spectra indicate that below about 20 degrees C, the compound exists as a single monomolecular species. Between 20 degrees C and 55 degrees C the oligonucleotide occurs as a mixture of structures in fast exchange on the NMR time scale, except for the temperature region 30 degrees - 34 degrees C, where substantial line broadening indicates intermediate exchange; above 60 degrees C the single strand predominates. The imino proton spectra, chemical shift values, and scalar coupling and NOE data reveal that the monomeric form, which is exclusively present below 20 degrees C, consists of a structure with a B-DNA double helix region of six base pairs, both ends of which are closed by hairpin loops of only two nucleotides, giving the molecule a dumbbell-like structure: [sequence: see text].  相似文献   

15.
Kang M  Chifotides HT  Dunbar KR 《Biochemistry》2008,47(8):2265-2276
The 2D NMR analysis in solution of the DNA duplex d(CTCTC*A*ACTTCC).d(GGAAGTTGAGAG) binding to the dirhodium unit cis-[Rh2(mu-O2CCH3)2(eta1-O2CCH3)]+ showed that an unprecedented intrastrand adduct, dsII, is formed with the dirhodium unit cross-linking in the major groove residues C5 and A6 (indicated with asterisks), also corroborated by enzyme digestion studies. Formation of the dirhodium complex dsII destabilizes significantly the duplex as indicated by the substantial decrease in its melting temperature (DeltaTm = -22.9 degrees C). The reduced thermal stability of dsII is attributed to the decreased stacking of the bases and the complete disruption and/or weakening of the hydrogen bonds within the base pairs in the immediate vicinity of the metalation site (C5.G20 and A6.T19), but the effects due to the metal binding are more severe for the base pairs in the 5' direction to the lesion site. The NMR spectroscopic data indicate that Watson-Crick hydrogen bonding is completely disrupted for the C5.G20 site and considerably weakened for A6.T19. In dsII, the bases C5 and A6 bind to eq positions of the dirhodium unit cis-[Rh2(mu-O2CCH3)2(eta1-O2CCH3)]+, which retains one monodentate and two bridging acetate groups, presumably due to steric reasons. Binding of A6 takes place via N7, whereas binding of the C5 base takes place via the exocyclic N4 site, resulting in the anti-cytosine rotamer with respect to site N3 in its metal-stabilized rare iminooxo form.  相似文献   

16.
DNA fragments d(TATATATA) and d(TATATA) were studied in low-salt aqueous solutions and found to coexist in more than one conformer. 1H-n.m.r. demonstrates that single-stranded and double-stranded states are involved in the conformational coexistence. Circular dichroism spectroscopy indicates a global B-DNA stacking of bases in the fragments. 31P-n.m.r. resonances of the TpA and ApT phosphodiester bonds are substantially separated in the spectra of both d(TATATATA) and d(TATATA) duplexes to suggest an alternating architecture of their backbones. In fact, the oligonucleotide duplexes are much more alternating than the corresponding polynucleotide under the same solution conditions. The alternating character of the d(TATATATA) double helix is further enhanced in molar caesium fluoride solutions. The oligonucleotide isomerization into X-DNA is, however, accompanied by gel formation, which makes high resolution n.m.r. measurements impossible.  相似文献   

17.
18.
Recently, we reported that T-T mismatches can specifically recognize Hg(II) (T-Hg(II)-T pair formation). In order to understand the properties of the T-Hg(II)-T pair, we recorded NMR spectra for a DNA duplex, d(CGCGTTGTCC).d(GGACTTCGCG), with two successive T-T mismatches (Hg (II)-binding sites). We assigned 1H resonances for mercury-free and di-mercurated duplexes, and performed titration experiments with Hg(II) by using 1D 1H NMR spectra. Because of the above mentioned assignments, we could confirm the existence of mono-mercurated species, because individual components gave independent NMR signals in the titration spectra.  相似文献   

19.
Model-building studies were carried out on the trimer AUA. Bulge-out structures which allow incorporation into a continuous RNA helix were generated and energy-minimized. All geometrical features obtained by previous NMR studies on purine-pyrimidine-purine sequences are accounted for in these models. One of the models was used to fit into a double helical fragment. Only minor changes were necessary to construct a central bulge-out in an otherwise intact duplex. NMR and model-building studies were performed on the duplex (CUGGUGCGG).(CCGCCCAG) which contains an unpaired uridine residue. NOE data, chemical-shift profiles and imino-proton resonances provided evidence that the extra U is bulged out of the duplex. The relatively small dispersion in 31P chemical shifts (approximately equal to 0.7 ppm) indicate the absence of t/g or g/t combinations for the phosphodiester angles zeta/alpha. An energy-minimized model of the duplex, which fits the present collection of data, is presented.  相似文献   

20.
8,9-Dihydro-8-(N7-guanyl-[d(ATCGAT)])-9-hydroxyaflatoxin B1.d(ATCGAT) and 8,9-dihydro-8-(N7-guanyl-[d(ATGCAT)])-9-hydroxyaflatoxin B1.8,9-dihydro-8-(N7-guanyl-[d(ATGCAT)])-9-hydroxyaflatoxin B1 were prepared by direct addition of afltoxin B1 8,9-epoxide to d(ATCGAT)2 and d(ATGCAT)2, respectively. In contrast to reaction of aflatoxin B1 8,9-epoxide with d(ATCGAT)2 which exhibits a limiting stoichiometry of 1:1 aflatoxin B1:d(ATCGAT)2 [Gopalakrishnan, S., Stone, M. P., & Harris, T. M. (1989) J. Am. Chem. Soc. 111, 7232-7239], reaction of aflatoxin B1 8,9-epoxide with d(ATGCAT)2 exhibits a limiting stoichiometry of 2:1 aflatoxin B1:d(ATGCAT)2. 1H NOE experiments, nonselective 1H T1 relaxation measurements, and 1H chemical shift perturbations demonstrate that in both modified oligodeoxynucleotides the aflatoxin moiety is intercalated above the 5'-face of the modified guanine. The oligodeoxynucleotides remain right-handed, and perturbation of the B-DNA structure is localized adjacent to the adducted guanine. Aflatoxin-oligodeoxynucleotide 1H NOEs are observed between aflatoxin and the 5'-neighbor base pair and include both the major groove and the minor groove. The aflatoxin methoxy and cyclopentenone ring protons face into the minor groove; the furofuran ring protons face into the major groove. No NOE is observed between the imino proton of the modified base pair and the imino proton of the 5'-neighbor base pair; sequential NOEs between nucleotide base and deoxyribose protons are interrupted in both oligodeoxynucleotide strands on the 5'-side of the modified guanine. The protons at C8 and C9 of the aflatoxin terminal furan ring exhibit slower spin-lattice relaxation as compared to other oligodeoxynucleotide protons, which supports the conclusion that they face into the major groove. Increased shielding is observed for aflatoxin protons; chemical shift perturbations of the oligodeoxynucleotide protons are confined to the immediate vicinity of the adducted base pair. The imidazole proton of the modified guanine exchanges with water and is observed at 9.75 ppm. The difference in reaction stoichiometry is consistent with an intercalated transition-state complex between aflatoxin B1 8,9-epoxide and B-DNA. Insertion of aflatoxin B1-8,9 epoxide above the 5'-face of guanine in d(ATCGAT)2 would prevent the binding of a second molecule of aflatoxin B1 8,9-epoxide. In contrast, two intercalation sites would be available with d(ATGCAT)2.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号