首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Increasing evidence indicates an important role of PPAR gamma activation in modulating the development and progression of atherosclerosis, however, the mechanisms involved in these effects are not well understood since the PPAR gamma-regulated genes in vascular smooth muscle cells (VSMC) are poorly defined. Here we reported that PPAR gamma ligands, GW7845, ciglitazone and troglitazone had the effect of inhibiting osteoprotegerin (OPG) expression in human aortic smooth muscle cells (HASMC). The effect of GW7845 and ciglitazone on OPG expression was completely abolished by GW9662, a PPAR gamma antagonist. Overexpression of PPAR gamma in HASMC by the infection of a PPAR gamma adenovirus dramatically decreased OPG expression. In addition, PPAR gamma activation inhibited OPG promoter activity. Taken together, our data suggest that OPG expression is a novel PPAR gamma target gene in VSMC and downregulation of OPG expression by PPAR gamma activation provides a new insight into the understanding of the role of PPAR gamma in atheroscelrosis and hypertension.  相似文献   

4.
5.
Multiple sclerosis (MS) is marked by neuroinflammation and demyelination with loss of oligodendrocytes in the central nervous system. The immune response is regulated by WNT/beta-catenin pathway in MS. Activated NF-kappaB, a major effector of neuroinflammation, and upregulated canonical WNT/beta-catenin pathway positively regulate each other. Demyelinating events present an upregulation of WNT/beta-catenin pathway, whereas proper myelinating phases show a downregulation of WNT/beta-catenin pathway essential for the promotion of oligodendrocytes precursors cells proliferation and differentiation. The activation of WNT/beta-catenin pathway results in differentiation failure and impairment in remyelination. However, PI3K/Akt pathway and TCF7L2, two downstream targets of WNT/beta-catenin pathway, are upregulated and promote proper remyelination. The interactions of these signaling pathways remain unclear. PPAR gamma activation can inhibit NF-kappaB, and can also downregulate the WNT/beta-catenin pathway. PPAR gamma and canonical WNT/beta-catenin pathway act in an opposite manner. PPAR gamma agonists appear as a promising treatment for the inhibition of demyelination and the promotion of proper remyelination through the control of both NF-kappaB activity and canonical WNT/beta-catenin pathway.  相似文献   

6.
7.
8.
9.
10.
15-Deoxy-Delta(12-14)-prostaglandin J(2) (dPGJ2) and thiazolidinediones are known as ligands for the peroxisome proliferator activator receptor gamma (PPAR gamma) a member of the nuclear receptor superfamily. Herein, we show that dPGJ2 activates, in cultured primary astrocytes, Erk, Jnk, p38 MAP kinase, and ASK1, a MAP kinase kinase kinase, which can be involved in the activation of Jnk and p38 MAP kinase. The activation kinetic is similar for the three MAP kinase. The activation of the MAP kinases is detectable around 0.5 h. The activation increases with dPGJ2 in a dose dependent manner (0-15 microm). A scavenger of reactive oxygenated species (ROS), N-acetylcysteine (NAC) at 20 mm, completely suppresses the activation of MAP kinases and ASK1, suggesting a role for oxidative stress in the activation mechanism. Other prostaglandin cyclopentenones than dPGJ2, A(2), and to a lesser degree, A(1) also stimulate the MAP kinases, although they do not bind to PPAR gamma. Ciglitazone (20 microm), a thiazolidinedione that mimics several effects of dPGJ2 in different cell types, also activates the three MAP kinase families and ASK1 in cultured astrocytes. However the activation is more rapid (it is detectable at 0.25 h) and more sustained (it is still strong after 4 h). NAC prevents the activation of the three MAP kinase families by ciglitazone. Another thiazolidinedione that binds to PPAR gamma, rosiglitazone, does not activate MAP kinases, indicating that the effect of ciglitazone on MAP kinases is independent of PPAR gamma. Ciglitazone and less strongly dPGJ2 activate Erk in undifferentiated cells of the adipocyte cell line 1B8. Ciglitazone also activates Jnk and p38 MAP kinase in these preadipocytes. Our findings suggest that a part of the biological effects of dPGJ2 and ciglitazone involve the activation of the three MAP kinase families probably through PPAR gamma-independent mechanisms involving ROS.  相似文献   

11.
The cyclin D1 gene is overexpressed in human breast cancers and is required for oncogene-induced tumorigenesis. Peroxisome proliferator-activated receptor gamma (PPAR gamma) is a nuclear receptor selectively activated by ligands of the thiazolidinedione class. PPAR gamma induces hepatic steatosis, and liganded PPAR gamma promotes adipocyte differentiation. Herein, cyclin D1 inhibited ligand-induced PPAR gamma function, transactivation, expression, and promoter activity. PPAR gamma transactivation induced by the ligand BRL49653 was inhibited by cyclin D1 through a pRB- and cdk-independent mechanism, requiring a region predicted to form an helix-loop-helix (HLH) structure. The cyclin D1 HLH region was also required for repression of the PPAR gamma ligand-binding domain linked to a heterologous DNA binding domain. Adipocyte differentiation by PPAR gamma-specific ligands (BRL49653, troglitazone) was enhanced in cyclin D1(-/-) fibroblasts and reversed by retroviral expression of cyclin D1. Homozygous deletion of the cyclin D1 gene, enhanced expression by PPAR gamma ligands of PPAR gamma and PPAR gamma-responsive genes, and cyclin D1(-/-) mice exhibit hepatic steatosis. Finally, reduction of cyclin D1 abundance in vivo using ponasterone-inducible cyclin D1 antisense transgenic mice, increased expression of PPAR gamma in vivo. The inhibition of PPAR gamma function by cyclin D1 is a new mechanism of signal transduction cross talk between PPAR gamma ligands and mitogenic signals that induce cyclin D1.  相似文献   

12.
13.
14.
To investigate the molecular mechanism of fish adipocyte differentiation, the three subtypes of PPAR genes (alpha, beta and gamma) were characterized in a marine teleost red sea bream (Pagrus major). The primary structures of red sea bream PPARs exhibited high degrees of similarities to their mammalian counterparts, and their gene expression was detected in various tissues including adipose tissue, heart and hepatopancreas. During the differentiation of primary cultured red sea bream adipocytes, three PPARs showed distinct expression patterns: The alpha subtype showed a transient increase and the beta gene expression tended to increase during adipocyte differentiation whereas the gene expression level of PPARgamma did not change. These results suggest that they play distinct roles in adipocyte differentiation in red sea bream. In the differentiating red sea bream adipocytes, mammalian PPAR agonists, 15-deoxy-Delta(12,14)-prostaglandin J(2), ciglitazone and fenofibrate did not show clear effects on the adipogenic gene expression. However, 2-bromopalmitate increased the PPARgamma and related adipogenic gene expression levels, suggesting the gamma subtype plays a central role in red sea bream adipocyte differentiation and in addition, fatty acid metabolites can be used as modulators of adipocyte function. Thus our study highlighted the roles of PPARs in fish adipocyte differentiation and provided information on the molecular mechanisms of fish adipocyte development.  相似文献   

15.
Thiazolidinediones, the antidiabetic agents such as ciglitazone, has been proved to be effective in limiting atherosclerotic events. However, the underlying mechanism remains elucidative. Ox‐LDL receptor‐1 (LOX‐1) plays a central role in ox‐LDL‐mediated atherosclerosis via endothelial nitric oxide synthase (eNOS) uncoupling and nitric oxide reduction. Therefore, we tested the hypothesis that ciglitazone, the PPARγ agonist, protected endothelial cells against ox‐LDL through regulating eNOS activity and LOX‐1 signalling. In the present study, rat microvascular endothelial cells (RMVECs) were stimulated by ox‐LDL. The impact of ciglitazone on cell apoptosis and angiogenesis, eNOS expression and phosphorylation, nitric oxide synthesis and related AMPK, Akt and VEGF signalling pathway were observed. Our data showed that both eNOS and Akt phosphorylation, VEGF expression and nitric oxide production were significantly decreased, RMVECs ageing and apoptosis increased after ox‐LDL induction for 24 hrs, all of which were effectively reversed by ciglitazone pre‐treatment. Meanwhile, phosphorylation of AMP‐activated protein kinase (AMPK) was suppressed by ox‐LDL, which was also prevented by ciglitazone. Of interest, AMPK inhibition abolished ciglitazone‐mediated eNOS function, nitric oxide synthesis and angiogenesis, and increased RMVECs ageing and apoptosis. Further experiments showed that inhibition of PPARγ significantly suppressed AMPK phosphorylation, eNOS expression and nitric oxide production. Ciglitazone‐mediated angiogenesis and reduced cell ageing and apoptosis were reversed. Furthermore, LOX‐1 protein expression in RMVECs was suppressed by ciglitazone, but re‐enhanced by blocking PPARγ or AMPK. Ox‐LDL‐induced suppression of eNOS and nitric oxide synthesis were largely prevented by silencing LOX‐1. Collectively, these data demonstrate that ciglitazone‐mediated PPARγ activation suppresses LOX‐1 and moderates AMPK/eNOS pathway, which contributes to endothelial cell survival and function preservation.  相似文献   

16.
The differentiation of preadipocytes into adipocytes requires the suppression of canonical Wnt signaling, which appears to involve a peroxisome proliferator-activated receptor gamma (PPARgamma)-associated targeting of beta-catenin to the proteasome. In fact, sustained activation of beta-catenin by expression of Wnt1 or Wnt 10b in preadipocytes blocks adipogenesis by inhibiting PPARgamma-associated gene expression. In this report, we investigated the mechanisms regulating the balance between beta-catenin and PPARgamma signaling that determines whether mouse fibroblasts differentiate into adipocytes. Specifically, we show that activation of PPARgamma by exposure of Swiss mouse fibroblasts to troglitazone stimulates the degradation of beta-catenin, which depends on glycogen synthase kinase (GSK) 3beta activity. Mutation of serine 37 (a target of GSK3beta) to an alanine renders beta-catenin resistant to the degradatory action of PPARgamma. Ectopic expression of the GSK3beta phosphorylation-defective S37A-beta-catenin in Swiss mouse fibroblasts expressing PPARgamma stimulates the canonical Wnt signaling pathway without blocking their troglitazone-dependent differentiation into lipid-laden cells. Analysis of protein expression in these cells, however, shows that S37A-beta-catenin inhibits a select set of adipogenic genes because adiponectin expression is completely blocked, but FABP4/aP2 expression is unaffected. Furthermore, the mutant beta-catenin appears to have no affect on the ability of PPARgamma to bind to or transactivate a PPAR response element. The S37A-beta-catenin-associated inhibition of adiponectin expression coincides with an extensive decrease in the abundance of C/EBPalpha in the nuclei of the differentiated mouse fibroblasts. Taken together, these data suggest that GSKbeta is a key regulator of the balance between beta-catenin and PPARgamma activity and that activation of canonical Wnt signaling downstream of PPARgamma blocks expression of a select subset of adipogenic genes.  相似文献   

17.
18.
19.
20.
Ultraviolet B radiation (UVB) is a pro-oxidative stressor with profound effects on skin in part through its ability to stimulate cytokine production. Peroxisome proliferator-activated receptor gamma (PPAR gamma) has been shown to regulate inflammatory processes and cytokine release in various cell types. Since the oxidized glycerophospholipid 1-hexadecyl-2-azelaoyl glycerophosphocholine (azPC) has been shown to be a potent PPAR gamma agonist, this study was designed to assess whether the PPAR gamma system is a target for UVB irradiation and involved in UVB-induced inflammation in epidermal cells. The present studies demonstrated the presence of PPAR gamma mRNA and functional protein in human keratinocytes and epithelial cell lines HaCaT, KB, and A431. The treatment of epidermal cells with the PPAR gamma-specific agonist ciglitazone or azPC augmented cyclooxygenase-2 expression and enzyme activity induced by phorbol 12-myristate-13-acetate or interleukin-1 beta. Lipid extracts from the cell homogenate of UVB-irradiated, but not control, cells contained a PPAR gamma-agonistic activity identified by reporter assay, and this activity up-regulated cyclooxygenase-2 expression induced by phorbol 12-myristate-13-acetate. Subjecting purified 1-hexadecyl-2-arachidonoyl-glycerophosphocholine to UVB irradiation generated a PPAR gamma-agonistic activity, among which the specific PPAR gamma agonist azPC was identified by mass spectrometry. These findings suggested that UVB-generated PPAR gamma-agonistic activity was due to the free radical mediated non-enzymatic cleavage of endogenous glycerophosphocholines. Treatment with the specific PPAR gamma antagonist GW9662 or expression of a dominant-negative PPAR gamma mutant in KB cells inhibited UVB-induced epidermal cell prostaglandin E(2) production. These findings suggested that UVB-generated PPAR gamma activity is necessary for the optimal production of epidermal prostaglandins. These studies demonstrated that epithelial cells contain a functional PPAR gamma system, and this system is a target for UVB through the production of novel oxidatively modified endogenous phospholipids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号