首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Substance P Hydrolysis by Human Serum Cholinesterase   总被引:7,自引:6,他引:1  
Highly purified human serum cholinesterase (EC 3.1.1.8, also known as pseudocholinesterase and butyrylcholinesterase) had peptidase activity toward substance P. Digestion of substance P was monitored by high performance liquid chromatography, which separated three product peptides. The cleavages occurred sequentially. The first peptide to appear as Arg1-Pro2. The Km for this hydrolysis was 0.3 mM; maximum activity was 7.9 nmol min-1 mg-1 of protein, which corresponded to a turnover number of 0.6 min-1. A second cleavage yielded Lys3-Pro4. A third cleavage occurred at the C-terminal, where the amide was removed from Met11 to yield a peptide containing residues 5-11. Both the peptidase and esterase activities of the enzyme were completely inhibited by the anticholinesterase agent, diisopropylfluorophosphate. Substance P inhibited the hydrolysis of benzoylcholine (a good ester substrate) with a KI of 0.17 mM, indicating that substance P interacted with cholinesterase rather than with a trace contaminant. Peptidase and amidase activities for serum cholinesterase are novel activities for this enzyme. It was demonstrated previously that the related enzyme acetylcholinesterase (EC 3.1.1.7) catalyzed the hydrolysis of substance P, but at entirely different cleavage sites from those reported in the present work. Since butyrylcholinesterase is present in brain and muscle, as well as in serum, it may be involved in the physiological regulation of substance P.  相似文献   

2.
The interaction kinetics of potential pesticides, O,O-dialkyl S-bromomethylthiophosphates (RO)2P(O) SCH2Br (R = Et, i-Pr, n-Pr, n-Bu, or n-Am) with acetylcholinesterase, butyryl cholinesterase, and carboxyl esterase from warm-blooded animals was studied. All the compounds irreversibly inhibit these esterases, with k1 (M-1 min-1) being 1.8 x 10(4) - 1.9 x 10(6) for acetylcholinesterase, 2.0 x 10(6) - 4.1 x 10(7) for the more sensitive butyryl cholinesterase, and 2.3 x 10(7) - 2.3 x 10(8) and higher for the most sensitive carboxyl esterase. By using the Hansch and Kubinyi technique of multiple regression analysis, we quantitatively analyzed the relationship between the structure and inhibiting activity of these substances toward acetylcholinesterase and butyryl cholinesterase. Hydrophobic interactions were found to be important for the inhibition of both enzymes but are more pronounced in the case of butyryl cholinesterase. On the other hand, steric factors were much more significant in the inhibition of acetylcholinesterase. For both enzymes, the steric hindrances affect the phosphorylation stage of the enzyme.  相似文献   

3.
Hydrolysis of p-nitrophenyl-beta-D-glucoside by cytosolic beta-glucosidase proceeds with retention of the anomeric configuration. Whereas inactivation of the enzyme by the glucosidase inhibitor conduritol B epoxide (CBE) was extremely slow (ki(max)/Ki 0.57 M-1 min-1) it reacted 130 times more rapidly with 6-bromo-6-deoxy-CBE (Br-CBE). The beta-glucosidase could be labeled with [3H]Br-CBE; incorporation of 1 mol inhibitor/mol enzyme resulted in complete loss of activity. Most of the bound inhibitor was released after denaturation and treatment with ammonia as (1,3,4/2,5,6)-6-bromocyclohexanepentol, thus demonstrating the formation of an ester bond with an active site carboxylate by trans-diaxial opening of the epoxide ring. It was concluded from the Ki values for the epoxide inhibitors and for coduritol B with the cytosolic enzyme and corresponding data for the lysosomal beta-glucosidase that the unusually low reactivity with CBE and Br-CBE is probably due to the inability of the cytosolic enzyme to effectively donate a proton to the epoxide oxygen. An extremely rapid inactivation of the cytosolic beta-glucosidase was caused by bromoconduritol F ((1,2,4/3)-1-bromo-2,3,4-trihydroxycyclohex-5-ene) with ki(max)/Ki 10(5) M-1 min-1. In contrast with the Br-CBE-inhibited enzyme the beta-glucosidase inhibited by bromoconduritol F was subject to spontaneous reactivation with t1/2 approximately 20 min.  相似文献   

4.
The kinetics of the binding of mebendazole (MBZ) to tubulin from the third-stage (L3) larvae of the parasitic nematode, Haemonchus contortus, have been characterized. In partially purified preparations, the association of [3H]MBZ to nematode tubulin was rapid, k1 = (2.6 +/- 0.3) x 10(5) M-1 min-1, but dissociation was slow, k-1 = (1.58 +/- 0.02) x 10(-3) min-1. The affinity constant (K(a)) for the interaction, determined by the ratio k1/k-1, was (1.6 +/- 0.2) x 10(8) M-1. Similar results were obtained with crude cytosolic fractions. In equilibrium studies, performed with partially purified nematode tubulin under similar conditions, a K(a) of (5.3 +/- 1.6) x 10(6) M-1 was obtained. The best estimate for the K(a) of the MBZ-nematode tubulin interaction is considered to be the 'kinetic' value determined from the ratio of rate constants. The slow dissociation of MBZ from nematode tubulin, which contrasts with the rapid dissociation of MBZ from mammalian tubulin, supports the hypothesis that the selective toxicity of the benzimidazole anthelmintics results from a difference between the affinities of mammalian and nematode tubulins for these drugs.  相似文献   

5.
Flounder (Platichthys flesus) muscle contains two types of cholinesterases, that differ in molecular form and in substrate specificity. Both enzymes were purified by affinity chromatography. About 8% of cholinesterase activity could be attributed to collagen-tailed asymmetric acetylcholinesterase sedimenting at 17S, 13S and 9S, which showed catalytic properties of a true acetylcholinesterase. 92% of cholinesterase activity corresponded to an amphiphilic dimeric enzyme sedimenting at 6S in the presence of Triton X-100. Treatment with phospholipase C yielded a hydrophilic form and uncovered an epitope called the cross-reacting determinant, which is found in the hydrophilic form of a number of glycosyl-phosphatidylinositol-anchored proteins. This enzyme showed catalytic properties intermediate to those of acetylcholinesterase and butyrylcholinesterase. It hydrolyzed acetylthiocholine, propionylthiocholine, butyrylthiocholine and benzoylthiocholine. The Km and the maximal velocity decreased with the length and hydrophobicity of the acyl chain. At high substrate concentrations the enzyme was inhibited. The p(IC50) values for BW284C51 and ethopropazine were between those found for acetylcholinesterase and butylcholinesterase. For purified detergent-soluble cholinesterase a specific activity of 8000 IU/mg protein, a turnover number of 2.8 x 10(7) h-1, and 1 active site/subunit were determined.  相似文献   

6.
The effect of the organophosphoric inhibitor, SA-152, on the fibrinogen-coagulating and TAME-esterase activity of bovine alpha-thrombin was studied. The irreversible inhibition constants (k11 = 1.1 x 10(4) M-1.min-1,Ki = 0.7 x 10(-4) M, k2 = 0.8 min-1 towards the coagulating activity and kII = 0.7 x 10(4) M-1.min-1, Ki = 0.3 x 10(-4) M, k2 = 0.2 min-1 towards the esterase activity) were determined. The SA-152 inactivated alpha-thrombin was dialyzed and incubated with 0.5 M and 2.5 M NaCl and 10 mM TAME. There was no reconstitution of activity of the SA-152 modified alpha-thrombin after dialysis and treatment with high concentrations of NaCl and TAME. Heparin interactions with the anion-binding site of the high molecular weight recognition center in the alpha-thrombin molecule did not significantly influence the values of the kinetic constants for the enzyme inhibition by SA-152. This finding is consistent with the hypothesis on the irreversible binding of SA-152 in the active center of the enzyme.  相似文献   

7.
The interaction of potential pesticides, O,O-dialkyl S-ethoxycarbonylbromomethylthiophosphates (RO)2P(O)SCH(Br)COOC2H5 (R = Et, i-Pr, n-Pr, n-Bu, n-Am, or n-Hx) with the esterases of warm-blooded animals [acetylcholinesterase (ACE), butyryl cholinesterase (BCE), and carboxyl esterase (CE)] was studied. The acute toxicities of these compounds for mice were determined. All the compounds were non-hydrolyzable by CE and capable of irreversible inhibition of all these esterases with ki (M-1 min-1) of 1.2 x 10(5)-6 x 10(6), 2.0 x 10(6)-1.5 x 10(8), and 2.0 x 10(8), respectively. By using multiple regression analysis, we found that the steric factor plays a significant role in the inhibition of ACE, with the steric hindrances manifesting themselves even at the sorption stage. On the other hand, hydrophobic interactions predominate in the case of BCE, while steric properties of its substituents exert a markedly weaker effect and manifest themselves at the phosphorylation stage. We suggested the presence of an electrophilic region in the active site of ACE, which can interact with the ethoxycarbonyl group of the thiophosphates under study. The decrease in toxicities and the affinities to BCE and CE were found to correlate with an increase in the length of n-alkyl substituents of the compounds studied. This suggests that the unspecific esterases play a significant role as a buffer system in the exhibition of toxic effects by the thiophosphates under consideration.  相似文献   

8.
Inorganic pyrophosphatase from bovine retinal rod outer segments.   总被引:1,自引:0,他引:1  
Rod outer segments from bovine retina contain a higher level of intracellular inorganic pyrophosphatase (EC 3.6.1.1) activity than has been found in any other mammalian tissue; the specific activity in extracts of soluble outer segment proteins is more than 6-fold higher than in extracts from bovine liver and more than 24-fold higher than in skeletal muscle extracts. This high activity may be necessary to keep inorganic pyrophosphate concentrations low in the face of the high rates of pyrophosphate production that accompany the cGMP flux driving phototransduction. We have begun to explore the role of inorganic pyrophosphatase in photoreceptor cGMP metabolism by 1) studying the kinetic properties of this enzyme and its interactions with divalent metal ions and anionic inhibitors, 2) purifying it and studying its size and subunit composition, and 3) examining the effects of pyrophosphate on rod outer segment guanylyl cyclase. Km for magnesium pyrophosphate was 0.9-1.5 microM, and the purified enzyme hydrolyzed > 885 mumol of PPi min-1 mg-1. The enzyme appears to be a homodimer of 36-kilodalton subunits when analyzed by gel electrophoresis and density gradient centrifugation, implying that kcat = 10(3) s-1, and kcat/Km = 0.7-1 x 10(9) M-1 s-1. The enzyme was inhibited by Ca2+ at submicromolar levels: 28% inhibition was observed at 138 nM [Ca2+], and 53% inhibition at 700 nM [Ca2+]. Imidodiphosphate acted as a competitive inhibitor, with Ki = 1.2 microM, and fluoride inhibited half-maximally approximately 20 microM. Inhibition studies on rod outer segment guanylyl cyclase confirmed previous reports that pyrophosphate inhibits guanylyl cyclase, suggesting an essential role for inorganic pyrophosphatase in maintaining cGMP metabolism.  相似文献   

9.
J E Reardon  R H Abeles 《Biochemistry》1986,25(19):5609-5616
Isopentenyl pyrophosphate isomerase catalyzes the interconversion of isopentenyl pyrophosphate and dimethylallyl pyrophosphate. The isomerase from yeast has been purified to near homogeneity (purity greater than 90%). The substrate analogue (Z)-3-(trifluoromethyl)-2-butenyl pyrophosphate reacts at less than 1.8 X 10(-6) times the rate of dimethylallyl pyrophosphate. The enzyme is irreversibly inactivated by 2-(dimethyl-amino)ethyl pyrophosphate (I). These observations are consistent with a carbonium ion mechanism for the isomerization. Compound I is an analogue of the intermediate carbonium ion and probably acts as a transition state analogue. For I, kon' = 2.1 X 10(6) M-1 min-1. No off-rate was detected and, therefore, Ki less than 1.4 X 10(-11) M. Upon denaturation of the inactivated enzyme, I is released unchanged. 2-(Trimethylammonio)ethyl pyrophosphate also inhibits with Ki' = 7 X 10(-7) M, kon' = 4.4 X 10(4) M-1 min-1, and koff = 0.03 min-1. Substrate analogues without a positively charged nitrogen were relatively poor inhibitors. The best inhibitor of these is ethyl pyrophosphate, Ki = 10(-4) M. The enzyme is inactivated by sulfhydryl-selective reagents. These reagents also prevent binding of I to the enzyme. The inactivation by iodoacetamide is dependent upon one ionizable group (pK = 9.3). The pH dependence of V and V/K for the isomerase-catalyzed reaction also depends upon a group with pK = 9.3.  相似文献   

10.
The interaction of dialkyl (alpha-carbometoxy-beta,beta,beta-trifluoroethyl) phosphates (RO)2P(O) . OCH(CF3)COOMe (R = Me, Et, Pr, Pri, Bu, Bui, Am, Hex) (I-VIII) with human erythrocyte acetylcholinesterase, horse serum butyrylcholinesterase, pig liver carboxylesterase was studied and acute toxicity in mice was estimated. Compounds (I)-(VIII) were not hydrolyzed by carboxylesterase, slowly and irreversibly inhibited acetylcholinesterase (kII = 10(2)-10(4) M-1 X min-1) and more efficiently inhibited butyrylcholinesterase and carboxylesterase (kII = 10(3)-10(7) M-1 X min-1). The structure--antienzymatic activity relationships were investigated. With increasing of hydrophobicity of alkoxy groups, antienzymatic activity to butyrylcholinesterase and carboxylesterase ("sites of loss") rises equally and more significantly, than antiacetylcholinesterase activity (delta lg kII 1.0 and 2.4 for R = CH3 and C5H11 resp.). Branching at the alpha-position of alkoxy groups leads to sharp reducing of acetylcholinesterase and butyrylcholinesterase inhibition constants, the carboxylesterase inhibition mechanism becoming reversible. Multiple regression analysis (the Kubinyi model) showed that influence of steric hindrances is revealed at the phosphorylation stage. It was found that phosphates (I)-(VIII) possess low acute toxicity in mice (900-2000 mg/kg). The toxicity of this homologous series appears to be independent of the hydrophobicity. Role of esterases in toxicological effect of compounds (I)-(VIII) is discussed.  相似文献   

11.
Mercurochrome strongly inhibits aspartate transaminase and 2,3-dicarboxyethylated aspartate transaminase. The native enzyme exhibits a biphasic time-course of inactivation by mercurochrome with second-order rate constants 1.62 x 10(4) M-1 - min-1 and 2.15 x 10(3) M-1 - min-1, whereas the modified enzyme is inactivated more slowly (second-order rate constant 6.1 x 10(2) M-1 - min-1) under the same conditions. The inhibitor inactivates native and modified enzyme in the absence as well as in the presence of substrates. Mercurochrome-transaminase interaction is accompanied by a red shift in the absorption maximum of the fluorochrome of about 10 nm. Difference spectra of the mercurochrome-enzyme system versus mercurochrome, compared with analogous spectra of mercurochrome-ethanol, revealed that the spectral shifts recorded during mercurochrome-transaminase interaction are similar to those that occur when mercurochrome is dissolved in non-polar solvents. Studies of mercurochrome complexes with native or modified transaminase, isolated by chromatography on Sephadex G-25, revealed that native transaminase is able to conjugate with four mercurochrome molecules per molecule, but the modified enzyme is able to conjugate with only two mercurochrome molecules per molecule.  相似文献   

12.
M A Nugent  E R Edelman 《Biochemistry》1992,31(37):8876-8883
Basic fibroblast growth factor (bFGF) binds to cell surface receptor (CSR) proteins and to heparan sulfate proteoglycans (HSPG). On the basis of equilibrium dissociation constants (Kd), the CSR has been considered a "high-affinity" binding site and HSPG a "low-affinity" site. We measured the apparent individual on and off rate constants (kon and koff) for bFGF binding to these two sites on intact cells and to each class of binding site in the absence of the other. While the kon's for CSR and HSPG on intact cells were not statistically different (konC = 2.27 x 10(8) M-1 min-1; konH = 0.90 x 10(8) M-1 min-1), the koff for the HSPG was 22.7-fold greater than that for the CSR (koffC = 0.003 min-1; koffH = 0.68 min-1). Thus, the difference in Kd's appears to result from the faster rate at which bFGF is released from the HSPG sites compared to the CSR. The kon's for isolated CSR and HSPG, and the koff for isolated HSPG, did not differ significantly from those for intact cells konC = 2.50 x 10(8) M-1 min-1; konH = 0.92 x 10(8) M-1 min-1; koffH = 0.095 min-1). However, the off rate for isolated CSR (koffC = 0.048 min-1) was statistically indistinguishable from the off rate for HSPG and 16-fold greater than the off rate for CSR on intact cells. The "high-affinity" binding of bFGF to intact cells probably refers only to a complex of bFGF with both CSR and HSPG, and not to the CSR alone.  相似文献   

13.
The sex hormone-binding globulin (SHBG) receptor was solubilized from the membranes of human prostate glands with the zwitterionic detergent CHAPS (3-[(3-cholamidopropyl)dimethylammonio]-1-propane-sulfonic acid). The binding activity of the soluble receptor was measured by allowing it to bind to 125I-SHBG and precipitating the complex with polyethylene glycol-8000. The binding activity was stable for at least 4 months at -20 degrees C and had a half-life of 23 days at 4 degrees C. Like the membrane-bound receptor, Scatchard analysis revealed two sets of binding sites for the soluble one. At equilibrium (24 h), the high affinity site had an association constant (KA) of 6.8 x 10(8) M-1 and a binding capacity of 1.4 pmol/mg protein, whereas the low affinity site had a KA of 4.7 x 10(6) M-1 and a binding capacity of 43 pmol/mg protein. At 37 degrees C, the association rate constant (k1) was 8.37 x 10(5) M-1 min-1 and the dissociation rate constant (k2) was 3.43 x 10(-4) min-1. The soluble receptor was retarded on Sepharose CL-6B and had an apparent Mr = 167,000.  相似文献   

14.
Purified human serum butyrylcholinesterase (approximately 90-kDa subunit) is known to exhibit aryl acylamidase and peptidase activity. Limited alpha-chymotrypsin digestion of the purified butyrylcholinesterase gave three major protein fragments of approximately 50 kDa, approximately 21 kDa and approximately 20 kDa. In our earlier studies [Rao and Balasubramanian (1989) Eur. J. Biochem. 179, 639-644] we characterized the approximately 20-kDa fragment and showed that it exhibited both butyrylcholinesterase and aryl acylamidase activities. In the present studies the approximately 50-kDa fragment is characterized. This fragment, after isolation by Sephadex G-75 chromatography from a chymotryptic digest of purified butyrylcholinesterase, exhibited only peptidase activity and was devoid of cholinesterase and aryl acylamidase activities. It could bind to a column of Ricinus communis agglutinin bound to Sepharose, indicating its glycosylated nature and the presence of galactose. The peptidase activity in the approximately 50-kDa fragment could be immuno-precipitated by a polyclonal antibody raised against purified butyrylcholinesterase. SDS-gel electrophoresis of this fragment isolated by R. communis agglutinin-Sepharose and Sephadex G-75 chromatography showed a protein band of approximately 50 kDa by silver staining. Amino-terminal sequence analysis of the approximately 50-kDa fragment gave the sequence of Gly-Pro-Thr-Val-Asp which corresponded to amino acid residues 291-295 in the butyrylcholinesterase sequence [Lockridge et al. (1987) J. Biol. Chem. 262, 549-557]. The combined results suggested that alpha-chymotrypsin digestion of human serum butyrylcholinesterase resulted in the formation of a approximately 20-kDa fragment exhibiting both cholinesterase and aryl acylamidase activities and a approximately 50-kDa fragment exhibiting only peptidase activity.  相似文献   

15.
The kinetics of inhibition of four hemostatic system enzymes by antithrombin were examined as a function of heparin concentration. Plots of the initial velocity of factor Xa-antithrombin or plasmin-antithrombin interaction versus the level of added mucopolysaccharide exhibit an ascending limb and subsequent plateau regions. In each case, the kinetic profile is closely correlated with the concentration of the heparin . antithrombin complex formed within the reaction mixture. A decrease in the velocity of inhibition is not observed at high levels of added mucopolysaccharide despite the generation of significant quantities of heparin-enzyme interaction products. The second-order rate constants for the neutralization of factor Xa or plasmin by the mucopolysaccharide . inhibitor complex are 2.4 x 10(8) M-1 min-1 and 4.0 x 10(6) M-1 min-1, respectively. These parameters must be contrasted with the similarly designated constants obtained in the absence of heparin which are 1.88 x 10(5) M-1 min-1 and 4.0 x 10(4) M-1 min-1, respectively. Plots of the initial velocity of the factor IXa-antithrombin or the thrombin-antithrombin interaction versus the level of added mucopolysaccharide exhibit an ascending limb, pseudoplateau, descending limb, and final plateau regions. In each case, the ascending limb and pseudoplateau are closely correlated with the concentration of heparin c antithrombin complex formed within the reaction mixture. Furthermore, the descending limb and final plateau of these two processes coincide with the generation of increasing amounts of the respective mucopolysaccharide-enzyme interaction products. The second-order rate constants for the neutralization of factor IXa or thrombin by the heparin . antithrombin complex are 3.0 x 10(8) M-1 min-1 and 1.7 x 10(9) M-1 min-1, respectively. The second-order rate constants for the inhibition of mucopolysaccharide-factor IXa or mucopolysaccharide-thrombin interaction products by the heparin . antithrombin complex are 2.0 x 10(7) M-1 min-1 and 3.0 x 10(8) M-1 min-1, respectively. These kinetic parameters must be contrasted with similarly designated constants obtained in the absence of mucopolysaccharide which are 2.94 x 10(4) M-1 min-1 and 4.25 x 10(5) M-1 min-1, respectively. Thus, our data demonstrate that binding of heparin to antithrombin is required for the mucopolysaccharide-dependent enhancement in the rates of neutralization of thrombin, factor IXa, factor Xa, or plasmin by the protease inhibitor. Furthermore, a careful comparison of the various constants suggests that the direct interaction between heparin and antithrombin may be largely responsible for the kinetic effect of this mucopolysaccharide.  相似文献   

16.
The reaction of choline acetyltransferase with methoxycarbonyl alkyl disulfides leads to a progressive loss in enzyme activity as the size of the alkyl group increases from methyl to n-butyl. Reaction with 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB) or methoxycarbonyl coenzyme A (CoA) disulfide, leads to a total loss of enzyme activity. DTNB inactivation is biphasic (k1 = approximately 9 x 10(2) M-1 s-1, k2 = approximately 6 x 10(1) M-1 s-1) with the slow phase being diminished by acetyl-CoA. Methoxycarbonyl-CoA disulfide inactivation is also biphasic (k1 = approximately 2.1 x 10(3) M-1 s-1, k2 = approximately 6 x 10(1) M-1 s-1), with the rapid phase being diminished in the presence of acetyl-CoA. Inactivation by methoxycarbonyl methyl disulfide, ethyl disulfide, or hydroxyethyl disulfide, or by methyl methanethiosulfonate is not biphasic. Pretreatment of the enzyme with methyl methanethiosulfonate, which leads to a 25% loss in enzyme activity, abolishes the fast phase of DTNB inactivation, the slow phase of methoxycarbonyl-CoA disulfide inactivation, and any further inactivation by methoxycarbonyl ethyl disulfide. These results are interpreted to suggest that choline acetyltransferase contains two classes of reactive sulfhydryl groups, neither of which are required for enzyme activity.  相似文献   

17.
A pyrimidine-guanine sequence-specific ribonuclease (RC-RNase) was purified from Rana catesbeiana (bullfrog) oocytes by sequential phosphocellulose, Sephadex G75, heparin Sepharose CL 6B and CM-Sepharose CL 6B column chromatography. The purified enzyme with molecular weight of 13,000 daltons gave a single band on SDS-polyacrylamide gel. One CNBr-cleaved fragment has a sequence of NVLSTTRFQLNT/TRTSITPR, which is identical to residues 59-79 of a sialic acid binding lectin from R. catesbeiana eggs, and is 71% homologous to residues 60-80 of an RNase from R. catesbeaina liver. The RC-RNase preferentially cleaved RNA at pyrimidine residues with a 3' flanking guanine under various conditions. The sequence specificity of RC-RNase was further confirmed with dinucleotide as substrates, which were analyzed by thin layer chromatography after enzyme digestion. The values of kcat/km for pCpG, pUpG and pUpU were 2.66 x 10(7) M-1s-1, 2.50 x 10(7) M-1s-1 and 2.44 x 10(6) M-1s-1 respectively, however, those for other phosphorylated dinucleotides were less than 2% of pCpG and pUpG. As compared to single strand RNA, double strand RNA was relatively resistant to RC-RNase. Besides poly (A) and poly (G), most of synthetic homo- and heteropolynucleotides were also susceptible to RC-RNase. The RC-RNase was stable in the acidic (pH 2) and alkaline (pH 12) condition, but could be inactivated by heating to 80 degrees C for 15 min. No divalent cation was required for its activity. Furthermore, the enzyme activity could be enhanced by 2 M urea, and inhibited to 50% by 0.12 M NaCl or 0.02% SDS.  相似文献   

18.
A Chatonnet  P Masson 《Biochimie》1986,68(5):657-667
The peptidase site of human plasma cholinesterase (butyrylcholinesterase) is distinct from its esteratic site. We found that the number of peptidase sites on an enzyme highly purified from pooled plasma is less than 0.1, as compared with 4 esteratic sites, per tetramer. However, the subunits which carry the peptidase sites are electrophoretically indistinguishable from esteratic subunits. The atypical-silent enzyme (Ea1Es1) had a much higher absolute peptidase activity when substance P was used as the substrate, and we found that the number of peptidase and esteratic sites of this enzyme was roughly the same. This suggests that the mutated esteratic site of the silent possesses a peptidase activity. The esteratic site of the usual allozyme (Eu1Eu1) has no peptidase activity towards substance P. However, a small proportion of peptidase subunits are present in all preparations of enzymes purified from the plasmas of homozygote individuals. The peptidase activity of butyrylcholinesterase might therefore correspond to a specific isoenzyme produced by an epigenetic mechanism or produced by a gene distinct from genes E1 and E2 encoding for cholinesterase subunits. However, the possibility that highly purified cholinesterase contains traces of a dipeptidylaminopeptidase cannot be completely ruled out.  相似文献   

19.
A putative growth hormone receptor from detergent-solubilized rabbit liver membranes and the growth hormone binding protein from rabbit serum have been purified 59,000- and 400,000-fold, respectively, primarily by affinity chromatography. Both purified proteins exhibit high affinity binding for human growth hormone; K alpha = 9-30 x 10(9) M-1 for the liver receptor and K alpha = 6 x 10(9) M-1 for the binding protein. The apparent molecular weight of the liver receptor is 130,000 by reduced sodium dodecyl sulfate gel electrophoresis, while that of the binding protein is 51,000. Both contain N-linked carbohydrate. The amino-terminal sequences of the liver growth hormone receptor and the serum binding protein were found to be the same, indicating that the binding protein corresponds to the extracellular domain of the liver receptor. Ubiquitin was found covalently linked to the liver receptor but not to the serum binding protein. The amino acid sequences of several peptides from the liver receptor were also determined after tryptic and V8 protease digestion.  相似文献   

20.
The inactivation of human coagulation factor Xa by the plasma proteinase inhibitors alpha 1-antitrypsin, antithrombin III and alpha 2-macroglobulin in purified systems was found to be accelerated by the divalent cations Ca2+, Mn2+ and Mg2+. The rate constant for the inhibition of factor Xa by antithrombin III rose from 2.62 X 10(4) M-1 X min-1 in the absence of divalent cations to a maximum of 6.40 X 10(4) M-1 X min-1 at 5 mM Ca2+, 8.10 X 10(4) M-1 X min-1 at 5 mM Mn2+, with a slight decrease in rate at higher cation concentrations. Mg2+ caused a gradual rise in rate constant to 5.65 X 10(4) M-1 X min-1 at 20 mM. The rate constant for the inhibition of factor Xa by alpha 1-antitrypsin in the absence of divalent cations was 5.80 X 10(3) M-1 X min-1. Ca2+ increased the rate to 1.50 X 10(4) M-1 X min-1 at 5 mM and Mn2+ to 2.40 X 10(4) M-1 X min-1 at 6 mM. The rate constant for these cations again decreased at higher concentrations. Mg2+ caused a gradual rise in rate constant to 1.08 X 10(4) M-1 X min-1 at 10 mM. The rate constant for the factor Xa-alpha 2-macroglobulin reaction was raised from 6.70 X 10(3) M-1 X min-1 in the absence of divalent cations to a maximum of 4.15 X 10(4) M-1 X min-1 at 4 mM Ca2+, with a decrease to 3.05 X 10(4) M-1 at 10 mM. These increases in reaction rate were correlated to the binding of divalent cations to factor Xa by studying changes in the intrinsic fluorescence and dimerization of factor Xa. The changes in fluorescence suggested a conformational change in factor Xa which may be responsible for the increased rate of reaction, whilst the decrease in rate constant at higher concentrations of Ca2+ and Mn2+ may be due to factor Xa dimerization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号