首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 14 毫秒
1.
Specific efflux transporters, such as P-glycoprotein, have been shown to confer drug resistance by decreasing the intracellular accumulation of anticancer drugs. Understanding influx transporters, as well as efflux transporters, is essential to overcome this resistance. We report the expression profile and pharmacological characterization of an organic cation transporter, SLC22A16. The results of our experiments indicate that SLC22A16 is a mediator of doxorubicin uptake in cancer cells. Quantitative real-time RT-PCR analyses show that SLC22A16 is expressed in primary samples taken from patients with acute leukemia. Xenopus oocytes injected with SLC22A16 cRNA import doxorubicin, a widely used anticancer drug for hematological malignancies, in a saturable and dose-dependent manner. The apparent Km value for doxorubicin import was 5.2+/-0.4 microM. In cytotoxic assays, stable transfectants of leukemic Jurkat cells overexpressing SLC22A16 cells became significantly more sensitive to doxorubicin (2 microM) treatment. Characterization of SLC22A16 will help in designing novel therapies targeting hematological malignancies.  相似文献   

2.
The organic cation transporter (OCT, SLC22) family is a family of polyspecific transmembrane proteins that are responsible for the uptake or excretion of many cationic drugs, toxins, and endogenous metabolites in a variety of tissues. Many of the OCTs have been previously characterized, but there are a number of orphan genes whose functions remain unknown. In this study, two novel rat SLC22 genes, SLC22A17 (BOCT1) and SLC22A23 (BOCT2), were cloned and characterized. Northern blot analysis showed that BOCT1 and BOCT2 mRNA was expressed in a wide variety of tissues. BOCT1 was strongly expressed in brain, primary neurons and brain endothelial cells, with highest expression in choroid plexus. BOCT2 was also abundantly expressed in brain, as well as in liver. To characterize the products of these genes, BOCT1 cDNA was isolated from a rat blood-brain barrier cDNA library, and BOCT2 cDNA was isolated from rat brain capillary and from cultured neurons using PCR techniques. Plasmids expressing BOCT1 and BOCT2 were transfected into HEK-293 cells, as were control cDNAs for OCT1 and OCTN2. Recombinant cell surface protein was verified by western blot and fluorescence microscopy. Transport activity of BOCT1 and BOCT2 was evaluated using radioisotope uptake assays. The OCT1- and OCTN2-expressing cells transported the canonical substrates, 1-methyl-4-phenyl-pyridinium (MPP(+)) and carnitine, respectively. However, BOCT1 and BOCT2-expressing cells did not show transport activity for these substrates or a number of other SLC22 substrates. These novel family members have a nonconserved amino terminus, relative to other OCTs, that may preclude typical SLC22 transport function.  相似文献   

3.
4.

Introduction

There is inconsistent association between urate transporters SLC22A11 (organic anion transporter 4 (OAT4)) and SLC22A12 (urate transporter 1 (URAT1)) and risk of gout. New Zealand (NZ) Māori and Pacific Island people have higher serum urate and more severe gout than European people. The aim of this study was to test genetic variation across the SLC22A11/SLC22A12 locus for association with risk of gout in NZ sample sets.

Methods

A total of 12 single nucleotide polymorphism (SNP) variants in four haplotype blocks were genotyped using TaqMan® and Sequenom MassArray in 1003 gout cases and 1156 controls. All cases had gout according to the 1977 American Rheumatism Association criteria. Association analysis of single markers and haplotypes was performed using PLINK and Stata.

Results

A haplotype block 1 SNP (rs17299124) (upstream of SLC22A11) was associated with gout in less admixed Polynesian sample sets, but not European Caucasian (odds ratio; OR = 3.38, P = 6.1 × 10-4; OR = 0.91, P = 0.40, respectively) sample sets. A protective block 1 haplotype caused the rs17299124 association (OR = 0.28, P = 6.0 × 10-4). Within haplotype block 2 (SLC22A11) we could not replicate previous reports of association of rs2078267 with gout in European Caucasian (OR = 0.98, P = 0.82) sample sets, however this SNP was associated with gout in Polynesian (OR = 1.51, P = 0.022) sample sets. Within haplotype block 3 (including SLC22A12) analysis of haplotypes revealed a haplotype with trans-ancestral protective effects (OR = 0.80, P = 0.004), and a second haplotype conferring protection in less admixed Polynesian sample sets (OR = 0.63, P = 0.028) but risk in European Caucasian samples (OR = 1.33, P = 0.039).

Conclusions

Our analysis provides evidence for multiple ancestral-specific effects across the SLC22A11/SLC22A12 locus that presumably influence the activity of OAT4 and URAT1 and risk of gout. Further fine mapping of the association signal is needed using trans-ancestral re-sequence data.  相似文献   

5.
Polymorphisms in the CARD15/NOD2 gene, which encodes a cytosolic protein involved in bacterial recognition, are associated with development of Crohn's disease (CD). Other potential susceptibility genes such as CD14 may compound the risk of developing CD. We examined the frequency of the three major CARD15 risk alleles (3020insC/L1007fsinsC, G908R and R702W), and a functional polymorphism (-159C/T) in the promoter of the CD14 gene in 185 CD patients in New Zealand and 187 ethnically matched controls. The frequencies of the 3020insC (8.1 vs 0.8%, P < 0.0001), G908R (3.5 vs 2.4%, P = 0.37) and R702W (7.3 vs 5.1%, P = 0.21) alleles in CD patients and controls, respectively, were similar to those described in Australia, and the ancestral countries of Scotland, Ireland and the UK. Only the 3020insC polymorphism was found to be a significant risk factor for CD in our New Zealand cohort (odds ratio = 10.91 [95% confidence intervals 3.30-36.08]; P < 0.0001 for heterozygotes), but not a single patient was homozygous for the 3020insC polymorphism. The T allele (51 vs 50%, P = 0.77) and TT genotype (26 vs 24%, P = 0.84) frequencies of the -159C/T CD14 gene promoter polymorphism did not significantly differ between CD patients and controls. In summary, our findings provide evidence that the CARD15 3020insC risk allele influences disease susceptibility in a small proportion (<17%) of New Zealand CD patients, whereas there was no evidence that the CD14 -159C/T polymorphism is associated with CD.  相似文献   

6.
Organic cation transporter OCT1 (SLC22A1) plays an essential role in absorption, distribution, and excretion of various xenobiotics including therapeutically important drugs. In the present study, we analyzed the functional properties of the single nucleotide polymorphisms (SNPs) in SLC22A1 gene found in Japanese control individuals. Four mutations resulting in the amino acid changes (F160L, P283L, R287G, and P341L) were functionally characterized in Xenopus oocyte expression system. Two new SNPs, identified in Japanese population, P283L and R287G exhibited no uptake of both [14C]TEA and [3H]MPP+, although their protein expressions were detected in the plasma membrane of the oocytes injected with their cRNAs. Uptake of [14C]TEA by P341L was reduced to 65.1% compared to wild type, whereas F160L showed no significant change in its transport activity. This study suggests that the newly found OCT1 variants will contribute to inter-individual variations leading to the differences in cationic drug disposition and perhaps certain disease processes.  相似文献   

7.
8.
Human organic cation transporter 1 is primarily expressed in hepatocytes and mediates the electrogenic transport of various endogenous and exogenous compounds, including clinically important drugs. Genetic polymorphisms in the gene coding for human organic cation transporter 1, SLC22A1, are increasingly being recognized as a possible mechanism explaining the variable response to clinical drugs, which are substrates for this transporter. The genotypic and allelic distributions of 19 nonsynonymous and one intronic SLC22A1 single nucleotide polymorphisms were determined in 148 healthy Xhosa participants from South Africa, using a SNAPshot® multiplex assay. In addition, haplotype structure for SLC22A1 was inferred from the genotypic data. The minor allele frequencies for S14F (rs34447885), P341L (rs2282143), V519F (rs78899680), and the intronic variant rs622342 were 1.7%, 8.4%, 3.0%, and 21.6%, respectively. None of the participants carried the variant allele for R61C (rs12208357), C88R (rs55918055), S189L (rs34104736), G220V (rs36103319), P283L (rs4646277), R287G (rs4646278), G401S (rs34130495), M440I (rs35956182), or G465R (rs34059508). In addition, no variant alleles were observed for A306T (COSM164365), A413V (rs144322387), M420V (rs142448543), I421F (rs139512541), C436F (rs139512541), V501E (rs143175763), or I542V (rs137928512) in the population. Eight haplotypes were inferred from the genotypic data. This study reports important genetic data that could be useful for future pharmacogenetic studies of drug transporters in the indigenous Sub-Saharan African populations.  相似文献   

9.
Organic cation transporters function primarily in the elimination of cationic drugs in kidney, intestine, and liver. The murine organic cation/carnitine (Octn) transporter family, Octn1, Octn2, and Octn3 is clustered on mouse chromosome 11 (NCBI Accession No. NW_000039). The human OCTN1 and OCTN2 orthologs map to the syntenic IBD5 locus at 5q31, which has been shown to confer susceptibility to Crohn's disease. We show that the human OCTN3 protein, whose corresponding gene is not yet cloned or annotated in the human reference DNA sequence, does indeed exist and is uniquely involved in carnitine-dependent transport in peroxisomes. Its functional properties and inferred chromosomal location implicate it for involvement in Crohn's disease.  相似文献   

10.
11.
12.
13.
Plasma membrane monoamine transporter (PMAT or ENT4) is a newly cloned transporter assigned to the equilibrative nucleoside transporter (ENT) family (SLC29). Unlike ENT1-3, PMAT mainly functions as a polyspecific organic cation transporter. In this study, we investigated the molecular mechanisms underlying the unique substrate selectivity of PMAT. By constructing chimeras between human PMAT and ENT1, we showed that a chimera consisting of transmembrane domains (TM) 1-6 of PMAT and TM7-11 of hENT1 behaved like PMAT, transporting 1-methyl-4-phenylpyridinium (MPP+, an organic cation) but not uridine (a nucleoside), suggesting that TM1-6 contains critical domains responsible for substrate recognition. To identify residues important for the cation selectivity of PMAT, 10 negatively charged residues were chosen and substituted with alanine. Five of the alanine mutants retained PMAT activity, and four were non-functional due to impaired targeting to the plasma membrane. However, alanine substitution at Glu(206) in TM5 abolished PMAT activity without affecting cell surface expression. Eliminating the charge at Glu(206) (E206Q) resulted in loss of organic cation transport activity, whereas conserving the negative charge (E206D) restored transporter function. Interestingly, mutant E206Q, which possesses the equivalent residue in ENT1, gained uridine transport activity. Thr(220), another residue in TM5, also showed an effect on PMAT activity. Helical wheel analysis of TM5 revealed a distinct amphipathic pattern with Glu(206) and Thr(220) clustered in the center of the hydrophilic face. In summary, our results suggest that Glu(206) functions as a critical charge sensor for cationic substrates and TM5 forms part of the substrate permeation pathway in PMAT.  相似文献   

14.
Wilson's disease (WND) is an inherited disorder of copper metabolism. Divalent metal transporter1 (DMT1) and ATP7A play important roles in metal transport in humans. The frequency of two single nucleotide polymorphisms of the DMT1 gene: DMT1 IVS4 C>A, DMT1 11245 T>C and two of the ATP7A gene: rs1062472 T>C, ATP7A rs 2227291 G>C have been evaluated in a population of 108 Wilson's disease patients and 108 sex- and age-matched healthy volunteers. The DMT1 IVS4 C(+) allele occurred more frequently in WND than in the healthy controls. The allele frequencies of other studied polymorphisms in WND group were in line with frequencies obtained for healthy volunteers. Neither of the polymorphisms had an impact on the age at onset or clinical phenotype of WND.  相似文献   

15.
Organic cation transporters of the OCT family mediate downhill transport of organic cations, compatible with carrier, pore, or gate-lumen-gate mechanisms. We studied rat OCT2 expressed in Xenopus oocytes by the two-electrode voltage-clamp technique, including membrane capacitance (C(m)) monitoring. Choline, a transported cationic substrate, elicited the expected inward currents but also elicited decreases of C(m). Similar C(m) decreases were caused by the non-transported inhibitors tetrabutylammonium (a cation) and corticosterone (uncharged). Effects on C(m) were voltage-dependent, with a maximum at -140 mV. These findings suggest that the empty rOCT2 protein can undergo an electrogenic conformation change, with one conformation highly favored at physiological voltage. Moreover, alkali cations elicited considerable inward currents and inhibited uptake of [(14)C]tetraethylammonium with a sequence Cs(+) > Rb(+) > K(+) > Na(+) approximately Li(+). Cs(+) affected current and capacitance with similar affinity (K(0.5) approximately 50 mm). Tetraethylammonium inhibited Cs(+) currents in a concentration-dependent manner. Conversely, Cs(+) inhibited tetraethylammonium uptake by a competitive mechanism. Activation energy of the currents estimated from measurements between 12 degrees C and 32 degrees C was approximately 81 kJ/mol for Cs(+) and 39 kJ/mol for tetramethylammonium, compatible with permeation of Cs(+) through rOCT2 along the same path as organic substrates and by a mechanism different from simple electrodiffusion. Rationalization of Cs(+) selectivity in terms of a pore pointed to a pore diameter of approximately 4 A. Intriguingly, that value matches the known selectivity of rOCT2 for organic compounds. Our data show that selective permeability of rOCT2 is not determined by ligand affinity but might rather be understood in terms of the ion channel concept of a distinct "selectivity filter."  相似文献   

16.
Novel organic cation transporter (OCTN2) is an organic cation/carnitine transporter, and two missense mutations, L352R and P478L, in OCTN2 have been identified as the cause for primary carnitine deficiency. In the present study, we assessed the influence of these two mutations on the carnitine transport function and the organic cation transport function of OCTN2. The L352R mutation resulted in a complete loss of both transport functions. In contrast, the P478L mutation resulted in a complete loss of only the carnitine transport function but significantly stimulated the organic cation transport function. Studies with human OCTN2/rat OCTN2 chimeric transporters indicated that the carnitine transport site and the organic cation transport site were not identical. Because carnitine transport is Na(+)-dependent whereas organic cation transport is Na(+)-independent, we investigated the possibility that the P478L mutation affected Na(+) binding. The Na(+) activation kinetics were found to be similar for the P478L mutant and wild type OCTN2. We then mutated nine different tyrosine residues located in or near transmembrane domains and assessed the transport function of these mutants. One of these mutations, Y211F, was found to have differential influence on the two transport activities of OCTN2 as did the P478L mutation. However, the Na(+) activation kinetics were not affected. These findings are of clinical relevance to patients with primary carnitine deficiency because whereas each and every mutation in these patients is expected to result in the loss of the carnitine transport function, all of these mutations may not interfere with the organic cation transport function.  相似文献   

17.
The hOCTN1 (human organic cation transporter 1) overexpressed in Escherichia coli and purified by Ni-chelating chromatography has been reconstituted in liposomes by detergent removal with a batch-wise procedure. The reconstitution was optimized with respect to the protein concentration, the detergent/phospholipid ratio and the time of incubation with Amberlite XAD-4 resin. Time-dependent [(14)C]tetraethylammonium, [(3)H]carnitine or [(3)H]ergothioneine uptake was measured in proteoliposomes with activities ratios of 8:1.3:1 respectively. Optimal activity was found at pH 8.0. The transport depended on intraliposomal ATP. [(14)C]tetraethylammonium transport was inhibited by several compounds. The most effective were acetyl-choline and γ-butyrobetaine, followed by acetylcarnitine and tetramethylammonium. Reagents such as pyridoxal 5-phosphate, MTSES [sodium (2-sulfonatoethyl) methanethiosulfonate] and mercurials strongly inhibited the transport. From kinetic analysis of tetraethylammonium transport a K(m) of 0.77 mM was calculated. Acetylcholine and γ-butyrobetaine behaved as competitive inhibitors of TEA (tetraethylammonium) transport with K(i) values of 0.44 and 0.63 mM respectively.  相似文献   

18.
Polymorphisms of toll-like receptor 2 and 4 genes in Chagas disease   总被引:1,自引:0,他引:1  
The aim of this study was to test the possible implication of toll-like receptor 2 (TLR2) and TLR4 gene polymorphisms in determining the susceptibility to Chagas' disease. Genotypes were determined by polymerase chain reaction-restriction fragment length polymorphism in 475 individuals from Colombia, 143 seropositive with chagasic cardiomyopathy, 132 seropositive asymptomatic and 200 seronegative. The TLR2 arginine to glutamine substitution at residue 753(Arg753Gln) polymorphism was absent in the groups analyzed. The TLR4 Asp299Gly and Thr399Ile polymorphisms are in linkage disequilibrium and we observed a very low frequency of these polymorphisms in our study population (2.6% and 1.8% respectively). The overall TLR2 and TLR4 alleles and genotype distribution in seronegative and seropositive were not significantly different. We compared the frequencies between asymptomatic patients and those with chagasic cardiomyopathy and we did not observe any significant differences in the distribution of alleles or genotypes. In summary, this study corroborates the low frequency of TLR2 and TLR4 polymorphisms observed in other populations and suggest that these do not play an important role in Chagas' disease. The validation of these findings in independent cohorts is needed to firmly establish a role for TLR2 and TLR4 variants in Chagas' disease.  相似文献   

19.
Boron is an important micronutrient in plants and animals. The role of boron in living systems includes coordinated regulation of gene expression, growth and proliferation of higher plants and animals. There are several well-defined genes associated with boron transportation and tolerance in plants and these genes show close homology with human anion exchanger genes. Mutation of these genes also characterizes some genetic disorders. We investigated the toxic effects of boric acid on HEK293 cells and mRNA expression of anion exchanger (SLC4A1, SLC4A2 and SLC4A3) genes. Cytotoxicity of boric acid at different concentrations was tested by using the methylthiazolyldiphenyl-tetrazolium bromide assay. Gene expression profiles were examined using quantitative real-time PCR. In the HEK293 cells, the nontoxic upper concentration of boric acid was 250 μM; more than 500 μM caused cytotoxicity. The 250 μM boric acid concentration increased gene expression level of SLC4A2 up to 8.6-fold and SLC4A3 up to 2.6-fold, after 36-h incubation. There was no significant effect of boric acid on SLC4A1 mRNA expression levels.  相似文献   

20.
Campylobacter jejuni and Mycobacterium paratuberculosis have been implicated in the pathogenesis of Crohn's disease. The presence of bacterial metabolites in the colonic lumen causing a specific breakdown of fatty acid oxidation in colonic epithelial cells has been suggested as an initiating event in inflammatory bowel disease (IBD). l-Carnitine is a small highly polar zwitterion that plays an essential role in fatty acid oxidation and ATP generation in intestinal bioenergetic metabolism. The organic cation/carnitine transporters, OCTN1 and OCTN2, function primarily in the transport of l-carnitine and elimination of cationic drugs in the intestine. High-resolution linkage disequilibrium mapping has identified a region of about 250kb in size at 5q31 (IBD5) encompassing the OCTN1 and -2 genes, to confer susceptibility to Crohn's disease. Recently, two variants in the OCTN1 and OCTN2 genes have been shown to form a haplotype which is associated with susceptibility to Crohn's. We show that OCTN1 and OCTN2 are strongly expressed in target areas for IBD such as ileum and colon. Further, we have now identified a nine amino acid epitope shared by this functional variant of OCTN1 (Leu503Phe) (which decreases the efficiency of carnitine transport), and by C. jejuni (9 aa) and M. paratuberculosis (6 aa). The prevalence of this variant of OCTN1 (Phe503:Leu503) is 3-fold lower in unaffected individuals of Jewish origin (1:3.44) compared to unaffected individuals of non-Jewish origin (1:1). We hypothesize that a specific antibody raised to this epitope during C. jejuni or M. paratuberculosis enterocolitis would cross-react with the intestinal epithelial cell functional variant of OCTN1, an already less efficient carnitine transporter, leading to an impairment of mitochondrial beta-oxidation which may then serve as an initiating event in IBD. This impairment of l-carnitine transport by OCTN1 may respond to high-dose l-carnitine therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号