首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Epstein-Barr virus (EBV) oncoprotein latent membrane protein 1 (LMP1) is thought to act as the major transforming protein in various cell types, by rerouting the tumor necrosis factor receptor family signaling pathway. Despite this implication in EBV-associated transformation of cells, LMP1 toxicity is a well-known but poorly studied feature, perhaps because it contradicts its role in transformation. We show that LMP1 physiological levels are very heterogeneous and that the highest levels of LMP1 correlate with Fas overexpression and spontaneous apoptosis in lymphoblastoid cell lines (LCLs). To understand the cytotoxic effect of LMP1 in LCLs, we cloned wild-type LMP1 into a doxycycline double-inducible episomal vector pRT-1, with a truncated version of NGFR as a surrogate marker of inducibility. We found that LMP1 overexpression induced apoptosis in LCL B cells, as shown by annexin V labeling, sub-G(1) peak, and poly(ADP ribose) polymerase cleavage. Knocking down Fas expression by small interfering RNA abolished LMP1-induced apoptosis. The absence of detectable levels of Fas ligand mRNA suggested a ligand-independent activation of Fas. LMP1 induced Fas overexpression with its relocalization in lipid raft microdomains of the membrane. Fas immunoprecipitation detected FADD (Fas-associated death domain protein) and caspase 8, suggesting a Fas-dependent formation of the death-inducing signaling complex. Caspases 8, 9, 3, and 7 were activated by LMP1. Caspase 8 activation was associated with BID cleavage and truncated-BID mitochondrial relocalization, consistent with type II apoptosis. Therefore, our results are in agreement with a model where LMP1-dependent NF-kappaB activation induces Fas overexpression and autoactivation that could overwhelm the antiapoptotic effect of NF-kappaB, revealing an ambivalent function of LMP1 in cell survival and programmed cell death.  相似文献   

2.
To define the structure of the caprine arthritis-encephalitis virus (CAEV) env gene and characterize genetic changes which occur during antigenic variation, we sequenced the env genes of CAEV-63 and CAEV-Co, two antigenic variants of CAEV defined by serum neutralization. The deduced primary translation product of the CAEV env gene consists of a 60- to 80-amino-acid signal peptide followed by an amino-terminal surface protein (SU) and a carboxy-terminal transmembrane protein (TM) separated by an Arg-Lys-Lys-Arg cleavage site. The signal peptide cleavage site was verified by amino-terminal amino acid sequencing of native CAEV-63 SU. In addition, immunoprecipitation of [35S]methionine-labeled CAEV-63 proteins by sera from goats immunized with recombinant vaccinia virus expressing the CAEV-63 env gene confirmed that antibodies induced by env-encoded recombinant proteins react specifically with native virion SU and TM. The env genes of CAEV-63 and CAEV-Co encode 28 conserved cysteines and 25 conserved potential N-linked glycosylation sites. Nucleotide sequence variability results in 62 amino acid changes and one deletion within the SU and 34 amino acid changes within the TM.  相似文献   

3.
Recombinant Epstein-Barr viruses (EBVs) were made with mutated latent membrane protein 1 (LMP1) genes that express only the LMP1 amino-terminal cytoplasmic and six transmembrane domains (MS187) or these domains and the first 44 amino acids of the 200-residue LMP1 carboxy-terminal domain (MS231). After infection of primary B lymphocytes with virus stocks having small numbers of recombinant virus and large numbers of P3HR-1 EBV which is transformation defective but wild type (WT) for LMP1, all lymphoblastoid cell lines (LCLs) that had MS187 or MS231 LMP1 also had WT LMP1 provided by the coinfecting P3HR-1 EBV. Lytic virus infection was induced in these coinfected LCLs, and primary B lymphocytes were infected. In over 200 second-generation LCLs, MS187 LMP1 was never present without WT LMP1. Screening of over 600 LCLs infected with virus from MS231 recombinant virus-infected LCLs identified two LCLs which were infected with an MS231 recombinant without WT LMP1. The MS231 recombinant virus could growth transform primary B lymphocytes when cells were grown on fibroblast feeders. Even after 6 months on fibroblast feeder layers, cells transformed by the MS231 recombinant virus died when transferred to medium without fibroblast feeder cells. These data indicate that the LMP1 carboxy terminus is essential for WT growth-transforming activity. The first 44 amino acids of the carboxy-terminal cytoplasmic domain probably include an essential effector of cell growth transformation, while a deletion of the rest of LMP1 can be complemented by growth on fibroblast feeder layers. LMP1 residues 232 to 386 therefore provide a growth factor-like effect for the transformation of B lymphocytes. This effect may be indicative of the broader role of LMP1 in cell growth transformation.  相似文献   

4.
The mouse mammary tumor virus (MuMTV) contains several low-molecular-weight proteins which, together with the genomic RNA, constitute the core structure of the virion. The most abundant protein in the core is the 27,000-dalton protein (p27), and, by analogy to the type C viruses, this protein probably forms the core shell. In mouse mammary tumor cell lines (GR and Mm5MT) producing MuMTV the major p57 antigenic specificity resides in a large protein, which migrates in polyacrylamide gels as a doublet of 77,000 and 75,000 daltons (p 77/75). A series of lower-molecular-weight proteins, p61, p48, p38, and p34, is also present in small amounts and is probably derived by proteolytic cleavage of the p 77/75. These proteins have been identified by immunoprecipitation with monospecific antiserum, and their sequence relatedness to p27 has been determined by an analysis of the peptides after trypsin digestion. After a 15-min pulse with [35S]-methionine, all of the p27-related proteins in these cell lines were labelled and, during a subsequent chase, progressively disappeared. The p27 was labeled poorly during the pulse, but the amount of label in this protein increased during the chase. A quantitation of these experiments suggested that the majority of the p27-related proteins were quite rapidly turned over in these cell lines. Hence, if p27 is derived by a progressive proteolytic cleavage mechanism, then the process is inefficient in the GR cells and only moderately efficient in the Mm5MT cells. When MuMTV was isolated from the culture medium of these cells harvested at 5-min intervals, the major p27-related protein was p34. The p27 accounted for only 29% of the anti-p27 serum immunoprecipitable proteins compared to 95% in virus isolated from an 18-h harvest. Incubation of the rapid-harvest virus at 37 degrees C for 2 h resulted in some conversion of p34 to p27. These results suggest that some of the p27 in MuMTV is formed in the virions by proteolytic cleavage of p34.  相似文献   

5.
Nasopharyngeal carcinomas (NPC) are etiologically related to the Epstein-Barr virus (EBV), and malignant NPC cells have consistent although heterogeneous expression of the EBV latent membrane protein 1 (LMP1). LMP1 trafficking and signaling require its incorporation into membrane rafts. Conversely, raft environment is likely to modulate LMP1 activity. In order to investigate NPC-specific raft partners of LMP1, rafts derived from the C15 NPC xenograft were submitted to preparative immunoprecipitation of LMP1 combined with mass spectrometry analysis of coimmunoprecipitated proteins. Through this procedure, galectin 9, a beta-galactoside binding lectin and Hodgkin tumor antigen, was identified as a novel LMP1 partner. LMP1 interaction with galectin 9 was confirmed by coimmunoprecipitation and Western blotting in whole-cell extracts of NPC and EBV-transformed B cells (lymphoblastoid cell lines [LCLs]). Using mutant proteins expressed in HeLa cells, LMP1 was shown to bind galectin 9 in a TRAF3-independent manner. Galectin 9 is abundant in NPC biopsies as well as in LCLs, whereas it is absent in Burkitt lymphoma cells. In subsequent experiments, NPC cells were treated with Simvastatin, a drug reported to dissociate LMP1 from membrane rafts in EBV-transformed B cells. We found no significant effects of Simvastatin on the distribution of LMP1 and galectin 9 in NPC cell rafts. However, Simvastatin was highly cytotoxic for NPC cells, regardless of the presence or absence of LMP1. This suggests that Simvastatin is a potentially useful agent for the treatment of NPCs although it has distinct mechanisms of action in NPC and LCL cells.  相似文献   

6.
We have analyzed the expression of the three major known growth transformation-associated Epstein-Barr virus (EBV) proteins, EBNA-1, EBNA-2, and latent membrane protein (LMP), in a series of somatic cell hybrids derived from the fusion of EBV-carrying Burkitt lymphoma (BL) lines with EBV-positive or EBV-negative B-cell lines. Independently of the cell phenotype, EBNA-1 was invariably coexpressed in all EBV-carrying hybrids. In hybrids between EBV-carrying, LMP-positive and LMP-negative Burkitt lymphoma lines, LMP was expressed, indicating positive control. Two EBV-negative lymphoma lines, Ramos and BJAB, differed in their ability to express LMP after B95-8 virus-induced conversion and after hybridization with Raji cells. BJAB was permissive while Ramos was nonpermissive for LMP, although both expressed EBNA-2. The EBNA-2-deleted P3HR-1 virus gave the same pattern of LMP expression in these two cells. Our findings indicate that the expression of EBNA-1, EBNA-2, and LMP is regulated by independent mechanisms.  相似文献   

7.
Disruption of the gatekeeper p53 tumor suppressor is involved in various virus-associated tumorigeneses, with aberrant ubiquitination as the major cause of p53 abnormalities in virus-associated tumors. Of note, wild-type p53 is accumulated in Epstein-Barr virus (EBV)-associated tumors, especially in nasopharyngeal carcinoma (NPC). We have previously identified that p53 is accumulated and phosphorylated by EBV oncoprotein latent membrane protein 1 (LMP1) in NPC. Here, we further found that LMP1 promoted p53 accumulation via two distinct ubiquitin modifications. LMP1 promoted p53 stability and accumulation by suppressing K48-linked ubiquitination of p53 mediated by E3 ligase MDM2, which is associated with its phosphorylation at Ser20, while increasing the levels of total cellular ubiquitinated p53. LMP1 also induced K63-linked ubiquitination of p53 by interacting with tumor necrosis factor receptor-associated factor 2 (TRAF2), thus contributing to p53 accumulation. Furthermore, LMP1 rescued tumor cell apoptosis and cell cycle arrest mediated by K63-linked ubiquitination of p53. Collectively, these results demonstrate aberrant ubiquitin modifications of p53 and its biological functions by viral protein LMP1, which has broad implications to the pathogenesis of multiple EBV-associated tumors.  相似文献   

8.
Direct immunosuppressive effects of EBV-encoded latent membrane protein 1   总被引:10,自引:0,他引:10  
In neoplastic cells of EBV-positive lymphoid malignancies latent membrane protein (LMP1) is expressed. Because no adequate cellular immune response can be detected against LMP1, we investigated whether LMP1 had a direct effect on T lymphocyte activation. In this study we show that nanogram amounts of purified recombinant LMP1 (rLMP1) strongly suppresses activation of T cells. By sequence alignment two sequences (LALLFWL and LLLLAL) in the first transmembrane domain of LMP1 were identified showing strong homology to the immunosuppressive domain (LDLLFL) of the retrovirus-encoded transmembrane protein p15E. The effects of rLMP1 and LMP1-derived peptides were tested in T cell proliferation and NK cytotoxicity assays and an Ag-induced IFN-gamma release enzyme-linked immunospot assay. LMP1 derived LALLFWL peptides showed strong inhibition of T cell proliferation and NK cytotoxicity, while acetylated LALLFWL peptides had an even stronger effect. In addition, Ag-specific IFN-gamma release was severely inhibited. To exert immunosuppressive effects in vivo, LMP1 has to be excreted from the cells. Indeed, LMP1 was detected in supernatant of EBV-positive B cell lines (LCL), and differential centrifugation in combination with Western blot analysis of the pellets indicated that LMP1 is probably secreted by LCL in the form of exosomes. The amount of secreted LMP1 in B cell cultures is well below the immunosuppressive level observed with rLMP1. Our results demonstrate direct immunosuppressive properties of LMP1 (fragments) and suggest that EBV-positive tumor cells may actively secrete LMP1 and thus mediate immunosuppressive effects on tumor-infiltrating lymphocytes. Moreover, we demonstrate, for the first time, that transmembrane protein-mediated immunosuppression is not solely restricted to RNA tumor viruses, but can also be found in DNA tumor viruses.  相似文献   

9.
10.
We isolated and sequenced a cDNA encoding mouse proteasome subunit LMP3 from a macrophage cDNA library. The gene encodes a 264-amino-acid protein with a calculated molecular mass of 29.11 kDa and an isoelectric point (pl) of 5.44. Comparison of the predicted protein sequence with that of the human and rat homologues, N3, revealed 11 and eight changes, respectively, in the cleaved NH2-terminal presequence of the precursor protein (pre-LMP3), and six and 10 changes, respectively, in the processed product. To corroborate the predicted molecular mass and pI, we analyzed LMP3 by immunoprecipitation with a mAb to human N3 that crossreacts with mouse LMP3. Precursor and processed forms of LMP3 were identified by 2D NEPHGE-PAGE, and their mobilities suggest the Lmp3 clone encodes the entire protein sequence.  相似文献   

11.
When Semliki Forest virus temperature-sensitive mutant ts-3 was grown at the restrictive temperature an aberrant nascent cleavage of the 130,000-dalton structural polyprotein took place relatively frequently. This cleavage yielded an abnormal 86,000-dalton fusion protein (p86) consisting of the amino-terminal capsid protein linked to the amino acid sequences of envelope protein p62 (a precursor of E3 and E2). The other cleavage product was the carboxy-terminal envelope protein E1. p86 was not glycosylated and was sensitive to the action of protease in the microsomal fraction, whereas E1 was glycosylated and protected from proteases, indicating that it had been segregated into the cysternal side of the microsomal vesicles. All attempts to show the E1 protein at the cell surface have failed so far, suggesting that it remains associated with intracellular membranes. When ts-3-infected cells labeled at the restrictive temperature were shifted to the permissive temperature the only labeled protein released with the virus particles was E1, indicating that E1, synthesized at the restrictive temperature, was competent to participate in the virus assembly. These results suggest strongly that there are two separate signal sequences for the envelope proteins of Semliki Forest virus. One follows the capsid protein as shown previously, and the other is for the carboxy-terminal E1. Even if the insertion of the amino-terminal envelope protein (p62) fails due to a cleavage defect, the other signal sequence can operate independently to guide the E1 through the endoplasmic reticulum membrane.  相似文献   

12.
Infection of Epstein-Barr virus-negative human B-lymphoma cell lines with the fully transforming B95.8 Epstein-Barr virus strain was associated with complete virus latent gene expression and a change in the cell surface and growth phenotype toward that of in vitro-transformed lymphoblastoid cell lines. In contrast, the cells infected with the P3HR1 Epstein-Barr virus strain, a deletion mutant that cannot encode Epstein-Barr nuclear antigen 2 (EBNA2) or a full-length EBNA-LP, expressed EBNAs1, 3a, 3b, and 3c but were negative for the latent membrane protein (LMP) and showed no change in cellular phenotype. This suggests that EBNA2 and/or EBNA-LP may be required for subsequent expression of LMP in Epstein-Barr virus-infected B cells. Recombinant vectors capable of expressing the B95.8 EBNA2A protein were introduced by electroporation into two P3HR1-converted B-lymphoma cell lines, BL30/P3 and BL41/P3. In both cases, stable expression of EBNA2A was accompanied by activation of LMP expression from the resident P3HR1 genome; control transfectants that did not express the EBNA2A protein never showed induction of LMP. In further experiments, a recombinant vector capable of expressing the full-length B95.8 EBNA-LP was introduced into the same target lines. Strong EBNA-LP expression was consistently observed in the transfected clones but was never accompanied by induction of LMP. The EBNA2A gene transfectants expressing EBNA2A and LMP showed a dramatic change in cell surface and growth phenotype toward a pattern like that of lymphoblastoid cell lines; some but not all of these changes could be reproduced in the absence of EBNA2A by transfection of P3HR1-converted cell lines with a recombinant vector expressing LMP. These studies suggest that EBNA2 plays an important dual role in the process of B-cell activation to the lymphoblastoid phenotype; the protein can have a direct effect upon cellular gene expression and is also involved in activating the expression of a second virus-encoded effector protein, LMP.  相似文献   

13.
Epstein-Barr virus (EBV) is a common human herpesvirus. Infection with EBV is associated with several human malignancies in which the virus expresses a set of latent proteins, among which is latent membrane protein 1 (LMP1). LMP1 is able to transform numerous cell types and is considered the main oncogenic protein of EBV. The mechanism of action is based on mimicry of activated members of the tumor necrosis factor (TNF) receptor superfamily, through the ability of LMP1 to bind similar adapters and to activate signaling pathways. We previously generated two unique models: a monocytic cell line and a lymphocytic (NC5) cell line immortalized by EBV that expresses the type II latency program. Here we generated LMP1 dominant negative forms (DNs), based on fusion between green fluorescent protein (GFP) and transformation effector site 1 (TES1) or TES2 of LMP1. Then we generated cell lines conditionally expressing these DNs. These DNs inhibit NF-κB and Akt pathways, resulting in the impairment of survival processes and increased apoptosis in these cell lines. This proapoptotic effect is due to reduced interaction of LMP1 with specific adapters and the recruitment of these adapters to DNs, which enable the generation of an apoptotic complex involving TRADD, FADD, and caspase 8. Similar results were obtained with cell lines displaying a latency III program in which LMP1-DNs decrease cell viability. Finally, we prove that synthetic peptides display similar inhibitory effects in EBV-infected cells. DNs derived from LMP1 could be used to develop therapeutic approaches for malignant diseases associated with EBV.  相似文献   

14.
15.
Two EBV-negative human B-lymphoma cell lines, BJAB and DG75, were transfected with an Epstein-Barr virus (EBV) nuclear antigen 2 (EBNA-2) gene, which plays a critical role in the EBV-induced immortalization of primary B lymphocytes. Furthermore, DG75 cells were co-transfected with the EBNA-2 gene and a latent membrane protein (LMP) gene. Expression of eight surface antigens on the resultant EBNA-2-expressing cell clones was analyzed by flowcytometry. None of the EBNA-2-expressing cell clones derived from BJAB and DG75 showed a significant increase in the expression of cell surface marker CD23, of which enhancement by EBNA-2 in a different EBV-negative human B cell line, Louckes, was previously reported. Expression of CD25 (IL-2R/Tac) on cell surface, however, was induced in two of six DG75-derived cell clones. One of the two CD25-induced cell clones was expressing EBNA-2 only, and the other was co-expressing EBNA-2 and LMP. The results suggest that EBNA-2 has a potential to up-regulate CD25 independently of CD23 on human B cells.  相似文献   

16.
Screening of a library derived from primary human endothelial cells revealed a novel human isoform of vesicle-associated membrane protein-1 (VAMP-1), a protein involved in the targeting and/or fusion of transport vesicles to their target membrane. We have termed this novel isoform VAMP-1B and designated the previously described isoform VAMP-1A. VAMP-1B appears to be an alternatively spliced form of VAMP-1. A similar rat splice variant of VAMP-1 (also termed VAMP-1B) has recently been reported. Five different cultured cell lines, from different lineages, all contained VAMP-1B but little or no detectable VAMP-1A mRNA, as assessed by PCR. In contrast, brain mRNA contained VAMP-1A but no VAMP-1B. The VAMP-1B sequence encodes a protein identical to VAMP-1A except for the carboxy-terminal five amino acids. VAMP-1 is anchored in the vesicle membrane by a carboxy-terminal hydrophobic sequence. In VAMP-1A the hydrophobic anchor is followed by a single threonine, which is the carboxy-terminal amino acid. In VAMP-1B the predicted hydrophobic membrane anchor is shortened by four amino acids, and the hydrophobic sequence is immediately followed by three charged amino acids, arginine-arginine-aspartic acid. Transfection of human endothelial cells with epitope-tagged VAMP-1B demonstrated that VAMP-1B was targeted to mitochondria whereas VAMP-1A was localized to the plasma membrane and endosome-like structures. Analysis of C-terminal mutations of VAMP-1B demonstrated that mitochondrial targeting depends both on the addition of positive charge at the C terminus and a shortened hydrophobic membrane anchor. These data suggest that mitochondria may be integrated, at least at a mechanistic level, to the vesicular trafficking pathways that govern protein movement between other organelles of the cell.  相似文献   

17.
18.
19.
N Koch 《Biochemistry》1988,27(11):4097-4102
Biochemical analysis of a rat fibroblast cell clone, transfected with the murine Ia associated invariant chain gene, demonstrates the expression of a family of proteins. This indicates that all members of the invariant protein family are derived from the same gene. The proteins p41, Ii, p27, p25, and p10, synthesized in the transfectant cell line, are identical with the invariant proteins previously shown to associate noncovalently with Ia antigens. These proteins are identified by immunoprecipitation and western blotting with a monoclonal antibody against the N-terminus and with an antiserum against the C-terminal part of the invariant chain. One protein, p41, has recently been shown to contain a thyroglobulin repeat (TgR) element. It was suggested that p41 might use the TgR element as a signal sequence which guides its intracellular transport to endosomes or lysosomes. Here, I demonstrate that p41 binds four N-linked carbohydrates and is heavily sialylated. During transport through trans Golgi compartments p41 binds palmitic acid, presumably at the same cytoplasmic cysteine as previously shown for Ii. A consensus sequence surrounding the palmitylated cysteine of the invariant chains (Ii, p41) and the human transferrin receptor was found. The transferrin receptor is known to follow an endocytic pathway, for which its cytoplasmic domain is essential. It is conceivable that the palmitylated domain of the invariant chains is a guiding structure for the membrane fusion process with transport vesicles. A role of the invariant proteins for antigen processing/presentation is discussed.  相似文献   

20.
The ubiquitous Epstein Barr virus (EBV) exploits human B-cell development to establish a persistent infection in ~90% of the world population. Constitutive activation of NF-κB by the viral oncogene latent membrane protein 1 (LMP1) has an important role in persistence, but is a risk factor for EBV-associated lymphomas. Here, we demonstrate that endogenous LMP1 escapes degradation upon accumulation within intraluminal vesicles of multivesicular endosomes and secretion via exosomes. LMP1 associates and traffics with the intracellular tetraspanin CD63 into vesicles that lack MHC II and sustain low cholesterol levels, even in 'cholesterol-trapping' conditions. The lipid-raft anchoring sequence FWLY, nor ubiquitylation of the N-terminus, controls LMP1 sorting into exosomes. Rather, C-terminal modifications that retain LMP1 in Golgi compartments preclude assembly within CD63-enriched domains and/or exosomal discharge leading to NF-κB overstimulation. Interference through shRNAs further proved the antagonizing role of CD63 in LMP1-mediated signalling. Thus, LMP1 exploits CD63-enriched microdomains to restrain downstream NF-κB activation by promoting trafficking in the endosomal-exosomal pathway. CD63 is thus a critical mediator of LMP1 function in- and outside-infected (tumour) cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号