首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have investigated the inhibition of human leukocyte elastase and cathepsin G by recombinant Eglin c under near physiological conditions. The association rate constants k on of Eglin c for elastase and cathepsin G were 1.3 X 10(7) M-1 s-1 and 2 X 10(6) M-1 s-1, respectively. Under identical conditions, the k on for the association of human plasma alpha 1-proteinase inhibitor with the two leukocproteinases were 2.4 X 10(7) M-1 s-1 and 10(6) M-1 s-1, respectively. The consistency of these data could be verified using a set of competition experiments. The elastase-Eglin c interaction was studied in greater detail. The dissociation rate constant k off was determined by trapping of free elastase from an equilibrium mixture of elastase and Eglin c with alpha 1-proteinase inhibitor or alpha 2-macroglobulin. The rate of dissociation was very low (k off = 3.5 X 10(-5) s-1). The calculated equilibrium dissociation constant of the complex, Ki(calc) = k off/k on, was found to be 2.7 X 10(-12) M. Ki was also measured by adding elastase to mixtures of Eglin c and substrate and determining the steady-state rates of substrate hydrolysis. The Ki determined from these experiments (7.5 X 10(-11) M) was significantly higher than Ki(calc). This discrepancy might be explained by assuming that the interaction of Eglin c with elastase involves two steps: a fast binding reaction followed by a slow isomerization step. From the above kinetic constants it may be inferred that at a therapeutic concentration of 5 X 10(-7) M, Eglin c will inhibit leukocyte elastase in one second and will bind this enzyme in a "pseudo-irreversible" manner.  相似文献   

2.
Recent observations support an active role for the vascular endothelial cell in the induction and evolution of the inflammatory response. Since prior studies suggested that cultured bovine endothelial cells express high affinity binding sites for the neutrophil chemotactic oligopeptide formyl methionyl-leucyl-phenylalanine (f-Met-Leu-Phe), we sought to further characterize the interaction between formyl peptide chemoattractants and human vascular endothelial cells. Cultured human umbilical vein endothelial cells and peripheral blood neutrophils specifically bound f-Met-Leu-[3H]Phe, whereas specific binding to cultured fibroblasts, smooth muscle, and epithelial cells was negligible. Endothelial cells expressed 3.6 +/- 0.7 X 10(5) binding sites/cell with a Kd of 210 +/- 31 nM. Although the hexapeptide formyl norleucyl-leucyl-phenylalanyl-norleucyl-tyrosyl-lysine (f-Nle-Leu-Phe-Nle-Tyr-Lys) and the tetrapeptide f-Met-Leu-Phe-Lys completed with f-Met-Leu-[3H]Phe for binding to endothelial cells, specific binding of 125I-f-Nl-Leu-Phe-Tyr-Lys or f-Met-Leu-Phe-Lys-fluorescein to endothelial cells was not observed, suggesting that steric constraints on formyl peptide binding differ between endothelial cells and leukocytes. At 37 degrees C, cell-associated f-Met-Leu-[3H]Phe greatly exceeded that bound at 0 degrees C and was incorporated predominantly into a nondisplaceable compartment. Release of f-Met-Leu-[3H]Phe or radioactive breakdown products from this compartment was time- and temperature-dependent with a t1/2 of approximately equal to 20 min at 37 degrees C. Resolution of the radioactive products released from f-Met-Leu-[3H]Phe-loaded endothelial cells by thin layer chromatography indicated that greater than or equal to 57% of the released material co-migrated with intact f-Met-Leu-[3H]Phe. Degradative release was blocked by agents that interfere with lysosomal acidification. The radioactive material released from f-Met-Leu-[3H]Phe-loaded endothelial cells bound specifically to neutrophils. This binding was inhibited 50.2 +/- 6.4% by a greater than or equal to 10(3)-fold excess of nonradioactive f-Met-Leu-Phe whereas binding of authentic f-Met-Leu-[3H]Phe was inhibited 89.4 +/- 3.0%. Supernatant obtained from f-Met-Leu-[3H]Phe-loaded endothelial cells elicited a rise in neutrophil cytosolic free calcium ([Ca2+]i) measured by quin2 fluorescence. The change in neutrophil [Ca2+]i depended on ligand binding to the neutrophil formyl peptide receptor since endothelial supernatants were devoid of activity in the presence of the f-Met-Leu-Phe antagonist, tert-butoxycarbonyl-Phe-Leu-Phe-Leu-Phe.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
The crystal structure of the complex between bovine alpha-chymotrypsin and the leech (Hirudo medicinalis) protein proteinase inhibitor eglin c has been refined at 2.0 A resolution to a crystallographic R-factor of 0.167. The structure of the complex includes 2290 protein and 143 solvent atoms. Eglin c is bound to the cognate enzyme through interactions involving 11 residues of the inhibitor (sites P5-P4' in the reactive site loop, P10' and P23') and 17 residues from chymotrypsin. Binding of eglin c to the enzyme causes a contained hinge-bending movement around residues P4 and P4' of the inhibitor. The tertiary structure of chymotrypsin is little affected, with the exception of the 10-13 region, where an ordered structure for the polypeptide chain is observed. The overall binding mode is consistent with those found in other serine proteinase-protein-inhibitor complexes, including those from different inhibition families. Contained, but significant differences are observed in the establishment of intramolecular hydrogen bonds and polar interactions stabilizing the structure of the intact inhibitor, if the structure of eglin c in its complex with chymotrypsin is compared with that of other eglin c-serine proteinase complexes.  相似文献   

4.
The crystal structure of the molecular complex formed by bovine alpha-chymotrypsin and the recombinant serine proteinase inhibitor eglin c from Hirudo medicinalis has been solved using monoclinic crystals of the complex, reported previously. Four circle diffractometer data at 3.0 A resolution were employed to determine the structure by molecular replacement techniques. Bovine alpha-chymotrypsin alone was used as the search model; it allowed us to correctly orient and translate the enzyme in the unit cell and to obtain sufficient electron density for positioning the eglin c molecule. After independent rigid body refinement of the two complex components, the molecular model yielded a crystallographic R factor of 0.39. Five iterative cycles of restrained crystallographic refinement and model building were conducted, gradually increasing resolution. The current R factor at 2.6 A resolution (diffractometer data) is 0.18. The model includes 56 solvent molecules. Eglin c binds to bovine alpha-chymotrypsin in a manner consistent with other known serine proteinase/inhibitor complex structures. The reactive site loop shows the expected conformation for productive binding and is in tight contact with bovine alpha-chymotrypsin between subsites P3 and P'2; Leu 451 acts as the P1 residue, located in the primary specificity S1 site of the enzyme. Hydrogen bonds equivalent to those observed in complexes of trypsin(ogen) with the pancreatic basic- and secretory-inhibitors are found around the scissile peptide bond.  相似文献   

5.
The structures of eglin b and eglin c, both potent inhibitors of human neutral granulocytic proteinase elastase and cathepsin G, were compared by micro amino-acid analysis and peptide mapping techniques. Eglin b and eglin c differ by one amino-acid substitution in the middle of the polypeptide chain. Tyrosine residue at position 35 of eglin c was substituted by histidine in eglin b. This amino-acid substitution requires one base exchange (U----C) at the DNA level and apparently does not affect the reactive site of eglins. Though without disulfide linkages, eglins are very rigid molecules and can be effectively digested by trypsin only after rigorous acid incubation.  相似文献   

6.
The crystal structure of the complex formed between eglin c, an elastase inhibitor from the medical leech, and subtilisin Carlsberg has been determined at 1.2 A resolution by a combination of Patterson search methods and isomorphous replacement techniques. The structure has been refined to a crystallographic R-value of 0.18 (8-1.2 A). Eglin consists of a four-stranded beta-sheet with an alpha-helical segment and the protease-binding loop fixed on opposite sides. This loop, which contains the reactive site Leu45I--Asp46I, is mainly held in its conformation by unique electrostatic/hydrogen bond interactions of Thr44I and Asp46I with the side chains of Arg53I and Arg51I which protrude from the hydrophobic core of the molecule. The conformation around the reactive site is similar to that found in other proteinase inhibitors. The nine residues of the binding loop Gly40I--Arg48I are involved in direct contacts with subtilisin. In this interaction, eglin segment Pro42I--Thr44I forms a three-stranded anti-parallel beta-sheet with subtilisin segments Gly100--Gly102 and Ser125--Gly127. The reactive site peptide bond of eglin is intact, and Ser221 OG of the enzyme is 2.81 A apart from the carbonyl carbon.  相似文献   

7.
The behavior of an array of fluorescent human alpha-thrombin derivatives in reporting binding of the fragment 2 domain of prothrombin was characterized as a representative application of the active-site-selective labeling approach to studies of blood coagulation proteinase regulatory interactions. An array of 16 thrombin derivatives was prepared by affinity labeling of the proteinase active site with the thioester peptide chloromethyl ketones, N alpha-[(acetylthio)acetyl]-D-Phe-Pro-Arg-CH2Cl or N alpha-[(acetylthio)acetyl]-D-Phe-Phe-Arg-CH2Cl, followed by selective modification of the NH2OH-generated thiol group on the covalently incorporated inhibitors with each of eight thiol-reactive fluorescence probes. The changes in probe fluorescence intensity of the derivatives, signaling changes in the environment of the catalytic site associated with fragment 2 binding, appeared to be a unique and unpredictable function of the structure of the probe and the connecting peptide. These results demonstrated the utility of the labeling approach for overcoming the problem of not being able to predict which fluorescent label will provide the most useful proteinase derivative for investigating an interaction by enabling a greater variety of them to be prepared and screened for those with the most desirable properties. To determine whether the approach could be extended to other proteinases, the specificity of labeling with the fluorescence probe iodoacetamide, 5-(iodoacetamido)fluorescein, by use of the two thioester inhibitors was evaluated for several other blood coagulation proteinases and related trypsin-like enzymes. All of the proteinases were labeled in an active-site-selective manner. The combined results of quantitating the labeling reactions for the proteinase and inhibitor combinations studied thus far showed active-site-specific incorporation of 0.98 +/- 0.10 mol of inhibitor/mol of active sites and 0.92 +/- 0.11 mol of probe/mol of active sites, representing an overall greater than or equal to 93% site-specificity of labeling. These results demonstrated the broad applicability of the labeling approach for fluorescence studies of proteinases that differ greatly in their catalytic specificities.  相似文献   

8.
N Razi  A Varki 《Glycobiology》1999,9(11):1225-1234
We recently reported that the sialic acid-specific binding sites of CD22 molecules on B cells are masked by endogenous ligands, and can be unmasked by sialidase treatment or cellular activation. Here, we show that many other human blood leukocyte types have endogenous sialic acid binding sites that can be unmasked by sialidase treatment. Truncation of sialic acid side chains on the soluble probes used for detection abolishes all binding, indicating the specificity of the interaction for the details of sialic acid structure. There is limited overlap between alpha2-6- and alpha2-3-sialic acid-specific binding sites, which are unmasked on monocytes, natural killer cells, a minority of mature T cells, neutrophils, and some cultured human leukemic cell lines. Activation with phorbol ester and calcium ionophore causes spontaneous exposure of some of the binding sites, occurring over a period of minutes on neutrophils and several hours on monocytes and U937 leukemia cells. Activation is accompanied by some evidence for desialylation of cell surface molecules. Thus, many human blood cells have specific binding sites for sialic acids, masked by endogenous sialylated ligands. Cellular activation can unmask these sites, possibly by the action of an endogenous sialidase. The nearly universal masking of such sites in unactivated blood cells could explain why many of these sialic acid-binding lectins have not been previously discovered. Similar considerations may apply to sialic acid binding lectins of other cell types and tissues.  相似文献   

9.
We investigated the interaction of the N-formyl peptide receptor (NFPR) with G proteins in infected Sf9 insect cells expressing the recombinant NFPR. Recombinant receptor expression of up to 27 pmol/mg protein was achieved in these cells. The receptor was recognized by an antiserum raised against an NFPR carboxyl-terminal peptide, and displayed specific and saturable binding of the formyl peptide ligand fMet-Leu-[3H]Phe. Scatchard analysis of the binding data yielded a dissociation constant of approximately 62 nM, a binding affinity of 60- to 120-fold lower than that of the high affinity sites in neutrophils and in transfected mammalian cell lines expressing the NFPR. That this low binding affinity was due to a lack of receptor coupling to G protein was suggested by the failure of guanine nucleotides to regulate receptor affinity and by the lack of formyl peptide-stimulated GTPase activity in these cells. Furthermore, immunoblotting with an anti-G(i) antibody and ADP-ribosylation experiments indicated that the approximately 40-kDa G(i) alpha subunit, which couples to the NFPR in neutrophils, is not present in Sf9 cell membranes. Thus, the current study provides for the first time evidence that a major G protein is absent in the Sf9 insect cells. Potential applications of the Sf9 system for in vitro reconstitution of the NFPR-G protein interaction are discussed.  相似文献   

10.
Fibrinogen inhibited 125I-high molecular weight kininogen (HMWK) binding and displaced bound 125I-HMWK from neutrophils. Studies were performed to determine whether fibrinogen could bind to human neutrophils and to describe the HMWK-fibrinogen interaction on cellular surfaces. At 4 degrees C, the binding of 125I-fibrinogen to neutrophils reached a plateau by 30 min and did not decrease. At 23 and 37 degrees C, the amount of 125I-fibrinogen bound peaked by 4 min and then decreased over time because of proteolysis of fibrinogen by human neutrophil elastase (HNE). Zn++ (50 microM) was required for binding of 125I-fibrinogen to neutrophils at 4 degrees C and the addition of Ca++ (2 mM) increased the binding twofold. Excess unlabeled fibrinogen or HMWK completely inhibited binding of 125I-fibrinogen. Fibronectin degradation products (FNDP) partially inhibited binding, but prekallikrein and factor XII did not. The binding of 125I-fibrinogen at 4 degrees C was reversible with a 50-fold molar excess of fibrinogen or HMWK. Binding of 125I-fibrinogen, at a concentration range of 5-200 micrograms/ml of added radioligand, was saturable with an apparent Kd of 0.17 microM and 140,000 sites/cell. The binding of 125I-fibrinogen to neutrophils was not inhibited by the peptide RGDS derived from the alpha chain of fibrinogen or by the mAb 10E5 to the platelet glycoprotein IIb/IIIa heterodimer. Fibrinogen binding was inhibited by a gamma-chain peptide CYGHHLGGAKQAGDV and by mAb OKM1 but was not inhibited by OKM10, an mAb to a different domain of the adhesion glycoprotein Mac-1 (complement receptor type 3 [CR3]). HMWK binding to neutrophils was not inhibited by OKM1. These observations were consistent with a further finding that fibrinogen is a noncompetitive inhibitor of 125I-HMWK binding to neutrophils. Fibrinogen binding to ADP-stimulated platelets was increased twofold by Zn++ (50 microM) and was inhibited by HMWK. These studies indicate that fibrinogen specifically binds to the C3R receptor on the neutrophil surface through the carboxy terminal of the gamma-chain and that HMWK interferes with the binding of fibrinogen to integrins on both neutrophils and activated platelets.  相似文献   

11.
Saccharopepsin is a vacuolar aspartic proteinase involved in activation of a number of hydrolases. The enzyme has great structural homology to mammalian aspartic proteinases including human renin and we have used it as a model system to study the binding of renin inhibitors by X-ray crystallography. Five medium-to-high resolution structures of saccharopepsin complexed with transition-state analogue renin inhibitors were determined. The structure of a cyclic peptide inhibitor (PD-129,541) complexed with the proteinase was solved to 2.5 A resolution. This inhibitor has low affinity for human renin yet binds very tightly to the yeast proteinase (K(i)=4 nM). The high affinity of this inhibitor can be attributed to its bulky cyclic moiety spanning P(2)-P(3)' and other residues that appear to optimally fit the binding sub-sites of the enzyme. Superposition of the saccharopepsin structure on that of renin showed that a movement of the loop 286-301 relative to renin facilitates tighter binding of this inhibitor to saccharopepsin. Our 2.8 A resolution structure of the complex with CP-108,420 shows that its benzimidazole P(3 )replacement retains one of the standard hydrogen bonds that normally involve the inhibitor's main-chain. This suggests a non-peptide lead in overcoming the problem of susceptible peptide bonds in the design of aspartic proteinase inhibitors. CP-72,647 which possesses a basic histidine residue at P(2), has a high affinity for renin (K(i)=5 nM) but proves to be a poor inhibitor for saccharopepsin (K(i)=3.7 microM). This may stem from the fact that the histidine residue would not bind favourably with the predominantly hydrophobic S(2) sub-site of saccharopepsin.  相似文献   

12.
Ig-binding bacterial proteins also bind proteinase inhibitors   总被引:8,自引:0,他引:8  
Protein G is a streptococcal cell wall protein with separate binding sites for IgG and human serum albumin (HSA). In the present work it was demonstrated that alpha 2-macroglobulin (alpha 2M) and kininogen, two proteinase inhibitors of human plasma, bound to protein G, whereas 23 other human proteins showed no affinity. alpha 2M was found to interact with the IgG-binding domains of protein G, and in excess alpha 2M inhibited IgG binding and vice versa. A synthetic peptide, corresponding to one of the homologous IgG-binding domains of protein G, blocked binding of protein G to alpha 2M. Protein G showed affinity for both native and proteinase complexed alpha 2M but did not bind to the reduced form of alpha 2M, or to the C-terminal domain of the protein known to interact with alpha 2M receptors on macrophages. Binding of protein G to alpha 2M and kininogen did not interfere with their inhibitory activity on proteinases, and the interaction between protein G and the two proteinase inhibitors was not due to proteolytic activity of protein G. The finding that protein G has affinity for proteinase inhibitors was generalized to comprise also other Ig binding bacterial proteins. Thus, alpha 2M and kininogen, were shown to bind both protein A of Staphylococcus aureus and protein L of Peptococcus magnus. The results described above suggest that Ig-binding proteins are involved in proteolytic events, which adds a new and perhaps functional aspect to these molecules.  相似文献   

13.
The crystal structure of the molecular complex of eglin, a serine proteinase inhibitor from leeches, with subtilisin Carlsberg has been determined at 2.0 A resolution by the molecular replacement method. The complex has been refined by restrained-parameter least-squares. The present crystallographic R factor (Formula: see text) is 0.183. Eglin is a member of the potato inhibitor 1 family, a group of serine proteinase inhibitors lacking disulfide bonds. Eglin shows strong structural homology to CI-2, a related inhibitor from barley seeds. The structure of subtilisin Carlsberg in this complex is very similar to the known structure from barley seeds. The structure of subtilisin Carlsberg in this complex is very similar to the known structure of subtilisin novo, despite changes of 84 out of 274 amino acids.  相似文献   

14.
Adenosine specifically inhibits superoxide anion generation by N-formyl-methionyl-leucyl-phenylalanine-stimulated neutrophils without affecting either degranulation or "aggregation." We present data that also supports the hypothesis that adenosine engages a specific cell surface receptor to mediate inhibition of stimulated neutrophils. Theophylline (10 and 100 mu M), a competitive antagonist at adenosine receptors, reversed the effects of adenosine (0.1 mu M) on superoxide anion generation by stimulated neutrophils. The adenosine analogue 5'N-ethylcarboxamidoadenosine (NECA) was a more potent inhibitor of superoxide anion generation than either N6-phenylisopropyladenosine (PIA) or adenosine, an order of potency consistent with that previously demonstrated for adenosine A2 receptors. 2-Chloroadenosine inhibited superoxide anion generation at concentrations similar to NECA. [3H]-NECA and [3H]-2-chloroadenosine bound to a single receptor on intact neutrophils. The characteristics of the receptors for [3H]-NECA and [3H]-2-chloroadenosine were similar (Kd = 0.22 and 0.23 mu M, respectively; number of binding sites = 9.31 and 11.1 X 10(3) sites/cell, respectively). NECA, 2-chloroadenosine, adenosine, and PIA inhibited binding of [3H]-NECA with a rank order similar to that for inhibition of superoxide anion generation (NECA = 2-chloroadenosine greater than adenosine greater than PIA). There was 50% inhibition of superoxide anion generation by NECA at approximately 20% receptor occupancy. Adenosine, derived from damaged tissues, may serve as a specific, endogenous modulator of superoxide anion generation by activated neutrophils through interaction at this newly described receptor on human neutrophils.  相似文献   

15.
alpha1-Antitrypsin (AAT) is a major circulating serine proteinase inhibitor in humans. The anti-proteinase activity of AAT is inhibited by chemical modification. These include inter- or intramolecular polymerisation, oxidation, complex formation with target proteinases (e.g., neutrophil elastase), and/or cleavage by multi-specific proteinases. In vivo, several modified forms of AAT have been identified which stimulate biological activity in vitro unrelated to inhibition of serine proteinases. In this study we have examined the effects of native and polymerised AAT and C-36 peptide, a proteolytic cleavage product of AAT, on human neutrophil activation, in vitro. We show that the C-36 peptide displays striking concentration-dependent pro-inflammatory effects on human neutrophils, including induction of neutrophil chemotaxis, adhesion, degranulation, and superoxide generation. In contrast to C-36 peptide, native and polymerised AAT at similar and higher concentrations showed no effects on neutrophil activation. These results suggest that cleavage of AAT may not only abolish its proteinase inhibitor activity, but can also generate a powerful pro-inflammatory activator for human neutrophils.  相似文献   

16.
Inflammatory cells are capable of degrading extracellular matrix macromolecules in vivo in the presence of proteinase inhibitors. We and others have hypothesized that such proteolysis is permitted in large part by mechanisms operative in the immediate pericellular environment, especially at zones of contact between inflammatory cells and insoluble matrix components. To further test this hypothesis in vitro, we have used a model system in which viable polymorphonuclear neutrophils (PMN) are allowed to contact a surface coated with proteinase-sensitive substrate, and in which PMN interaction with the surface can be modulated. We have evaluated proteolysis of the surface-bound protein in the presence and absence of proteinase inhibitors. Our results were: (a) In the presence (but not in the absence) of proteinase inhibitors, proteolysis was confined to sharply marginated zones subjacent to the cells; (b) opsonization of the surface enhanced spreading of the PMN, (c) opsonization diminished the effectiveness of alpha-1-proteinase inhibitor (alpha-1-PI) and alpha-2-macroglobulin as inhibitors of proteolysis of surface-bound protein; (d) anti-oxidants did not alter the effectiveness of alpha-1-PI in inhibiting proteolysis of opsonized substrate by PMN; and (e) PMN could restrict entry of alpha-1-PI into zones of contact with opsonized surfaces. We conclude that: (a) In the presence of proteinase inhibitors, PMN can express sharply marginated and exclusively pericellular proteolytic activity; (b) locally high proteinase concentrations and/or exclusion of proteinase inhibitors from pericellular microenvironments may be important mechanisms for pericellular matrix degradation by PMN; and (c) these observations may have general relevance to extracellular matrix remodeling by a variety of inflammatory and other cell types.  相似文献   

17.
Proteinase 3 (PR3), a 29-kDa serine proteinase secreted from activated neutrophils, also exists in a membrane-bound form, and is suggested to actively contribute to inflammatory processes. The present study focused on the mechanism by which PR3 activates human oral epithelial cells. PR3 activated the epithelial cells in culture to produce IL-8 and monocyte chemoattractant protein-1 and to express ICAM-1 in a dose- and time-dependent manner. Incubation of the epithelial cells for 24 h with PR3 resulted in a significant increase in the adhesion to neutrophils, which was reduced to baseline levels in the presence of anti-ICAM-1 mAb. Activation of the epithelial cells by PR3 was inhibited by serine proteinase inhibitors and serum. The epithelial cells strongly express protease-activated receptor (PAR)-1 and PAR-2 mRNA and weakly express PAR-3 mRNA. The expression of PAR-2 on the cell surface was promoted by PR3, and inhibited by cytochalasin B, but not by cycloheximide. PR3 cleaved the peptide corresponding to the N terminus of PAR-2 with exposure of its tethered ligand. Treatment with trypsin, an agonist for PAR-2, and a synthetic PAR-2 agonist peptide induced intracellular Ca(2+) mobilization, and rendered cells refractory to subsequent stimulation with PR3 and vice versa. The production of cytokine induced by PR3 and the PAR-2 agonist peptide was completely abolished by a phospholipase C inhibitor. These findings suggest that neutrophil PR3 activates oral epithelial cells through G protein-coupled PAR-2 and actively participates in the process of inflammation such as periodontitis.  相似文献   

18.
Herren T  Burke TA  Das R  Plow EF 《Biochemistry》2006,45(31):9463-9474
Tethering of plasminogen to cell surfaces controls plasmin formation and, thereby, influences pericellular proteolysis and cell migration. Modulation of cellular plasminogen binding sites provides a mechanism for regulation of these events. In this study, two distinct models, phorbol ester-stimulated adhesion of U937 monocytoid cells and culturing of peripheral blood neutrophils, treatments which modulate plasminogen binding sites, have been examined to determine the molecular basis for the upregulation of plasminogen receptors. Membranes were isolated from cell populations, with and without upregulated plasminogen binding capacities, and analyzed by [(125)I]plasminogen ligand blotting of gel transfers. Approximately 15 different [(125)I]plasminogen-binding proteins were discerned in the membrane fractions, and only relatively minor differences in the intensities of individual bands were noted in the different cell populations. The notable exception was the presence of a 17 kDa band, which was selectively and markedly enhanced in the membranes from cells with enhanced plasminogen binding capacities. The 17 kDa protein was isolated from both cell types, and amino acid sequencing of peptide fragments identified the same protein, histone H2B. Increased expression of histone H2B was observed on stimulated U937 cells and cultured neutrophils by confocal microscopy with an antibody raised to the carboxy-terminal octopeptide sequence of histone H2B. This antibody or its Fab fragments substantially decreased the level of binding of plasminogen to these cultured neutrophils and stimulated U937 cells that exhibited elevated levels of binding but not to nonstimulated cells. Thus, histone H2B represents a regulated plasminogen receptor, which contributes significantly to the plasminogen binding capacity of cells.  相似文献   

19.
The binding of recombinant nematode anticoagulant protein c2 (NAPc2) to either factor X or Xa is a requisite step in the pathway for the potent inhibition of VIIa tissue factor. We have used NAPc2 as a tight binding probe of human Xa to investigate protein substrate recognition by the human prothrombinase complex. NAPc2 binds with high affinity (K(d) approximately 1 nm) to both X and Xa in a way that does not require or occlude the active site of the enzyme. In contrast, NAPc2 is a tight binding, competitive inhibitor of protein substrate cleavage by human Xa incorporated into prothrombinase with saturating concentrations of membranes and Va. By fluorescence binding studies we show that NAPc2 does not interfere with the assembly of human prothrombinase. These are properties expected of an inhibitor that blocks protein substrate recognition by targeting extended macromolecular recognition sites (exosites) on the enzyme complex. A weaker interaction (K(d) = 260-500 nm) observed between NAPc2 and bovine X was restored to a high affinity one in a recombinant chimeric bovine X derivative containing 25 residues from the COOH terminus of the proteinase domain of human X. This region implicated in binding NAPc2 is spatially adjacent to a site previously identified as a potential exosite. Despite the weaker interaction with bovine Xa, NAPc2 was a tight binding competitive inhibitor of protein substrate cleavage by bovine prothrombinase as well. Extended enzymic surfaces elucidated with exosite-directed probes, such as NAPc2, may define a unique region of factor Xa that is modulated following its assembly into prothrombinase and in turn determines the binding specificity of the enzyme complex for its protein substrate.  相似文献   

20.
Structure-function relationships of human C5a and C5aR   总被引:2,自引:0,他引:2  
Using peptides that represent linear regions of the powerful complement activation product, C5a, or loops that connect the four alpha helices of C5a, we have defined the ability of these peptides to reduce binding of (125)I-C5a to human neutrophils, inhibit chemotactic responses of neutrophils to C5a, and reduce H(2)O(2) production in neutrophils stimulated with PMA. The data have defined likely sites of interaction of C5a with C5aR. The peptides had no functional activity per se on neutrophils and did not interfere with neutrophil responses to the unrelated chemotactic peptide, N-formyl-Met-Leu-Phe. Although previous data have suggested that there are two separate sites on C5a reactive with C5aR, the current data suggest that C5a interacts with C5aR in a manner that engages three discontinuous regions of C5a.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号