首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Light-induced alterations of isolated prolamellar bodies (PLBs) were studied in flash-irradiated suspensions of a PLB-enriched fraction and a mixed membrane fraction isolated from dark-grown seedlings of wheat (Triticum aestivum L. cv. Walde). The mixed membrane fraction consisted of PLB fragments and membrane vesicles originating from the prothylakoids. Ultrastructural and spectral properties, as well as pigment and protein composition of non-irradiated and of flash-irradiated suspensions were studied. The addition of 0.3 mM NADPH prevented spectral shifts towards shorter wavelengths in irradiated as well as in non-irradiated PLB-fractions. as measured by fluorescence emission at – 196°C. In non-irradiated PLB-fractions the amount of phototransformable protochlorophyllide (PChlide) as compared to nonphototransformable PChlide decreased when NADPH was not added. The emission maximum due to chlorophyll(ide) shifted from 696 nm to 680 um in the flashirradiated fractions where no NADPH was added. The amount of chlorophyllous pigments, as well as the amount of NADPH-protochlorophyllide oxidoreductase, decreased during the experimental period of 4 h in the suspensions without added NADPH. especially in the irradiated ones. The ultrastructure of the pelletable material in the different suspensions was analyzed by transmission and scanning electron microscopy. The non-irradiated PLBs appeared as cottonball-like structures in the scanning electron microscope. Without NADPH added more PLBs with an irregular tubular appearance were seen. After irradiation and storage for 1 h in darkness the surface was covered with vesicles. These vesicles were still present after 4 h. In the presence of NADPH no vesicle-formation occurred and the regular network of the PLBs was preserved also after an irradiation which caused transformation of PChlide to chlorophyllide. Thus, the regular structure seems to depend on an ample supply of NADPH. which in turn may be necessary to stabilize the pigment-protein complex in the lipid moiety of the PLB membranes. The formation of vesicles may thus be caused by a loss of this pigment-protein complex in suspensions with a low level of NADPH. The possible significance of an NADPH-dependence in vivo is discussed.  相似文献   

2.
Mitochondrial depolarization promotes apoptotic and necrotic cell death and possibly other cellular events. Polarized mitochondria take up cationic tetramethylrhodamine methylester (TMRM), which is released after depolarization. Thus, TMRM does not label depolarized mitochondria. To identify both polarized and depolarized mitochondria in living cells, cultured rat hepatocytes, and sinusoidal endothelial cells were co-loaded with green-fluorescing MitoTracker Green FM (MTG) and red-fluorescing TMRM for imaging by laser scanning confocal microscopy. Like TMRM, MTG is a cationic fluorophore that accumulates electrophoretically into polarized mitochondria. Unlike TMRM, MTG binds covalently to intramitochondrial protein thiols and remains bound after depolarization. In cells labeled only with MTG, excitation with blue (488 nm) light yielded green but almost no red fluorescence. After subsequent loading with TMRM, green MTG fluorescence became quenched. Instead, blue excitation yielded red fluorescence. Mitochondrial de-energization restored green fluorescence and abolished red fluorescence. Conversely, when MTG was added to TMRM-labeled cells, red fluorescence excited by blue light was enhanced, an effect again reversed by de-energization. These observations of reversible quenching of donor fluorescence and augmentation of acceptor fluorescence signify fluorescence resonance energy transfer (FRET). In undisturbed hepatocytes, spontaneous depolarization of a subfraction of mitochondria was an ongoing phenomenon. In conclusion, confocal FRET discriminates individual depolarized mitochondria against a background of hundreds of polarized mitochondria.  相似文献   

3.
The interactions between HeLa S3 tumoral cells and human fibroblasts after nitrogen-laser irradiation (337.1 nm) have been studied by using an in vitro cell invasion model. For the quantitative and morphological evaluation of nitrogen-laser radiation action upon tumoral adhesion to the fibroblast monostrate, we used: a) 3H-thymidine labelling of HeLa S3 tumoral cells; b) morphological modifications studies by phase contrast and scanning electron microscopy. The results emphasized the following aspects: 1. In non-irradiated cell cultures we noticed three interaction stages: adhesion, tumoral spreading and displacement with fibroblasts destruction; on the other side, we found a reduced adhesion to non-irradiated human fibroblasts of laser irradiated tumoral cells. 2. Significant percent increasing of non-irradiated tumoral cells adhesion to fibroblast monostrate, irradiated with various laser fluences (e.g. 0.2 kJ/m2--48.1%; 0.8 kJ/m2--63.8% and for 1.6 kJ/m2--79.5%). This phenomenon evidenced the close interrelation between irradiation fluences and tumoral adhesion rates. 3. The importance of numerical ratio between tumoral cells and fibroblasts in tumoral adhesion and invasion processes (e.g. ratio 1:10 tumoral adhesion reached 8.1%; in 1:5--25.9%; in 1:1--59.4% and for 2:1--83.9%). 4. Marked cytotoxic effects for both cell types after exposure to high and very high laser fluences (1.6--6.4 kJ/m2). Our results emphasize near UV-laser irradiation effects upon some of tumoral adhesion and invasion mechanisms and demonstrate the interrelations between cell populations manifesting a different vital potential.  相似文献   

4.
线粒体移植( mitochondrial transplantation)是从患者正常组织分离线粒体然后注入线粒体损伤或缺失的部位,使损伤细胞获得救治、器官功能得以恢复的全新干预技术。本研究重点探讨线粒体移植对人神经胶质瘤细胞(U87)辐射敏感性的影响。提取人星形胶质细胞(human astrocytes, HA)的线粒体,用荧光探针Mito-Tracker Red进行标记后再与U87细胞共培养,激光共聚焦显微镜观察发现,Mito-Tracker Red的红色荧光大量出现在U87细胞内;随后对进入细胞内的游离线粒体荧光强度进行定量分析,游离线粒体和U87细胞共培养12 h时,单细胞内荧光强度由本底值0.08上升至1.83,表明游离线粒体可以通过共培养方式进入U87细胞内。随后给予U87细胞X射线辐照,Western印迹结果显示,联合组与单独辐照组相比,Cyto-C和Bax的表达量分别由179.5%和198.5%升高至251.72%和256.10%,Bcl-2的表达量由57.17%降低至22.23%;使用Annexin V/PI双染法检测到联合组U87细胞凋亡量相比单独辐照组的3.1%和23.5%上升至19.2%和43.8%;RT-CES检测结果表明,96 h内联合组U87细胞生长曲线被抑制;联合组克隆形成率相对单独辐照组的53%下降至29.3%。鬼笔环肽染色发现,线粒体移植组细胞表面丝状伪足相比对照组明显减少。本研究提示,线粒体移植能够促进辐射诱导的肿瘤细胞凋亡,对U87细胞具有辐射增敏作用,其作用机制与重新激活线粒体凋亡通路、降低肿瘤恶性程度有关。  相似文献   

5.
Exosomes are nanometer-sized extracellular vesicles that are believed to function as intercellular communicators. Here, we report that exosomes are able to modify the radiation response of the head and neck cancer cell lines BHY and FaDu. Exosomes were isolated from the conditioned medium of irradiated as well as non-irradiated head and neck cancer cells by serial centrifugation. Quantification using NanoSight technology indicated an increased exosome release from irradiated compared to non-irradiated cells 24 hours after treatment. To test whether the released exosomes influence the radiation response of other cells the exosomes were transferred to non-irradiated and irradiated recipient cells. We found an enhanced uptake of exosomes isolated from both irradiated and non-irradiated cells by irradiated recipient cells compared to non-irradiated recipient cells. Functional analyses by exosome transfer indicated that all exosomes (from non-irradiated and irradiated donor cells) increase the proliferation of non-irradiated recipient cells and the survival of irradiated recipient cells. The survival-promoting effects are more pronounced when exosomes isolated from irradiated compared to non-irradiated donor cells are transferred. A possible mechanism for the increased survival after irradiation could be the increase in DNA double-strand break repair monitored at 6, 8 and 10 h after the transfer of exosomes isolated from irradiated cells. This is abrogated by the destabilization of the exosomes. Our results demonstrate that radiation influences both the abundance and action of exosomes on recipient cells. Exosomes transmit prosurvival effects by promoting the proliferation and radioresistance of head and neck cancer cells. Taken together, this study indicates a functional role of exosomes in the response of tumor cells to radiation exposure within a therapeutic dose range and encourages that exosomes are useful objects of study for a better understanding of tumor radiation response.  相似文献   

6.
目的:研究He-Ne激光照射鼠巨噬细胞对线粒体跨膜电势的影响,及其与激光剂量的关系。方法:用亲脂性阳离子荧光染料Rhodamine123对鼠巨噬细胞线粒体作荧光标记,以不同的激光剂量照射,采用图像分析系统(IAS)和荧光显微镜观察线粒体跨膜电势荧光强度的变化。结果:低功率He-Ne激光照射5,10,15min,激光剂量分别为0.649,1.388和2.082J/cm^2,巨噬细胞线粒体跨膜电势荧光  相似文献   

7.
A simple whole-cell-based sensing system is proposed for determining the cell mass of H. pluvialis using ultraviolet fluorescence spectroscopy. An emission signal at 368 nm was used to detect the various kinds of green, green-brown, brown-red, and red H. pluvialis cells. The fluorescence emission intensities of the cells were highest at 368 nm with an excitation wavelength of 227 nm. An excitation wavelength of 227 nm was then selected for cell-mass sensing, as the emission fluorescence intensities of the cell suspensions were highest at this wavelength after subtracting the background interference. The emission fluorescence intensities of HPLC-grade water, filtered water, and HPLC-grade water containing a modified Bold's basal medium (MBBM) were measured and the difference was less than 1.6 for the selected wavelengths. Moreover, there was no difference in the emission intensity at 368 nm among suspensions of the various morphological states of the cells. A calibration curve of the fluorescence emission intensities and cell mass was obtained with a high correlation (R(2)=0.9938) for the various morphological forms of H. pluvialis. Accordingly, the proposed method showed no significant dependency on the various morphological cell forms, making it applicable for cell-mass measurement. A high correlation was found between the fluorescence emission intensities and the dry cell weight with a mixture of green, green-brown, brown-red, and red cells. In conclusion, the proposed model can be directly used for cell-mass sensing without any pretreatment and has potential use as a noninvasive method for the online determination of algal biomass.  相似文献   

8.
Intracellular pH (pHin) changes after gamma-irradiation of Chinese hamster fibroblasts have been studied by a fluorescence method using the ratio of fluorescence intensities after excitation at 488 and 458 nm and measurement at emission wavelength of 515 nm. Irradiation with doses inducing reproductive death (2.5-20 Gy) causes a pHin shift towards the alkaline region by 0.4-0.5 pH units, but this shift is transient. Irradiation with a 500 Gy dose, inducing interphase death, causes a more pronounced (pHin greater than or equal to 8.0) alkalization of the intracellular medium which is retained for more than 1.5 hours post-irradiation. It is proposed that the observed alkalization of the internal medium of irradiated cells is possibly due to a change in the functional state of mitochondria. These changes are probably one of the causes of interphase cell death after irradiation with high doses.  相似文献   

9.
He-Ne激光照射对血液及其组分荧光光谱影响的实验研究   总被引:2,自引:0,他引:2  
为研究弱激光照射对人血液携氧能力的影响及机制,我们用荧光仪分别测量了He-Ne激光照射前后正常血液及其组分(血浆、红细胞)的荧光光谱,研究了激光照射导致的光谱变化,并分析了光谱变化与血液携氧能力改变的关系。实验结果显示:全血液标本在490nm及614nm附近有荧光峰值;血浆的荧光则主要分布在420-500nm之间;红细胞在500nm及614nm附近有荧光。He-Ne激光照射后,全血液及红细胞在614nm处的荧光谱都有较明显的变化,且较相似。由此可得出结论,He-Ne激光照射可影响血液的携氧能力。  相似文献   

10.
Effects of phototherapy using low-level lasers depend on irradiation parameters and the type of laser used. The aim of the present study was to evaluate the effect of phototherapy on the proliferation of cultured C2C12 myoblasts under different nutritional conditions using low-level GaAlAs and InGaAlP lasers with different parameters and incubation periods. C2C12 cells cultured in regular and nutrient-deficient medium were irradiated with low-level GaAlAs (780 nm) and InGaA1P (660 nm) lasers with energy densities of 3.8, 6.3 and 10 J/cm2, and 3.8, 10 and 17.5 J/cm2, respectively. Cell proliferation was assessed 48 and 72 h after irradiation by MTT assay. There were no significant differences in cell proliferation between laser-treated myoblasts and control cultures for any of the parameters and incubation periods. Further studies are necessary to determine the correct laser parameters for optimizing the biostirhulation of myoblasts.  相似文献   

11.
Unconventional and highly unexpected results in the Comorosan Effect have been obtained in a photographic study using N-methyl-4-aminophenol (metol) as the developer. Before dissolving the developer was irradiated with green light (lambda = 546 nm) for various distinct periods of time (5, 10 and 15 seconds). A significant difference was observed in the rates of the developing process for different samples of the developer which had been irradiated for 5 seconds compared to non-irradiated controls, but no differences were observed for samples irradiated for 10 or 15 seconds, respectively. This unusual radiation phenomenon is similar to the Comorosan Effect by which rates of enzymatic reactions are manifested and significantly influenced by prior irradiation of the enzyme substrates, but only for times which are certain multiples of 5 seconds.  相似文献   

12.
Characteristic fluorescence excitation and emission is induced by either acetone-sensitized 313 nm irradiation of mixtures of 8-bromoadenosine and adenosine or 254 nm irradiation of oligo- and polynucleotides containing adenine neighbors. The acetone-sensitized reaction involves cleavage of bromine from 8-bromoadenosine with activation of C-8, leading to formation of an 8,8-adenosine dehydrodimer. Comparable fluorescence properties arise in the unsensitized photoreaction of dApdA, pdApdA, ApA, poly(dA), poly(A), poly(dA.dT), and poly(dA.U). The previously unidentified adenine ultraviolet photoproduct described by Porschke has been isolated as several variants from solutions of pdApdA and poly(dA) irradiated at 254 nm. Based upon fluorescence spectra and mass spectra, these variants are shown to contain the 8,8-adenine dehydrodimer moiety.  相似文献   

13.
The radiation-induced bystander effect is a well-established phenomenon which results in damage in non-irradiated cells in response to signaling from irradiated cells. Since communication between irradiated and bystander cells could be reciprocal, we examined the mutual bystander response between irradiated cells and co-cultured with them non-irradiated recipients. Using a transwell culture system, irradiated human melanoma (Me45) cells were co-cultured with non-irradiated Me45 cells or normal human dermal fibroblasts (NHDF) and vice versa. The frequency of micronuclei and of apoptosis, ROS level, and mitochondrial membrane potential were used as the endpoints. Irradiated Me45 and NHDF cells induced conventional bystander effects detected as modest increases of the frequency of micronuclei and apoptosis in both recipient neighbors; the increase of apoptosis was especially high in NHDF cells co-cultured with irradiated Me45 cells. However, the frequencies of micronuclei and apoptosis in irradiated Me45 cells co-cultured with NHDF cells were significantly reduced in comparison with those cultured alone. This protective effect was not observed when irradiated melanomas were co-cultured with non-irradiated cells of the same line, or when irradiated NHDF fibroblasts were co-cultured with bystander melanomas. The increase of micronuclei and apoptosis in irradiated Me45 cells was paralleled by an increase in the level of intracellular reactive oxygen species (ROS), which was reduced significantly when they were co-cultured for 24h with NHDF cells. A small but significant elevation of ROS level in NHDF cells shortly after irradiation was also reduced by co-culture with non-irradiated NHDF cells. We propose that in response to signals from irradiated cells, non-irradiated NHDF cells trigger rescue signals, whose nature remains to be elucidated, which modify the redox status in irradiated cells. This inverse bystander effect may potentially have implications in clinical radiotherapy.  相似文献   

14.
The release of substances from the Zaidela ascitic hepatoma cells after irradiation with physiological doses of short-wave (254 nm) and long-wave (300-380 nm) UV light (far and near UV light) has been studied spectrophotometrically. Within the range of 200-520 nm, the absorption spectra of releasing substances show maxima at 215 and 260 nm and are identical to spectra of non-irradiated cells. The amount of substances increases with dose making up, at the maximal alteration, 180-220%, of the amount releasing from non-irradiated cells. Irradiation with far UV light exceeds by one order that with near UV light. The effect of minimum doses is opposite to the action of high doses: the release of substances from irradiated cells is much less.  相似文献   

15.
An electron microscope study has been made of vitally stained single cells whose cytoplasm has been subjected to a localized ruby laser microbeam. Light and moderate laser absorption (the resultant of stain concentration and laser energy density) produced restricted selective damage of mitochondria in cells stained with Janus green B; heavy laser absorption resulted in mitochondrial damage, as well as in nonselective interaction with other cell structures. With four other basic vital stains, the polysomes, ergastoplasm, mitochondria and other organelles at the irradiated site were uniformly damaged. Unstained cells showed no morphological alterations. With light primary damage (that restricted to the irradiation site), no secondary effects of the incident radiation were observed. With moderate primary damage, however, secondary damage of the mitochondria in the unirradiated cell portions was produced, which was reversible within 4 hr after irradiation. Heavy primary lesions caused severe secondary alteration of all cell structures that was irreversible and cell death occurred within 2 hr. Surviving cells examined 24 hr after light and moderate irradiation could not be distinguished from unirradiated controls. The possible mechanisms involved in the production of laser-induced cellular alterations are discussed.  相似文献   

16.
Zhou H  Suzuki M  Geard CR  Hei TK 《Mutation research》2002,499(2):135-141
Recent studies have indicated that extranuclear or extracellular targets are important in mediating the bystander genotoxic effects of alpha-particles. In the present study, human-hamster hybrid (A(L)) cells were plated on either one or both sides of double-mylar dishes 2-4 days before irradiation, depending on the density requirement of experiments. One side (with or without cells) was irradiated with alpha-particles (from 0.1 to 100 Gy) using the track segment mode of a 4 MeV Van de Graaff accelerator. After irradiation, cells were kept in the dishes for either 1 or 48 h. The non-irradiated cells were then collected and assayed for both survival and mutation. When one side with cells was irradiated by alpha-particles (1, 10 and 100 Gy), the surviving fraction among the non-irradiated cells was significantly lower than that of control after 48 h co-culture. However, such a change was not detected after 1h co-culture or when medium alone was irradiated. Furthermore, co-cultivation with irradiated cells had no significant effect on the spontaneous mutagenic yield of non-irradiated cells collected from the other half of the double-mylar dishes. These results suggested that irradiated cells released certain cytotoxic factor(s) into the culture medium that killed the non-irradiated cells. However, such factor(s) had little effect on mutation induction. Our results suggest that different bystander end points may involve different mechanisms with different cell types.  相似文献   

17.
In this study, Aspergillus terreus was irradiated by a 7.3 mW He–Ne laser in the presence of crystal violet, toluidine blue O and hematoporphyrin as photosensitizers. Xylanases recovered from non-irradiated and irradiated fungi were purified and characterized. The maximum production of xylanase (42.2 U/ml) was obtained after 5 min of laser irradiation in the absence of the photosensitizer. The irradiation of the sensitized fungus diminished the production of xylanase. On purification using G-100, the specific activity of xylanase recovered from the irradiated fungus was 292 U/mg protein representing a 37-fold purification over the crude extract compared with 95.6 U/mg protein representing the 12.8-fold for the enzyme recovered from the non-irradiated fungus. The enzyme recovered from the irradiated fungus had lower molecular weight as compared with that recovered from the non-irradiated one. Characterization of the purified enzymes revealed that the enzyme recovered from the irradiated fungus was more thermostable and had a wider range of optimum reaction temperature (60–70°C) and pH (4.0–12.0), compared to the non-irradiated one.  相似文献   

18.
The UV light (337 nm) induced blue-green fluorescence emission of green leaves is characterized at room temperature (298 K) by a maximum near 450 nm (blue region) and a shoulder near 525 nm (green region) and was here also studied at 77 K. At liquid nitrogen temperature (77 K) the blue (F450) and green fluorescence (F525) are much enhanced as is the red chlorophyll fluorescence near 735 nm. During development of green tobacco leaves the blue fluorescence F450 (77 K) is shifted towards longer wavelengths from about 410 nm to 450 nm. The isolated leaf epidermis of tobacco showed only slight fluorescence emission with a maximum near 410 nm. The green fluorescence F525 was found to mainly originate from the mesophyll of the leaf, its intensity increased when the epidermis was removed. The red chlorophyll fluorescence emission was also enhanced when the epidermis was stripped off; this considerably changed the blue/red fluorescence ratios F450/F690 and F450/F735. The epidermis, with its cell wall and UV-light-absorbing substances in its vacuole, plays the role of a barrier for the exciting UV-light. In contrast to intact and homogenized leaves, isolated intact chloroplasts and thylakoid membranes did not exhibit a blue-green fluorescence emission.  相似文献   

19.

Background and Objective

The γ-secretase inhibitor (GSI) has been shown to inhibit expression of amyloid beta (Aβ), but GSI also has a side effect of reducing cell survival. Since low-power laser irradiation (LLI) has been known to promote cell survival, we examined whether 532 nm LLI can rescue the GSI side effect or not.

Study Design/Materials and Methods

The human-derived glioblastoma cells (A-172) were cultured in 35 mm culture dishes or 96-well plate. The center of dish or selected wells was irradiated with 532 nm laser (Nd:YVO4, CW, 60 mW) for 20, 40 and 60 min, respectively. The irradiated cells were photographed at immediately after, 24 and 48 h later and counted. GSI was supplemented in medium 3 h before LLI. The MTT assay was also used to estimate viable cells at 48 h after irradiation. The expression of phosphorylated Akt (p-Akt) or phosphorylated PTEN (p-PTEN) was examined by immunofluorescent staining and measured by fluorescence intensity using the software (BZ-9000, KEYENCE, Japan).

Results

GSI application depressed cell proliferation as well as cell survival compared to control. GSI down-regulated Aβ but up-regulated p-PTEN and suppressed p-Akt. Application of 532 nm LLI in the presence of GSI significantly recovered the GSI-mediated effects, i.e., LLI could decrease elevated p-PTEN, while increased p-Akt expression with keeping Aβ suppression. The LLI effects had a dose-dependency.

Conclusion

We confirmed that GSI potently suppressed intracellular Aβ and decreased cell survival. We conclude that a combination of GSI application and 532 nm LLI can increase cell proliferation via Akt activation while keeping PTEN and Aβ suppressed.  相似文献   

20.
The blue, green and red fluorescence emission of green wheat ( Triticum aestivum L. var. Rector) and soybean leaves ( Glycine max L. var. Maple Arrow) as induced by UV light (nitrogen laser: 337 nm) was determined in a phytochamber and in plants grown in the field. The fluorescence emission spectra show a blue maximum near 450 nm, a green shoulder near 530 nm and the two red chlorophyll fluorescence maxima near 690 and 735 nm. The ratio of blue to red fluorescence, F450/F690, exhibited a clear correlation to the irradiance applied during the growth of the plants. In contrast, the chlorophyll fluorescence ratio, F690/F735, and the ratio of blue to green fluorescence, F450/F530, seem not to be or are only slightly influenced by the irradiance applied during plant growth. The blue fluorescence F450 only slightly decreased, whereas the red chlorophyll fluorescence decreased with increasing irradiance applied during growth of the plants. This, in turn, resulted in greatly increased values of the ratio, F450/F690, from 0.5 – 1.5 to 6.4 – 8.0. The decrease in the chlorophyll fluorescence with increasing irradiance seems to be caused by the accumulation of UV light absorbing substances in the epidermal layer which considerably reduces the UV laser light which passes through the epidermis and excites the chlorophyll fluorescence of the chloroplasts in the subepidermal mesophyll cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号