首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A review. Recently published articles concerning the problem of attention are discussed, the most popular psychophysiological concepts and neurophysiological models of attention are described, and correlation of spatial attention and saccadic eyes movements is shown. The evidence for reflection of attention mechanisms and saccade preparation in intensity and topography of the visual evoked potentials and event-related potentials is given. On the basis of the results obtained by the authors and literature data, the contribution of attention to preparation of a saccade and its programming is shown. Different kinds of attention are reflected in a complex of EEG potentials of various duration and polarity. The analysis of parameters and topography of these potentials can serve a tool for investigation of the attention mechanisms.  相似文献   

2.
The difference in parameters of visually guided and memory-guided saccades was shown. Increase in the memory-guided saccade latency as compared to that of the visually guided saccades may indicate the deceleration of saccadic programming on the basis of information extraction from the memory. The comparison of parameters and topography of evoked components N1 and P1 of the evoked potential on the signal to make a memory- or visually guided saccade suggests that the early stage of the saccade programming associated with the space information processing is performed predominantly with top-down attention mechanism before the memory-guided saccade and bottom-up mechanism before the visually guided saccade. The findings show that the increase in the latency of the memory-guided saccades is connected with decision making at the central stage of the saccade programming. We proposed that wave N2, which develops in the middle of the latent period of the memory-guided saccades, is correlated with this process. Topography and spatial dynamics of components N1, P1 and N2 testify that the memory-guided saccade programming is controlled by the frontal mediothalamic system of selective attention and left-hemispheric brain mechanisms of motor attention.  相似文献   

3.
Previous work has demonstrated that upcoming saccades influence visual and auditory performance even for stimuli presented before the saccade is executed. These studies suggest a close relationship between saccade generation and visual/auditory attention. Furthermore, they provide support for Rizzolatti et al.'s premotor model of attention, which suggests that the same circuits involved in motor programming are also responsible for shifts in covert orienting (shifting attention without moving the eyes or changing posture). In a series of experiments, we demonstrate that saccade programming also affects tactile perception. Participants made speeded saccades to the left and right side as well as tactile discriminations of up versus down. The first experiment demonstrates that participants were reliably faster at responding to tactile stimuli near the location of upcoming saccades. In our second experiment, we had the subjects cross their hands and demonstrated that the effect occurs in visual space (rather than the early representations of touch). In our third experiment, the tactile events usually occurred on the opposite side of upcoming eye movement. We found that the benefit at the saccade target location vanished, suggesting that this shift is not obligatory but that it may be vetoed on the basis of expectation.  相似文献   

4.
We present a model of the eye movement system in which the programming of an eye movement is the result of the competitive integration of information in the superior colliculi (SC). This brain area receives input from occipital cortex, the frontal eye fields, and the dorsolateral prefrontal cortex, on the basis of which it computes the location of the next saccadic target. Two critical assumptions in the model are that cortical inputs are not only excitatory, but can also inhibit saccades to specific locations, and that the SC continue to influence the trajectory of a saccade while it is being executed. With these assumptions, we account for many neurophysiological and behavioral findings from eye movement research. Interactions within the saccade map are shown to account for effects of distractors on saccadic reaction time (SRT) and saccade trajectory, including the global effect and oculomotor capture. In addition, the model accounts for express saccades, the gap effect, saccadic reaction times for antisaccades, and recorded responses from neurons in the SC and frontal eye fields in these tasks.  相似文献   

5.
The locations of visual objects to which we attend are initially mapped in a retinotopic frame of reference. Because each saccade results in a shift of images on the retina, however, the retinotopic mapping of spatial attention must be updated around the time of each eye movement. Mathôt and Theeuwes [1] recently demonstrated that a visual cue draws attention not only to the cue''s current retinotopic location, but also to a location shifted in the direction of the saccade, the “future-field”. Here we asked whether retinotopic and future-field locations have special status, or whether cue-related attention benefits exist between these locations. We measured responses to targets that appeared either at the retinotopic or future-field location of a brief, non-predictive visual cue, or at various intermediate locations between them. Attentional cues facilitated performance at both the retinotopic and future-field locations for cued relative to uncued targets, as expected. Critically, this cueing effect also occurred at intermediate locations. Our results, and those reported previously [1], imply a systematic bias of attention in the direction of the saccade, independent of any predictive remapping of attention that compensates for retinal displacements of objects across saccades [2].  相似文献   

6.
Hypnosis has had a long and controversial history in psychology, psychiatry and neurology, but the basic nature of hypnotic phenomena still remains unclear. Different theoretical approaches disagree as to whether or not hypnosis may involve an altered mental state. So far, a hypnotic state has never been convincingly demonstrated, if the criteria for the state are that it involves some objectively measurable and replicable behavioural or physiological phenomena that cannot be faked or simulated by non-hypnotized control subjects. We present a detailed case study of a highly hypnotizable subject who reliably shows a range of changes in both automatic and volitional eye movements when given a hypnotic induction. These changes correspond well with the phenomenon referred to as the "trance stare" in the hypnosis literature. Our results show that this 'trance stare' is associated with large and objective changes in the optokinetic reflex, the pupillary reflex and programming a saccade to a single target. Control subjects could not imitate these changes voluntarily. For the majority of people, hypnotic induction brings about states resembling normal focused attention or mental imagery. Our data nevertheless highlight that in some cases hypnosis may involve a special state, which qualitatively differs from the normal state of consciousness.  相似文献   

7.
Lee KM  Ahn KH  Keller EL 《PloS one》2012,7(6):e39886
The frontal eye fields (FEF), originally identified as an oculomotor cortex, have also been implicated in perceptual functions, such as constructing a visual saliency map and shifting visual attention. Further dissecting the area's role in the transformation from visual input to oculomotor command has been difficult because of spatial confounding between stimuli and responses and consequently between intermediate cognitive processes, such as attention shift and saccade preparation. Here we developed two tasks in which the visual stimulus and the saccade response were dissociated in space (the extended memory-guided saccade task), and bottom-up attention shift and saccade target selection were independent (the four-alternative delayed saccade task). Reversible inactivation of the FEF in rhesus monkeys disrupted, as expected, contralateral memory-guided saccades, but visual detection was demonstrated to be intact at the same field. Moreover, saccade behavior was impaired when a bottom-up shift of attention was not a prerequisite for saccade target selection, indicating that the inactivation effect was independent of the previously reported dysfunctions in bottom-up attention control. These findings underscore the motor aspect of the area's functions, especially in situations where saccades are generated by internal cognitive processes, including visual short-term memory and long-term associative memory.  相似文献   

8.
Fast negative EEG potentials preceding fast regular saccades and express saccades were studied by the method of backward averaging under conditions of monocular stimulation of the right and left eye. "Step" and "gap" experimental paradigms were used for visual stimulation. Analysis of parameters of potentials and their spatiotemporal dynamics suggests that, under conditions of the increased attention and optimal readiness of the neural structures, express saccades appear when the previously chosen program of the future eye movement coincides with the actual target coordinates. We assumed that the saccade latency decreases at the expense of the involvement of the main oculomotor areas of motor and saccadic planning in its initiation; an express saccade can be initiated also by means of direct transmission of the signal from the cortex to the brainstem saccadic generator passing by the superior colliculus. Moreover, anticipating release from the central fixation and attention distraction are necessary for the successful initiation of an express saccade.  相似文献   

9.
Express saccades predominantly occur in experiments employing the gap paradigm where the target onset is separated from the fixation point offset by a blank period. Their relative frequency is distinctly influenced by catch trials (i.e. trials without a saccadic target) mixed into the stream of regular target trials. Generalizing this concept for other stimulus uncertainties (direction, amplitude), we found that the preparation time of a saccade depends on both the type of uncertainty used and the sequence of trial type (e.g., target vs catch, left vs right) in the experiment. This stimulus sequence effect is most prominent for catch trials. A similar but less pronounced effect can still be observed in the case of direction uncertainty but not in that of amplitude uncertainty. A two-state Markov process model is proposed which is based on the dichotomy of express and regular saccades in the gap paradigm. According to this model the actual state of the saccadic system, which determines the type of saccade just in preparation, depends on the "trial history". The implications for models of saccade programming are discussed. Received: 14 April 1993/Accepted in revised form: 2 July 1993  相似文献   

10.
Humans and other primates are equipped with a foveated visual system. As a consequence, we reorient our fovea to objects and targets in the visual field that are conspicuous or that we consider relevant or worth looking at. These reorientations are achieved by means of saccadic eye movements. Where we saccade to depends on various low-level factors such as a targets’ luminance but also crucially on high-level factors like the expected reward or a targets’ relevance for perception and subsequent behavior. Here, we review recent findings how the control of saccadic eye movements is influenced by higher-level cognitive processes. We first describe the pathways by which cognitive contributions can influence the neural oculomotor circuit. Second, we summarize what saccade parameters reveal about cognitive mechanisms, particularly saccade latencies, saccade kinematics and changes in saccade gain. Finally, we review findings on what renders a saccade target valuable, as reflected in oculomotor behavior. We emphasize that foveal vision of the target after the saccade can constitute an internal reward for the visual system and that this is reflected in oculomotor dynamics that serve to quickly and accurately provide detailed foveal vision of relevant targets in the visual field.  相似文献   

11.
In the present review, we address the relationship between attention and visual stability. Even though with each eye, head and body movement the retinal image changes dramatically, we perceive the world as stable and are able to perform visually guided actions. However, visual stability is not as complete as introspection would lead us to believe. We attend to only a few items at a time and stability is maintained only for those items. There appear to be two distinct mechanisms underlying visual stability. The first is a passive mechanism: the visual system assumes the world to be stable, unless there is a clear discrepancy between the pre- and post-saccadic image of the region surrounding the saccade target. This is related to the pre-saccadic shift of attention, which allows for an accurate preview of the saccade target. The second is an active mechanism: information about attended objects is remapped within retinotopic maps to compensate for eye movements. The locus of attention itself, which is also characterized by localized retinotopic activity, is remapped as well. We conclude that visual attention is crucial in our perception of a stable world.  相似文献   

12.
Learning visuomotor transformations for gaze-control and grasping   总被引:1,自引:0,他引:1  
For reaching to and grasping of an object, visual information about the object must be transformed into motor or postural commands for the arm and hand. In this paper, we present a robot model for visually guided reaching and grasping. The model mimics two alternative processing pathways for grasping, which are also likely to coexist in the human brain. The first pathway directly uses the retinal activation to encode the target position. In the second pathway, a saccade controller makes the eyes (cameras) focus on the target, and the gaze direction is used instead as positional input. For both pathways, an arm controller transforms information on the target’s position and orientation into an arm posture suitable for grasping. For the training of the saccade controller, we suggest a novel staged learning method which does not require a teacher that provides the necessary motor commands. The arm controller uses unsupervised learning: it is based on a density model of the sensor and the motor data. Using this density, a mapping is achieved by completing a partially given sensorimotor pattern. The controller can cope with the ambiguity in having a set of redundant arm postures for a given target. The combined model of saccade and arm controller was able to fixate and grasp an elongated object with arbitrary orientation and at arbitrary position on a table in 94% of trials.  相似文献   

13.
We used backward averaging method to study fast positive presaccadic EEG-potentials under conditions of the monocular stimulation of the leading and nonleading eye. Two schemes of the visual stimulus presentation ("no gap" and "overlap") were used. In the "no gap" condition, potential P1 dominated in the hemispere ipsilateral to a saccade direction. In the "overlap" condition, when the gaze was fixed at the central point, foci of this potential were localized in the sagittal derivations or in the same sites as in the "no gap" conditions. Irrespective on the stimulation scheme, the P2 foci were localized in the hemisphere contralateral to a saccade direction. We assume that the fast positive potentials involve both activation and inhibition processes in visuomotor structures and can be also associated with cognitive presaccadic processes (such as fixation disengage, attention lateralization and a preliminary extraction of motor programs from memory).  相似文献   

14.
The EEG of 10 right-handed healthy subjects preceding saccade and antisaccade with mean values of latency in the eye fixations period were selected and averaged. The positive potential P2 appearing on the fixation stimuly switching on and slow positive wave following after it were more prominent before antisaccades than normal saccades. Space-temporal analyses of presaccadic potentials showed that right frontal cortex was activated more before antisaccades. These findings suggest that right cortical hemisphere dominate in spatial attention and inhibition of automatic saccades to visual stimuli in the period of antisaccades preparing. During the period of central fixations "intermediate" positivity potentials, developing in 600-400 ms prior to saccade or antisaccade onset, were find out. These potentials were predominantly recorded in the left frontal and frontosagittal cortical areas. The obtained evidence suggest that "intermediate" positive potentials a period related to the process of motor attention, anticipation and decision making in the period of eyes fixation.  相似文献   

15.
The latent periods of saccadic eye movements in response to peripheral visual stimuli were measured in 8 right-handed healthy subjects using Posner's paradigm "COST-BENEFIT". In 6 subjects, the saccade latency in response to visual target presented in expected location in valid condition was shorter than that in neutral condition ("benefit"). Increase in saccade latency in response to the visual target presented in unexpected location in valid condition versus neutral condition took place only in 4 subjects ("cost"). A decrease in left-directed saccade latency in response to expected target presented in the left hemifield and increase in saccade latency in response to unexpected left target in comparison with analogous right-directed saccades were observed in valid condition. This phenomenon can be explained by the dominance of the right hemisphere in the processes of spatial orientation and "disengage" of attention.  相似文献   

16.
A FORTRAN IV program is described, which may be run interactively or in batch and which allows a user to obtain the frequency response amplitude ratio and phase resulting from the linear analysis of an eye movement system using sine wave stimuli. The response (eye position) signal may contain components contributed by the saccadic eye movements. The program can digitize analog signals and store data on a magnetic tape. With the aid of digital filters, the program can detect saccades without requiring any input parameters from the user. The program interpolates the saccade interval using a method of least square curve fitting with a sine wave. The interpolation is relatively noise immune and works well regardless of the stimulus frequencies and the width of a saccade interval. Moreover, the program can handle long duration of signals such as 90 min of data which covers about 5 cycles of a 0.001 Hz sine wave signal. Sample runs for the cases of 0.001 and 0.1 Hz are given. The resident driver and the overlayable segments of the program have been implemented on a DEC (Digital Equipment Corp.) LAB-11 minicomputer (PDP 11/20).  相似文献   

17.
In recent years many authors have directed attention to allergic reactivity in mental disease. This problem has been studied with particular depth by O. V. Kerbikov (1) and his associates. (2) Clinical data, as well as, to some degree, laboratory research data demonstrate beyond all question that an allergic component often plays a substantial role in the genesis and shaping of various psychotic conditions. Also providing a basis for study of the problem of allergy in psychiatry are our data of pathophysiological studies in the field of allergy conducted in recent years (3-6), which demonstrate that the major role in the shaping of allergic reactions belongs to the central nervous system and that "nervous tissue may be the object in which the allergic reaction of antigen with antibody occurs" (A. D. Ado). Any pathological process modifies the immunological properties of the organism and causes adaptive defense reactions. Sometimes, under particular conditions, these defensive developments begin to play a pathogenic role. Under the influence of endogenic toxicosis, particularly in schizophrenia, autoantigens may be formed which acquire the nature of auto-or endo-allergens (A. D. Ado), which exercise a very pronounced effect upon the organism, including the central nervous system. In certain circumstances they facilitate the allergic genesis of psychopathological syndromes. The development of antibodies and auto-allergens in mental diseases may also be a consequence of the modification, under the influence of the pathological process and of various drugs, of the "normal flora" relationship characteristic of the given organism, and sometimes the result of this may be auto-infection.  相似文献   

18.
Errors in eye movements can be corrected during the ongoing saccade through in-flight modifications (i.e., online control), or by programming a secondary eye movement (i.e., offline control). In a reflexive saccade task, the oculomotor system can use extraretinal information (i.e., efference copy) online to correct errors in the primary saccade, and offline retinal information to generate a secondary corrective saccade. The purpose of this study was to examine the error correction mechanisms in the antisaccade task. The roles of extraretinal and retinal feedback in maintaining eye movement accuracy were investigated by presenting visual feedback at the spatial goal of the antisaccade. We found that online control for antisaccade is not affected by the presence of visual feedback; that is whether visual feedback is present or not, the duration of the deceleration interval was extended and significantly correlated with reduced antisaccade endpoint error. We postulate that the extended duration of deceleration is a feature of online control during volitional saccades to improve their endpoint accuracy. We found that secondary saccades were generated more frequently in the antisaccade task compared to the reflexive saccade task. Furthermore, we found evidence for a greater contribution from extraretinal sources of feedback in programming the secondary “corrective” saccades in the antisaccade task. Nonetheless, secondary saccades were more corrective for the remaining antisaccade amplitude error in the presence of visual feedback of the target. Taken together, our results reveal a distinctive online error control strategy through an extension of the deceleration interval in the antisaccade task. Target feedback does not improve online control, rather it improves the accuracy of secondary saccades in the antisaccade task.  相似文献   

19.
Thermobiosensors are biosensors, which utilize thermal sensors (thermistors, thermocouple) for measuring changes of heat arising during ferment, immune or metabolic reactions. Thermosensors apply to an estimation of a condition of ferment systems, interactions of immune components, kinetics of a biocatalysis, and also for application in biochemical diagnostics, at definition of quality of products, monitoring of an environment and control of biotechnological processes. In the review the data, concerning of the major principle of development and creation mini- and microthermobiosensors, are given on the basis of modern achievement in the field of technology of micromanufacturing. The various types mini-, micro- and multithermobiosensors, and also their application in separate areas of the biochemical and clinical analysis and monitoring of an environment are surveyed. The development and modern achievement in creation of separate variants thermosensors is in detail described on the basis of thermistors and thermocouples. The place thermosensors in general development of biosensor controls is allocated and the attention to prospect of their further improvement and application is given.  相似文献   

20.
The subcortical saccade-generating system consists of the retina, superior colliculus, cerebellum and brainstem motoneuron areas. The superior colliculus is the site of sensory-motor convergence within this basic visuomotor loop preserved throughout the vertebrates. While the system has been extensively studied, there are still several outstanding questions regarding how and where the saccade eye movement profile is generated and the contribution of respective parts within this system. Here we construct a spiking neuron model of the whole intermediate layer of the superior colliculus based on the latest anatomy and physiology data. The model consists of conductance-based spiking neurons with quasi-visual, burst, buildup, local inhibitory, and deep layer inhibitory neurons. The visual input is given from the superficial superior colliculus and the burst neurons send the output to the brainstem oculomotor nuclei. Gating input from the basal ganglia and an integral feedback from the reticular formation are also included.We implement the model in the NEST simulator and show that the activity profile of bursting neurons can be reproduced by a combination of NMDA-type and cholinergic excitatory synaptic inputs and integrative inhibitory feedback. The model shows that the spreading neural activity observed in vivo can keep track of the collicular output over time and reset the system at the end of a saccade through activation of deep layer inhibitory neurons. We identify the model parameters according to neural recording data and show that the resulting model recreates the saccade size-velocity curves known as the saccadic main sequence in behavioral studies. The present model is consistent with theories that the superior colliculus takes a principal role in generating the temporal profiles of saccadic eye movements, rather than just specifying the end points of eye movements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号