共查询到13条相似文献,搜索用时 0 毫秒
1.
Paula Pluta Pietro Roversi Ganeko Bernardo-Seisdedos Adriana L. Rojas Jonathan B. Cooper Shuang Gu Richard W. Pickersgill Oscar Millet 《Biochimica et Biophysica Acta (BBA)/General Subjects》2018,1862(9):1948-1955
Human porphobilinogen deaminase (PBGD), the third enzyme in the heme pathway, catalyzes four times a single reaction to convert porphobilinogen into hydroxymethylbilane. Remarkably, PBGD employs a single active site during the process, with a distinct yet chemically equivalent bond formed each time. The four intermediate complexes of the enzyme have been biochemically validated and they can be isolated but they have never been structurally characterized other than the apo- and holo-enzyme bound to the cofactor. We present crystal structures for two human PBGD intermediates: PBGD loaded with the cofactor and with the reaction intermediate containing two additional substrate pyrrole rings. These results, combined with SAXS and NMR experiments, allow us to propose a mechanism for the reaction progression that requires less structural rearrangements than previously suggested: the enzyme slides a flexible loop over the growing-product active site cavity. The structures and the mechanism proposed for this essential reaction explain how a set of missense mutations result in acute intermittent porphyria. 相似文献
2.
Porphobilinogen deaminase (PBGD), the third enzyme in the biosynthesis of heme, is deficient in acute intermittent porphyria (AIP). AIP is a genetic disease characterized by neurovisceral and psychiatric disturbances. Despite a palliative treatment, it may still be lethal. An initial step towards gene therapy was recently taken by showing that PBGD could be expressed to correct the enzyme deficiency in AIP fibroblasts. The aim of the present study was to investigate whether the biochemical defect can be corrected by using non-viral gene delivery. The biochemical defect in human and mouse PBGD deficient fibroblasts was demonstrated by analyzing synthesis of the heme precursor, protoporphyrin (PP), after addition of 5-aminolevulinic acid (ALA). Human AIP fibroblasts synthesized 21% and mouse PBGD deficient fibroblasts only 11% of the PP amount synthesized in respective control cells. Gene delivery increased the PBGD activity 88–200 fold in human AIP fibroblasts and synthesis of PP was increased from 21–152% of normal after ALA incubation. Similar results were obtained in mouse PBGD deficient cells, although the PP levels were several-fold lower as compared to human cells. HPLC analysis confirmed that PP was the main porphyrin intermediate that was formed. Addition of porphobilinogen (PBG) resulted in 3–7 fold lower synthesis of PP as compared to ALA addition. These results show that non-viral gene delivery of plasmids encoding PBGD results in a high expression of functional PBGD shown by induced synthesis of PP in PBGD deficient cells after supplementation of ALA and PBG. 相似文献
3.
Helene?J. Bustad Marta Vorland Eva R?nneseth Sverre Sandberg Aurora Martinez Karen Toska 《Bioscience reports》2013,33(4)
The autosomal dominantly inherited disease AIP (acute intermittent porphyria) is caused by mutations in HMBS [hydroxymethylbilane synthase; also known as PBG (porphobilinogen) deaminase], the third enzyme in the haem biosynthesis pathway. Enzyme-intermediates with increasing number of PBG molecules are formed during the catalysis of HMBS. In this work, we studied the two uncharacterized mutants K132N and V215E comparative with wt (wild-type) HMBS and to the previously reported AIP-associated mutants R116W, R167W and R173W. These mainly present defects in conformational stability (R116W), enzyme kinetics (R167W) or both (R173W). A combination of native PAGE, CD, DSF (differential scanning fluorimetry) and ion-exchange chromatography was used to study conformational stability and activity of the recombinant enzymes. We also investigated the distribution of intermediates corresponding to specific elongation stages. It is well known that the thermostability of HMBS increases when the DPM (dipyrromethane) cofactor binds to the apoenzyme and the holoenzyme is formed. Interestingly, a decrease in thermal stability was measured concomitant to elongation of the pyrrole chain, indicating a loosening of the structure prior to product release. No conformational or kinetic defect was observed for the K132N mutant, whereas V215E presented lower conformational stability and probably a perturbed elongation process. This is in accordance with the high association of V215E with AIP. Our results contribute to interpret the molecular mechanisms for dysfunction of HMBS mutants and to establish genotype–phenotype relations for AIP. 相似文献
4.
P V Tishler 《Life sciences》1999,65(2):207-214
Drugs and toxins precipitate life-threatening acute attacks in patients with intermittent acute porphyria. These materials may act by directly inhibiting enzyme activity, thus further reducing porphobilinogen (PBG) deaminase activity below the ca. 50% level that results from the gene defect. To test this, we studied the effects of drugs that precipitate acute attacks (lead, phenobarbital, griseofulvin, phenytoin, sulfanilamide, sulfisoxazole, 17alpha-ethinyl estradiol, 5beta-pregnan-3alpha-ol-20-one), drugs that are safe (lithium, magnesium, chlorpromazine, promethazine), and those with uncertain effects (ethyl alcohol, imipramine, diazepam, haloperidol) on activity of PBG deaminase in vitro and in vivo. In the in vitro studies, of PBG deaminase from human erythrocytes from normals and individuals with IAP, only lead (> or = .01 mM) inhibited enzyme activity. Chlorpromazine (> or = .01 mM), promethazine (> or = .01 mM) and imipramine (1 mM) seemed to increase enzyme activity. In most in vivo experiments, male rats were injected intraperitoneally with test material twice daily for 3 days and once on day four; and erythrocyte and hepatic PBG deaminase activity was assayed thereafter. Effects on enzyme activity were observed only with 17alpha-ethinyl estradiol (0.05 microg/kg/day; reduction of 11% in erythrocyte enzyme [NS], and of 20% in liver enzyme [P=.02]), and imipramine (12.5 mg/kg/day; reduction in erythrocyte enzyme activity of 13% [P<.001]). Rats given lead acetate in their drinking water (10 mg/ml) for the first 60 days of life, resulting in high blood and liver lead levels, had increased erythrocyte PBG deaminase (167% of control; P=.004). Thus, enzyme inhibition by lead in vitro was not reflected in a similar in vivo inhibition. The only inhibitory effects in vivo, with ethinyl estradiol and imipramine, appear to be mild and biologically inconsequential. We conclude that inhibition of PBG deaminase activity by materials that precipitate acute attacks is an unlikely mechanism by which these materials exert their harmful effects in patients with IAP. 相似文献
5.
The three-dimensional structures of orotidine 5'-monophosphate decarboxylases from four different organisms have been determined by X-ray crystallography. The structures reveal an active site in which the pyrimidine base and phosphate groups are rigidly held in place. Surprisingly, both pyrimidine carbonyl groups are hydrogen bonded to amide groups, rather than to strong active site acids, as was previously predicted. The positioning of a conserved aspartate sidechain close to the substrate carboxylate and a conserved lysine ammonium group close to the C6 of the pyrimidine suggests a novel mechanism to explain the extreme catalytic proficiency of this enzyme. 相似文献
6.
Crevice-forming mutants in the rigid core of bovine pancreatic trypsin inhibitor: crystal structures of F22A, Y23A, N43G, and F45A.
下载免费PDF全文

A. T. Danishefsky D. Housset K. S. Kim F. Tao J. Fuchs C. Woodward A. Wlodawer 《Protein science : a publication of the Protein Society》1993,2(4):577-587
Crystal structures of four mutants of bovine pancreatic trypsin inhibitor (F22A, Y23A, N43G, and F45A), engineered to alter their stability properties, have been determined. The mutated residues, which are highly conserved among Kunitz-type inhibitors, are located in the rigid core of the molecule. Replacement of the partially buried bulky residues of the wild-type protein with smaller residues resulted in crevices open to the exterior of the molecule. The overall three-dimensional structure of these mutants is very similar to that of the wild-type protein and only small rearrangements are observed among the atoms lining the crevices. 相似文献
7.
The enzyme inosine monophosphate dehydrogenase (IMPDH) is responsible for the rate-limiting step in guanine nucleotide biosynthesis. Because it is up-regulated in rapidly proliferating cells, human type II IMPDH is actively targeted for immunosuppressive, anticancer, and antiviral chemotherapy. The enzyme employs a random-in ordered-out kinetic mechanism where substrate or cofactor can bind first but product is only released after the cofactor leaves. Due to structural and kinetic differences between mammalian and microbial enzymes, most drugs that are successful in the inhibition of mammalian IMPDH are far less effective against the microbial forms of the enzyme. It is possible that with greater knowledge of the structural mechanism of the microbial enzymes, an effective and selective inhibitor of microbial IMPDH will be developed for use as a drug against multi-drug resistant bacteria and protists. The high-resolution crystal structures of four different complexes of IMPDH from the protozoan parasite Tritrichomonas foetus have been solved: with its substrate IMP, IMP and the inhibitor mycophenolic acid (MPA), the product XMP with MPA, and XMP with the cofactor NAD(+). In addition, a potassium ion has been located at the dimer interface. A structural model for the kinetic mechanism is proposed. 相似文献
8.
Shimon LJ Rabinkov A Shin I Miron T Mirelman D Wilchek M Frolow F 《Journal of molecular biology》2007,366(2):611-625
Alliinase (alliin lyase EC 4.4.1.4), a PLP-dependent alpha, beta-eliminating lyase, constitutes one of the major protein components of garlic (Alliium sativum L.) bulbs. The enzyme is a homodimeric glycoprotein and catalyzes the conversion of a specific non-protein sulfur-containing amino acid alliin ((+S)-allyl-L-cysteine sulfoxide) to allicin (diallyl thiosulfinate, the well known biologically active component of freshly crushed garlic), pyruvate and ammonia. The enzyme was crystallized in the presence of (+S)-allyl-L-cysteine, forming dendrite-like monoclinic crystals. In addition, intentionally produced apo-enzyme was crystallized in tetragonal form. These structures of alliinase with associated glycans were resolved to 1.4 A and 1.61 A by molecular replacement. Branched hexasaccharide chains N-linked to Asn146 and trisaccharide chains N-linked to Asn328 are seen. The structure of hexasaccharide was found similar to "short chain complex vacuole type" oligosaccharide most commonly seen in plant glycoproteins. An unexpected state of the enzyme active site has been observed in the present structure. The electron density in the region of the cofactor made it possible to identify the cofactor moiety as aminoacrylate intermediate covalently bound to the PLP cofactor. It was found in the present structure to be stabilized by large number of interactions with surrounding protein residues. Moreover, the existence of the expected internal aldimine bond between the epsilon-amino group of Lys251 and the aldehyde of the PLP is ruled out on the basis of a distinct separation of electron density of Lys251. The structure of the active site cavity in the apo-form is nearly identical to that seen in the holo-form, with two sulfate ions, an acetate and several water molecules from crystallization conditions that replace and mimic the PLP cofactor. 相似文献
9.
10.
Comparison of the crystal structures of genetically engineered human manganese superoxide dismutase and manganese superoxide dismutase from Thermus thermophilus: differences in dimer-dimer interaction.
下载免费PDF全文

U. G. Wagner K. A. Pattridge M. L. Ludwig W. C. Stallings M. M. Werber C. Oefner F. Frolow J. L. Sussman 《Protein science : a publication of the Protein Society》1993,2(5):814-825
The three-dimensional X-ray structure of a recombinant human mitochondrial manganese superoxide dismutase (MnSOD) (chain length 198 residues) was determined by the method of molecular replacement using the related structure of MnSOD from Thermus thermophilus as a search model. This tetrameric human MnSOD crystallizes in space group P2(1)2(1)2 with a dimer in the asymmetric unit (Wagner, U.G., Werber, M.M., Beck, Y., Hartman, J.R., Frolow, F., & Sussman, J.L., 1989, J. Mol. Biol. 206, 787-788). Refinement of the protein structure (3,148 atoms with Mn and no solvents), with restraints maintaining noncrystallographic symmetry, converged at an R-factor of 0.207 using all data from 8.0 to 3.2 A resolution and group thermal parameters. The monomer-monomer interactions typical of bacterial Fe- and Mn-containing SODs are retained in the human enzyme, but the dimer-dimer interactions that form the tetramer are very different from those found in the structure of MnSOD from T. thermophilus. In human MnSOD one of the dimers is rotated by 84 degrees relative to its equivalent in the thermophile enzyme. As a result the monomers are arranged in an approximately tetrahedral array, the dimer-dimer packing is more intimate than observed in the bacterial MnSOD from T. thermophilus, and the dimers interdigitate. The metal-ligand interactions, determined by refinement and verified by computation of omit maps, are identical to those observed in T. thermophilus MnSOD. 相似文献
11.
Smeets A Marchand C Linard D Knoops B Declercq JP 《Archives of biochemistry and biophysics》2008,477(1):98-104
Peroxiredoxin 5 (PRDX5) belongs to the PRDX superfamily of thiol-dependent peroxidases able to reduce hydrogen peroxide, alkyl hydroperoxides and peroxynitrite. PRDX5 is classified in the atypical 2-Cys subfamily of PRDXs. In this subfamily, the oxidized form of the enzyme is characterized by the presence of an intramolecular disulfide bridge between the peroxidatic and the resolving cysteine residues. We report here three crystal forms in which this intramolecular disulfide bond is indeed observed. The structures are characterized by the expected local unfolding of the peroxidatic loop, but also by the unfolding of the resolving loop. A new type of interface between PRDX molecules is described. The three crystal forms were not oxidized in the same way and the influence of the oxidizing conditions is discussed. 相似文献
12.
Papiz MZ Prince SM Howard T Cogdell RJ Isaacs NW 《Journal of molecular biology》2003,326(5):1523-1538
The structure at 100K of integral membrane light-harvesting complex II (LH2) from Rhodopseudomonas acidophila strain 10050 has been refined to 2.0A resolution. The electron density has been significantly improved, compared to the 2.5A resolution map, by high resolution data, cryo-cooling and translation, libration, screw (TLS) refinement. The electron density reveals a second carotenoid molecule, the last five C-terminal residues of the alpha-chain and a carboxy modified alpha-Met1 which forms the ligand of the B800 bacteriochlorophyll. TLS refinement has enabled the characterisation of displacements between molecules in the complex. B850 bacteriochlorophyll molecules are arranged in a ring of 18 pigments composed of nine approximate dimers. These pigments are strongly coupled and at their equilibrium positions the excited state dipole interaction energies, within and between dimers, are approximately 370cm(-1) and 280cm(-1), respectively. This difference in coupling energy is similar in magnitude to changes in interaction energies arising from the pigment displacements described by TLS tensors. The displacements appear to be non-random in nature and appear to be designed to optimise the modulation of pigment energy interactions. This is the first time that LH2 pigment displacements have been quantified experimentally. The calculated energy changes indicate that there may be significant contributions to inter-pigment energy interactions from molecular displacements and these may be of importance to photosynthetic energy transfer. 相似文献
13.