首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The foraging behavior of a predator species is thought to bethe cause of short-term apparent competition among those preyspecies that share the predator. Short-term apparent competitionis the negative indirect effect that one prey species has onanother prey species via its effects on predator foraging behavior.In theory, the density-dependent foraging behavior of granivorousrodents and their preference for certain seeds are capable of inducing short-term apparent competition among seed species.In this study, I examined the foraging behavior of two heteromyidrodent species (family Heteromyidae), Merriam's kangaroo rats(Dipodomys merriami) and little pocket mice (Perognathus longimembris).In one experiment I tested the preferences of both rodent speciesfor the seeds of eight plant species. Both rodent species exhibiteddistinct but variable preferences for some seeds and avoidanceof others. However, the differences in preference appearedto have only an occasional effect on the strength of the short-term apparent competition detected in a field experiment. In anotherexperiment, I found that captive individuals of both rodentspecies had approximately equal foraging effort (i.e., timespent foraging) in patches that contained a highly preferredseed type (Oryzopsis hymenoides) regardless of seed density and the presence of a less preferred seed type (Astragalus cicer)in the patches. The rodents also harvested a large proportionof O. hymenoides seeds regardless of initial seed density;this precluded a negative indirect effect of A. cicer on O.hymenoides. But there was a negative indirect effect of O.hymenoides on A. cicer caused by rodents having a lower foragingeffort in patches that only contained A. cicer seeds than inpatches that contained A. cicer and O. hymenoides seeds. Theindirect interaction between O. hymenoides and A. cicer thusrepresented a case of short-term apparent competition thatwas non-reciprocal. Most importantly, it was caused by theforaging behavior of the rodents.  相似文献   

2.
Douglas W. Morris 《Oikos》2005,109(2):239-254
Current research contrasting prey habitat use has documented, with virtual unanimity, habitat differences in predation risk. Relatively few studies have considered, either in theory or in practice, simultaneous patterns in prey density. Linear predator–prey models predict that prey habitat preferences should switch toward the safer habitat with increasing prey and predator densities. The density‐dependent preference can be revealed by regression of prey density in safe habitat versus that in the riskier one (the isodar). But at this scale, the predation risk can be revealed only with simultaneous estimates of the number of predators, or with their experimental removal. Theories of optimal foraging demonstrate that we can measure predation risk by giving‐up densities of resource in foraging patches. The foraging theory cannot yet predict the expected pattern as predator and prey populations covary. Both problems are solved by measuring isodars and giving‐up densities in the same predator–prey system. I applied the two approaches to the classic predator–prey dynamics of snowshoe hares in northwestern Ontario, Canada. Hares occupied regenerating cutovers and adjacent mature‐forest habitat equally, and in a manner consistent with density‐dependent habitat selection. Independent measures of predation risk based on experimental, as well as natural, giving‐up densities agreed generally with the equal preference between habitats revealed by the isodar. There was no apparent difference in predation risk between habitats despite obvious differences in physical structure. Complementary studies contrasting a pair of habitats with more extreme differences confirmed that hares do alter their giving‐up densities when one habitat is clearly superior to another. The results are thereby consistent with theories of adaptive behaviour. But the results also demonstrate, when evaluating differences in habitat, that it is crucial to let the organisms we study define their own habitat preference.  相似文献   

3.
Australia has had the highest rate of mammal extinctions in the past two centuries when compared to other continents. Frequently cited threats include habitat loss and fragmentation, changed fire regimes and the impact of introduced predators, namely the red fox (Vulpes vulpes) and the feral cat (Felis catus). Recent studies suggest that Australia's top predator, the dingo (Canis dingo), may have a suppressive effect on fox populations but not on cat populations. The landscape of fear hypothesis proposes that habitat used by prey species comprises high to low risk patches for foraging as determined by the presence and ubiquity of predators within the ecosystem. This results in a landscape of risky versus safe areas for prey species. We investigated the influence of habitat and its interaction with predatory mammals on the occupancy of medium‐sized mammals with a focus on threatened macropodid marsupials (the long‐nosed potoroo [Potorous tridactylous] and red‐legged pademelon [Thylogale stigmatica]). We assumed that differential use of habitats would reflect trade‐offs between food and safety. We predicted that medium‐sized mammals would prefer habitats for foraging that reduce the risk of predation but that predators would have a positive relationship with medium‐sized mammals. We variously used data from 298 camera trap sites across nine conservation reserves in subtropical Australia. Both dingoes and feral cats were broadly distributed, whilst the red fox was rare. Long‐nosed potoroos had a strong positive association with dense ground cover, consistent with using habitat complexity to escape predation. Red‐legged pademelons showed a preference for open ground cover, consistent with a reliance on rapid bounding to escape predation. Dingoes preferred areas of open ground cover whereas feral cats showed no specific habitat preference. Dingoes were positively associated with long‐nosed potoroos whilst feral cats were positively associated with red‐legged pademelons. Our study highlights the importance of habitat structure to these threatened mammals and also the need for more detailed study of their interactions with their predators.  相似文献   

4.
Foraging in animals is often associated with characteristicbody postures, such as the head-down posture. When foragingconflicts with the ability to detect predators or to flee, individualsmay incur a greater risk of mortality to predation than otherwise.Here we investigate the influence of different foraging postures(horizontal versus nose-down body posture) on the ability ofindividuals to respond to approaching predators and on the riskof mortality to predation in the guppy (Poecilia reticulata).Individuals engaged in nose-down foraging were assumed to beable to visually scan a smaller area for predators and to escapeless effectively due to their body posture, and thus are morevulnerable to stalking predators than horizontally foragingones. In a first experiment, we separately exposed nonforaging,horizontally foraging, and nose-down foraging guppies to anapproaching cichlid fish predator model. Nonforaging guppiesreacted sooner to and initiated flight further away from theapproaching model than did foraging fish collectively, and horizontallyforaging individuals responded sooner to the model than nose-downforaging ones. Comparing all test guppies, nose-down foragingindividuals were the most likely not to exhibit any responseto the predator model. When presented with a simultaneous choiceof two guppies behind a one-way mirror, individual blue acaracichlid (Aequidens pulcher), a natural predator of the guppy,preferred to attack foraging guppies over nonforaging ones andnose-down foraging guppies over horizontally foraging individuals.In a final experiment with free-swimming cichlids and guppies,we demonstrated that individual risk of predation for guppiesforaging nose down was greater than for guppies foraging horizontally,and both were at greater risk than nonforaging guppies. Thislatter result is consistent with the above differences in theguppy's responsiveness to approaching predators depending ontheir foraging behavior, and with the finding that cichlid predatorspreferred fish that were less likely to show any response tothem. Our results therefore indicate that the ability to respondto approaching predators and the risk of mortality to predationin the guppy is strongly influenced by their foraging activity,and in particular their foraging posture, and that cichlid predatorspreferentially select less wary and more vulnerable guppies.[BehavEcol 7: 264–271 (1996)]  相似文献   

5.
1. A predator's ability to suppress its prey depends on the level of interference among predators. While interference typically decreases with increasing habitat complexity, it often increases with increasing size differences among individuals. However, little is known about how variation in intrinsic factors such as population size structure alters predator–prey interactions and how this intrinsic variation interacts with extrinsic variation. 2. By experimentally varying the level of vegetation cover and the size structure of the predatory damselfly Ischnura posita Hagen, we examined the individual and interactive effects of variation in habitat complexity and predator size structure on prey mortality. 3. Copepod prey survival linearly increased as the I. posita size ratio decreased and differed by up to 31% among different predator size structures. Size classes had an additive effect on prey survival, most likely because intraspecific aggression appeared size‐independent and size classes differed in microhabitat preference: large I. posita spent 14% more time foraging on the floor than small larvae and spent more time in the vegetation with increasing habitat complexity. Despite this difference in microhabitat use among size classes, habitat structure did not influence predation rates or interference among size classes. 4. In general, results suggest that seasonal and spatial variation in the size structure of populations could drive some of the discrepancies in predator‐mediated prey suppression observed in nature, and this variation could exceed the effects of variation in habitat structure.  相似文献   

6.
How herbivore behaviour is influenced by changes in resource levels is central for understanding trophic interactions. We examined whether foraging tradeoffs change with food levels by comparing habitat selection and space use within and between two neighbouring, predator‐free Svalbard reindeer populations. The populations faced different food levels due to contrasting grazing history. Summer resource selection in radiocollared females was assessed by a multi‐dimensional niche approach based on habitat variables obtained from a satellite image (e.g. the normalised difference vegetation index, NDVI) and a digital terrain model. The population at the overgrazed Brøggerhalvøya faced overall lower plant cover, biomass and primary productivity (i.e. lower NDVI) than the population at Sarsøyra. At Brøggerhalvøya, most reindeer selected for productive habitat when choosing home range and patches within the home range. In contrast, habitat selection at Sarsøyra was more affected by abiotic conditions such as moisture, which may influence plant quality. Here, reindeer used patches with even less biomass than the average reindeer at the poorer Brøggerhalvøya. Such a difference in habitat preference with different habitat availability (a functional response in habitat selection) probably reflected increased selection for high‐quality forage at the expense of high forage quantity at Sarsøyra. Accordingly, a negative relationship between habitat productivity and home range size was only present across individuals within Brøggerhalvøya, where forage quantity was the important foraging niche component. Individuals having poor (and large) home ranges apparently could not compensate for this by higher patch selectivity compared to individuals with richer home ranges. The results indicate changes in foraging tradeoffs at contrasting resource levels and that strong interactions occur between habitat selection, space use and the foraging niche structure in the absence of predation.  相似文献   

7.
Foraging birds can manage time spent vigilant for predators by forming groups of various sizes. However, group size alone will not always reliably determine the optimal level of vigilance. For example, variation in predation risk or food quality between patches may also be influential. In a field setting, we assessed how simultaneous variation in predation risk and intake rate affects the relationship between vigilance and group size in foraging Ruddy Turnstones Arenaria interpres. We compared vigilance, measured as the number of ‘head‐ups’ per unit time, in habitat types that differed greatly in prey energy content and proximity to cover from which predators could launch surprise attacks. Habitats closer to predator cover provided foragers with much higher potential net energy intake rates than habitats further from cover. Foragers formed larger and denser flocks on habitats closer to cover. Individual vigilance of foragers in all habitats declined with increasing flock size and increased with flock density. However, vigilance by foragers on habitats closer to cover was always higher for a given flock size than vigilance by foragers on habitats further from cover, and habitat remained an important predictor of vigilance in models including a range of potential confounding variables. Our results suggest that foraging Ruddy Turnstones can simultaneously assess information on group size and the general likelihood of predator attack when determining their vigilance contribution.  相似文献   

8.
Substrate choice is one of the most important decisions thatsit-and-wait predators must make. Not only may it dictate theprey available but also the cover for the predator which mayconceal it from prey or its own predators. However, while ona particular substrate the behavior and use of that substratemay vary widely. When naïve, newly emerged crab spiderlingsMisumena vatia (Thomisidae) occupied flowering goldenrod Solidagocanadensis, their behavior differed markedly on inflorescenceswith relatively sparse and densely packed flower heads as wellas on experimentally thinned and unthinned inflorescences. Initially,the spiderlings most often hunted at the thinned sites and hidamong the dense flower heads at the unthinned sites, a differencethat disappeared in all broods tested after 2–3 h, possiblybecause of the growing hunger of the initially concealed individuals.Prey capture (dance flies) in the thinned sites initially significantlyexceeded that in unthinned sites but subsequently did not differ.However, spiderlings encountered their principal predator, thejumping spider Pelegrina insignis, significantly more oftenon unthinned than thinned inflorescences. Even though usagepatterns initially differed strikingly, spiderlings did notdiffer in their rates of quitting the two types of sites. Theseresults suggest a trade-off between foraging and predator avoidancethat changes in response to increasing hunger over time.  相似文献   

9.
Summary Numerous studies have demonstrated a negative relationship between increasing habitat complexity and predator foraging success. Results from many of these studies suggest a non-linear relationship, and it has been hypothesised that some threshold level of complexity is required before foraging success is reduced significantly. We examined this hypothesis using largemouth bass (Micropterus salmoides) foraging on juvenile bluegill sunfish (Lepomis macrochirus) in various densities of artificial vegetation. Largemouth foraging success differed significantly among the densities of vegetation tested. Regression analysis revealed a non-linear relationship between increasing plant stem density and predator foraging success. Logistic analysis demonstrated a significant fit of our data to a logistic model, from which was calculated the threshold level of plant stem desity necessary to reduce predator foraging success. Studies with various prey species have shown selection by prey for more complex habitats as a refuge from predation. In this stydy, we also examined the effects of increasing habitat complexity (i.e. plant stem density) on choice of habitat by juvenile bluegills while avoiding predation. Plant stem density significantly effected choice of habitat as a refuge. The relationship between increasing habitat complexity and prey choice of habitat was found to be positive and non-linear. As with predator foraging success, logistic analysis demonstrated a significant fit of our data to a logistic model. Using this model we calculated the threshold level of habitat complexity required before prey select a habitat as a refuge. This density of vegetation proved to be considerably higher than that necessary to significantly reduce predator foraging success, indicating that bluegill select habitats safe from predation.Implications of these results and various factors which may affect the relationships described are discussed.  相似文献   

10.
A tradeoff between energy gain from foraging and safety from predation in refuges is a common situation for many herbivores that are vulnerable to predation while foraging. This tradeoff affects the population dynamics of the plant–herbivore–predator interaction. A new functional response is derived based on the Holling type 2 functional response and the assumption that the herbivore can forage at a rate that maximizes its fitness. The predation rate on the herbivore is assumed to be proportional to the product of the time that the herbivore spends foraging and a risk factor that reflects the habitat complexity; where greater complexity means greater interspersion of high food quality habitat and refuge habitat, which increases the amount of the edge zone between refuge and foraging areas, making foraging safer. The snowshoe hare is chosen as an example to demonstrate the resulting dynamics of an herbivore that has been intensely studied and that undergoes well-known cycling. Two models are studied in which the optimal foraging by hares is assumed, a vegetation–hare–generalist predator model and a vegetation–hare–specialist predator model. In both cases, the results suggest that the cycling of the snowshoe hare population will be greatly moderated by optimal foraging in a habitat consisting of interspersed high quality foraging habitat and refuge habitat. However, there are also large differences in the dynamics produced by the two models as a function of predation pressure.  相似文献   

11.
Competition for food can influence the coexistence of speciesvia habitat selection, and learned behavior can influence foragingdecisions. I investigated whether learned behavior and competitionact together to influence species interactions between threecoexisting hummingbird species: black-chinned (Archilochusalexandri), blue-throated (Lampornis clemenciae), and magnificent(Eugenes fulgens) hummingbirds. I found that color cue useby individuals affects not only their foraging choices butalso population-level responses to competition. I presented hummingbirds two types of habitats (rich and poor feeders).All birds shared a preference for the rich feeders, but shiftedpreference toward poor feeders in response to competition.I used color cues to manipulate the amount of information availableto birds and examined the effects of two information states(complete or incomplete) on their foraging choices. I examined hummingbirds' preferences for the rich feeders when both competitordensities and information varied. To relate foraging choicesto energetic intake, I also analyzed energy gained during asingle foraging bout. Males of all species exhibited strongpreferences for rich feeders when they foraged with complete information and low competitor densities. Without complete information,the two subordinate species (black-chinned and magnificent)shifted preference away from rich feeders in response to highdensities of the dominant species (blue-throated). Each subordinatespecies shifted in a unique way: black-chinned hummingbirdsreduced foraging efficiency, while magnificent hummingbirdsreduced foraging time. Birds foraging with complete information remained selective on rich feeders even at high competitor densities.Thus, learned information affected competitive interactions(for rich feeders) among these species.  相似文献   

12.
Hughes AR  Grabowski JH 《Oecologia》2006,149(2):256-264
Despite increasing evidence that habitat structure can shape predator–prey interactions, few studies have examined the impact of habitat context on interactions among multiple predators and the consequences for combined foraging rates. We investigated the individual and combined effects of stone crabs (Menippe mercenaria) and knobbed whelks (Busycon carica) when foraging on two common bivalves, the hard clam (Mercenaria mercenaria) and the ribbed mussel (Geukensia demissa) in oyster reef and sand flat habitats. Because these species co-occur across these and other estuarine habitats of varying physical complexity, this system is ideal for examining how habitat context influences foraging rates and the generality of predator interactions. Consistent with results from previous studies, consumption rates of each predator in isolation from the other were higher in the sand flat than in the more structurally complex oyster reef habitat. However, consumption by the two predators when combined surprisingly did not differ between the two habitats. This counterintuitive result probably stems from the influence of habitat structure on predator–predator interactions. In the sand-flat habitat, whelks significantly reduced their consumption of their less preferred prey when crabs were present. However, the structurally more complex oyster reef habitat appeared to reduce interference interactions among predators, such that consumption rates when the predators co-occurred did not differ from predation rates when alone. In addition, both habitat context and predator–predator interactions increased resource partitioning by strengthening predator dietary selectivity. Thus, an understanding of how habitat characteristics such as physical complexity influence interactions among predators may be critical to predicting the effects of modifying predator populations on their shared prey.  相似文献   

13.
The spatial, habitat and dietary overlap of two breeding goose species was studied in Sassendalen, Svalbard, in summer 2003 based on abundance within 500 × 500‐m grid squares and faecal diet analyses during pre‐breeding, nesting and post‐hatching periods. More than half of all Pink‐footed Geese Anser brachyrhynchus occurred in the absence of Barnacle Geese Branta leucopsis during nesting and post‐hatching periods compared to c. 20% when concentrated by pre‐breeding snow cover. In contrast, only 5% of Barnacle Geese were observed in the absence of Pink‐footed Geese pre‐breeding, 15% during nesting, and 35% post‐hatching. Among six defined habitat types, Barnacle Geese resorted more to ‘upland’ habitats during pre‐breeding and nesting and to lowland lakes post‐hatching when compared to Pink‐footed Geese. Although Pink‐footed Geese showed less change in seasonal habitat preference, many shifted to the river valley bottom post‐hatching, giving access to open water (predator avoidance) and lush green vegetation (foraging for goslings). The smallest extent of distributional overlap between the two species occurred post‐hatching, but each species was also highly restricted by snow cover during pre‐nesting. The greatest extent of overlap in distribution and diet occurred during incubation, when large dietary variation between different breeding valleys reflected local food availability around nests (probably a result of nest‐site preference rather than food selection per se). Whether this means that increased interactions within and between the two goose species with future increases in local density are most likely to be manifest at this stage of the summer is impossible to determine without knowledge of available food resources and manipulative experiments. More detailed investigations of the effects of foraging by both species on plant structure, quality and community composition are necessary to predict likely outcomes of future changes in population densities of both species.  相似文献   

14.
Geographical variation in wildlife–habitat relationships has seldom been studied. We explored macrohabitat use and geographically distinct responses to habitat availability in the Lesser Spotted Eagle Aquila pomarina near the centre (Lithuania) and on the edge (Estonia) of its European distribution range, and in different zones within Estonia. Land cover types and distances to landscape elements, as well as landscape diversity, were measured around 198 Eagle nests and random forest points. Out of six macrohabitat characteristics, two (landscape diversity, area of optimal foraging habitat) showed no geographical variation in use, or preferences by the Eagle. Whereas variation in the use of suboptimal foraging habitats and forests could be attributed to regional differences in their availability, there were geographically distinct preferences for distances between nests and landscape elements. The species avoided anthropogenic edges in Lithuania but tended even to prefer their proximity in Estonia; Eagles selected nest-sites near remote waterbodies throughout Estonia but there was no such preference in Lithuania. The results did not support the hypothesis that latitudinal or range centre-to-periphery gradients existed in habitat relationships of the species; the main factor behind the geographical variation was probably land-use history. In general, the diversity of geographical effects indicated that extrapolating local habitat relationships to other areas may give erroneous results, and large-scale conservation planning regarding species' habitat may be ineffective.  相似文献   

15.
In the foraging game between gerbils and their predators, gerbils manage risk of predation using the tools of time allocation (where, when and for how long to forage) and vigilance. The optimal level of a forager's vigilance should be affected by its encounter rate with predators and the effectiveness of its vigilance in reducing mortality risk. The physical structure of the environment can alter the effectiveness of its vigilance and therefore alter its foraging behaviour. We tested this for gerbils at risk of predation from barn owls or foxes in a large vivarium. In particular, we reduced the effectiveness of vigilance by placing obstructions around feeding trays that blocked sight lines along either the vertical (vigilance directed against owls) or horizontal axis (vigilance directed against foxes), thereby changing the physical structure of the environment. In addition, we manipulated the presence of foxes and owls. In general, gerbils harvested fewer seeds, allocated less time to foraging in dangerous patches, and used more vigilance while foraging where and when risks were higher (i.e. in the presence of predators and in bright moonlight). Vertical and horizontal sightline treatments interacted synergistically to further raise perceived risk. These results imply that blocking sight lines reduces the effectiveness of vigilance, causing gerbils to use it less. Moreover, in the presence of a predator, the gerbils’ response to the blocked sightlines was more severe – harvesting less food and spending less time and vigilance – in the patches with the increased risk. This was especially so in the presence of the predator that was expected to most benefit from blocking that particular type of sight line: cover that blocked vertical sight lines was riskiest in the presence of owls, and cover that blocked horizontal sight lines was riskiest in the presence of foxes. These results strongly indicate the importance of sightlines and landscape features such as bushes in the risk management and forging decisions of gerbils, demonstrating that bush cover provides mixed blessing to gerbils by providing cover, but making vigilance ineffective.  相似文献   

16.
Interactions with potential competitors are an important componentof habitat quality. Due to the costs of coexistence with competitors,a breeding habitat selection strategy that avoids competitorsis expected to be favored. However, many migratory birds appearto gain benefits from an attraction to the presence of residentbirds, even though residents are assumed to be competitivelydominant. Thus far the mechanisms of this habitat selectionprocess, heterospecific attraction, are unknown, and the consequencesfor resident birds of migrant attraction remain untested. Throughheterospecific attraction, migrants may gain benefits if thedensity or territory location of residents positively reflectshabitat quality, and/or they gain benefits through increasedfrequency of social interactions with residents in foragingor predator detection. In this experiment, we examined the reciprocaleffects of spatial proximity on fitness-related traits in migrantpied flycatcher (Ficedula hypoleuca) and resident great tit(Parus major) by experimentally forcing them to breed eitheralone or in close proximity to each other. Surprisingly, greattits bore all the costs of coexistence while flycatchers wereunaffected, even gaining slight benefits. In concert with anearlier study, these results suggest that flycatchers use titsas information about good-quality nest-site locations whilebenefits from social interactions with tits are possible butless important. We suggest that utilizing interspecific socialinformation may be a common phenomenon between species sharingsimilar resource needs. Our results imply that the effects ofinterspecific information use can be asymmetric and may thereforehave implications for the patterns and consequences of speciescoexistence.  相似文献   

17.
Herbivores are thought to respond to the increased risk of attack by predators during foraging activities by concentrating feeding in safe habitats and by reducing feeding in the presence of predators. We tested these hypotheses by comparing tree seedling predation by meadow voles within large outdoor enclosures treated either with scent of large mammalian predators (red fox, bobcat, coyote) or a control scent (vinegar). In addition, we compared the distribution of voles in relation to naturally occurring variation in vegetation cover and the tendency of voles to attack tree seedlings planted in small patches with cover manipulation (intact, reduced or removed cover). Predator scent did not affect the rate or spatial distribution of tree seedling predation by voles, nor did it affect giving up densities (a surrogate of patch quitting harvest rate), survival rates, body size or habitat distribution of voles. In both predator scent and vinegar treatments voles preferred abundant vegetation providing good cover, which was also the site of almost all tree seedling predation. We conclude that large mammalian predator scent does not influence the perception by voles of the general safety of habitat, which is more strongly affected by the presence of cover.  相似文献   

18.
Marine fishes are often associated with structurally complex microhabitats that are believed to provide a refuge from predation. However, the effects of habitat complexity on predator foraging success can be strongly modified by predator and prey behaviors. We conducted a series of laboratory experiments to evaluate the effects of sea floor habitat complexity on juvenile fish survivorship using multiple predator (striped searobin and summer flounder) and prey (winter flounder, scup, and black sea bass) species to identify potentially important species-habitat interactions. Three habitats of varying complexity (bare sand, shell, and sponge) common to coastal marine environments were simulated in large aquaria (2.4 m diameter, 2400 L volume). Prey survivorship increased significantly with greater habitat complexity for each species combination tested. However, examination of multiple prey and predator species across habitats revealed important effects of predator × habitat and prey × habitat interactions on prey survival, which appeared to be related to species-specific predator and prey behavior in complex habitats. Significant species × habitat interactions imply that the impact of reduced seafloor habitat complexity may be more severe for some species than others. Our results indicate that the general effects of seafloor habitat complexity on juvenile fish survivorship may be broadly applicable, but that the interaction of particular habitats with search tactics of predators as well as habitat affinities and avoidance responses of prey can produce differences among species that contribute to variable mortality.  相似文献   

19.
We studied the way in which a population of tammar wallabies(Macropus eugenii), which have been isolated from mammalianpredators since the last ice age, responded to the sight andsound of historical and ontogenetically and evolutionarilynovel predators. Tammars were shown a range of visual stimuli,including taxidermic mounts of two evolutionarily novel predators,a red fox (Vulpes vulpes) and a cat (Felis catus), and a modelof an extinct predator, the thylacine (Thylacinus cynocephalus).Controls were a conspecific, the cart on which all mounts werepresented, and blank trials in which spontaneous change in behaviorwas measured. We played back recorded sounds to characterizeresponses to acoustic cues from predators and to a putativeconspecific antipredator signal. Treatments included the howlsof dingoes (Canis lupus dingo), an evolutionarily novel predator;calls of a wedge-tailed eagle (Aquila audax), a historicaland current predator; and wallaby foot thumps. Controls werethe song of an Australian magpie (Gymnorhina tibicen) and ablank trial. After seeing a fox, wallabies thumped their hindfeet in alarm, suppressed foraging, and increased looking.The sight of a cat similarly suppressed foraging and increasedlooking. The sounds of predators did not influence responsiveness,but wallabies foraged less and looked more after thump playbacks.Our results suggest that tammars respond to the sight, butnot the sounds, of predators. In contrast, the response to footthumps demonstrates that this particular sound functions asan antipredator signal. We suggest that responsiveness to visualcues has been preserved under relaxed selection because predatormorphology is convergent, but vocalizations are not.  相似文献   

20.
Mate recognition is critical to the maintenance of reproductiveisolation, and animals use an array of sensory modalities toidentify conspecific mates. In particular, olfactory informationcan be an important component of mate recognition systems. Weinvestigated whether odor is involved in mate recognition ina sympatric benthic and limnetic species pair of three-spinedsticklebacks (Gasterosteus spp.), for which visual cues andsignals are known to play a role in premating isolation. Weallowed gravid females of each species to choose between waterscented by a heterospecific male and water scented by a conspecificmale. Benthic females preferred the conspecific male stimuluswater significantly more often than the heterospecific malestimulus water, whereas limnetic females showed no preference.These species thus differ in their odor and may also differin their use of olfaction to recognize conspecific mates. Thesedifferences are likely a consequence of adaptation to disparateenvironments. Differences in diet, foraging mode, habitat, andparasite exposure may explain our finding that odor might bean asymmetric isolating mechanism in these sympatric sticklebackspecies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号