首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 39 毫秒
1.
Enteropathogenic Escherichia coli (EPEC) induce characteristic attaching and effacing (A/E) lesions on epithelial cells. This event is mediated, in part, by binding of the bacterial outer membrane protein, intimin, to a second EPEC protein, Tir (translocated intimin receptor), which is exported by the bacteria and integrated into the host cell plasma membrane. In this study, we have localized the intimin-binding domain of Tir to a central 107-amino-acid region, designated Tir-M. We provide evidence that both the amino- and carboxy-termini of Tir are located within the host cell. In addition, using immunogold labelling electron microscopy, we have confirmed that intimin can bind independently to host cells even in the absence of Tir. This Tir-independent interaction and the ability of EPEC to induce A/E lesions requires an intact lectin-like module residing at the carboxy-terminus of the intimin polypeptide. Using the yeast two-hybrid system and gel overlays, we show that intimin can bind both Tir and Tir-M even when the lectin-like domain is disrupted. These data provide strong evidence that intimin interacts not only with Tir but also in a lectin-like manner with a host cell intimin receptor.  相似文献   

2.
Enteropathogenic Escherichia coli (EPEC) attaches intimately to mammalian cells via a bacterial outer membrane adhesion molecule, intimin, and its receptor in the host cell membrane, Tir. Tir is a bacterial protein translocated into the host cell membrane and tyrosine phosphorylated after insertion. Tir–intimin binding induces organized actin polymerization beneath the adherent bacteria, resulting in the formation of pedestal-like structures. A series of Tir deletion derivatives were constructed to analyse which Tir domains are involved in intimin binding. We have localized the intimin-binding domain (IBD) of Tir using a yeast two-hybrid system and a gel-overlay approach to a region of 109 amino acids that is predicted to be exposed on the surface of the plasma membrane. A truncated Tir protein lacking this domain was translocated to the host cell membrane and tyrosine phosphorylated, but failed to bind intimin or to induce either actin polymerization or Tir accumulation beneath the bacteria. These results indicate that only a small region of Tir is needed to bind intimin and support the predicted topology for Tir, with both N- and C-terminal regions in the mammalian cell cytosol. They also confirm that Tir–intimin interactions are needed for cytoskeletal organization. We have also identified N-terminal regions involved in Tir stability and Tir secretion to the media.  相似文献   

3.
Enteropathogenic Escherichia coli (EPEC) is a bacterial pathogen that causes infantile diarrhea worldwide. EPEC injects a bacterial protein, translocated intimin receptor (Tir), into the host-cell plasma membrane where it acts as a receptor for the bacterial outer membrane protein, intimin. The interaction of Tir and intimin triggers a marked rearrangement of the host actin cytoskeleton into pedestals beneath adherent bacteria. On delivery into host cells, EPEC Tir is phosphorylated on tyrosine 474 of the intracellular carboxy-terminal domain, an event that is required for pedestal formation. Despite its essential role, the function of Tir tyrosine phosphorylation has not yet been elucidated. Here we show that tyrosine 474 of Tir directly binds the host-cell adaptor protein Nck, and that Nck is required for the recruitment of both neural Wiskott-Aldrich-syndrome protein (N-WASP) and the actin-related protein (Arp)2/3 complex to the EPEC pedestal, directly linking Tir to the cytoskeleton. Cells with null alleles of both mammalian Nck genes are resistant to the effects of EPEC on the actin cytoskeleton. These results implicate Nck adaptors as host-cell determinants of EPEC virulence.  相似文献   

4.
Enteropathogenic Escherichia coli (EPEC) translocates effector proteins into mammalian cells to promote reorganization of the cytoskeleton into filamentous actin pedestals. One effector, Tir, is a transmembrane receptor for the bacterial surface adhesin intimin, and intimin binding by the extracellular domain of Tir is required for actin assembly. The cytoplasmic NH2 terminus of Tir interacts with focal adhesion proteins, and its tyrosine-phosphorylated COOH terminus binds Nck, a host adaptor protein critical for pedestal formation. To define the minimal requirements for EPEC-mediated actin assembly, Tir derivatives were expressed in mammalian cells in the absence of all other EPEC components. Replacement of the NH2 terminus of Tir with a viral membrane-targeting sequence promoted efficient surface expression of a COOH-terminal Tir fragment. Artificial clustering of this fusion protein revealed that the COOH terminus of Tir, by itself, is sufficient to initiate a complete signaling cascade leading to pedestal formation. Consistent with this finding, clustering of Nck by a 12-residue Tir phosphopeptide triggered actin tail formation in Xenopus egg extracts.  相似文献   

5.
Enteropathogenic Escherichia coli (EPEC) and enterohemorrhagic E. coli O157:H7 (EHEC) form characteristic lesions on infected mammalian cells called actin pedestals. Each of these two pathogens injects its own translocated intimin receptor (Tir) molecule into the plasma membranes of host cells. Interaction of translocated Tir with the bacterial outer membrane protein intimin is required to trigger the assembly of actin into focused pedestals beneath bound bacteria. Despite similarities between the Tir molecules and the host components that associate with pedestals, recent work indicates that EPEC and EHEC Tir are not functionally interchangeable. For EPEC, Tir-mediated binding of Nck, a host adaptor protein implicated in actin signaling, is both necessary and sufficient to initiate actin assembly. In contrast, for EHEC, pedestals are formed independently of Nck, and require translocation of bacterial factors in addition to Tir to trigger actin signaling.  相似文献   

6.
Attachment to host cells by enterohaemorrhagic Escherichia coli (EHEC) is associated with the formation of a highly organized cytoskeletal structure containing filamentous actin, termed an attaching and effacing (AE) lesion. Intimin, an outer membrane protein of EHEC, is required for the formation of AE lesions, as is Tir, a bacterial protein that is translocated into the host cell to function as a receptor for intimin. We established a yeast two-hybrid assay for intimin-Tir interaction and, after random mutagenesis, isolated 24 point mutants in intimin, which disrupted Tir recognition in this system. Analysis of 11 point mutants revealed a correlation between recognition of recombinant Tir and the ability to trigger AE lesions. Many of the mutations fell within a 50-residue region near the C-terminus of intimin. Alanine-scanning mutagenesis of this region revealed four residues (Ser890, Thr909, Asn916 and Asn927) that are critical for Tir recognition. Mapping the sequences of EHEC intimin and Tir onto the crystal structure of the intimin-Tir complex of enteropathogenic E. coli predicts that each of these four intimin residues lies at the intimin-Tir interface and contributes to a pocket that interacts with Ile298 of EHEC Tir. Thus, this genetic approach to intimin function both identified residues critical for Tir binding and demonstrated a correlation between the ability to bind Tir and the ability to trigger actin focusing.  相似文献   

7.
Intimin is a bacterial adhesion molecule involved in intimate attachment of enteropathogenic and enterohaemorrhagic Escherichia coli to mammalian host cells. Intimin targets the translocated intimin receptor (Tir), which is exported by the bacteria and integrated into the host cell plasma membrane. In this study we localized the Tir-binding region of intimin to the C-terminal 190 amino acids (Int190). We have also determined the region's high-resolution solution structure, which comprises an immunoglobulin domain that is intimately coupled to a novel C-type lectin domain. This fragment, which is necessary and sufficient for Tir interaction, defines a new super domain in intimin that exhibits striking structural similarity to the integrin-binding domain of the Yersinia invasin and C-type lectin families. The extracellular portion of intimin comprises an articulated rod of immunoglobulin domains extending from the bacterium surface, conveying a highly accessible 'adhesive tip' to the target cell. The interpretation of NMR-titration and mutagenesis data has enabled us to identify, for the first time, the binding site for Tir, which is located at the extremity of the Int190 moiety.  相似文献   

8.
Enteropathogenic Escherichia coli (EPEC) and enterohaemorrhagic E. coli (EHEC) each promote the reorganization of actin into filamentous pedestal structures beneath attached bacteria during colonization of the intestinal epithelium. Central to this process is the translocation of the protein Tir (translocated intimin receptor) into the plasma membrane of host cells, where it interacts with the bacterial outer membrane protein intimin and triggers cellular signalling events that lead to actin rearrangement. Actin signalling by EPEC Tir requires a tyrosine residue, Y474, which is phosphorylated in the host cell. In contrast, EHEC Tir lacks this residue and generates pedestals independently of tyrosine phosphorylation. Consistent with this difference, recent work indicates that EHEC Tir cannot functionally replace EPEC Tir. To identify the role that tyrosine phosphorylation of EPEC Tir plays in actin signalling, we generated chimeric EHEC/EPEC Tir proteins and identified a 12-residue sequence of EPEC Tir containing Y474 that confers actin-signalling capabilities to EHEC Tir when the chimera is expressed in EPEC. Nck, a mammalian adaptor protein that has been implicated in the initiation of actin signalling, binds to this sequence in a Y474 phosphorylation-dependent manner and is recruited to the pedestals of EPEC, but not of EHEC.  相似文献   

9.
When enteropathogenic Escherichia coli (EPEC) attach and infect host cells, they induce a cytoskeletal rearrangement and the formation of cytoplasmic columns of actin filaments called pedestals. The attached EPEC and pedestals move over the surface of the host cell in an actin-dependent reaction [Sanger et al., 1996: Cell Motil Cytoskeleton 34:279-287]. The discovery that EPEC inserts the protein, translocated intimin receptor (Tir), into the membrane of host cells, where it binds the EPEC outer membrane protein, intimin [Kenny et al., 1997: Cell 91:511-520], suggests Tir serves two functions: tethering the bacteria to the host cell and providing a direct connection to the host's cytoskeleton. The sequence of Tir predicts a protein of 56.8 kD with three domains separated by two predicted trans-membrane spanning regions. A GST-fusion protein of the N-terminal 233 amino acids of Tir (Tir1) binds to alpha-actinin, talin, and vinculin from cell extracts. GST-Tir1 also coprecipitates purified forms of alpha-actinin, talin, and vinculin while GST alone does not bind these three focal adhesion proteins. Biotinylated probes of these three proteins also bound Tir1 cleaved from GST. Similar associations of alpha-actinin, talin, and vinculin were also detected with the C-terminus of Tir, i.e., Tir3, the last 217 amino acids. Antibody staining of EPEC-infected cultured cells reveals the presence of focal adhesion proteins beneath the attached bacteria. Our experiments support a model in which the cytoplasmic domains of Tir recruit a number of focal adhesion proteins that can bind actin filaments to form pedestals. Since pedestals also contain villin, tropomyosin and myosin II [Sanger et al., 1996: Cell Motil. Cytoskeleton 34:279-287], the pedestals appear to be a novel structure sharing properties of both focal adhesions and microvilli.  相似文献   

10.
Subversion of host cell actin microfilaments is the hallmark of enterohaemorrhagic (EHEC) and enteropathogenic (EPEC) Escherichia coli infections. Both pathogens translocate the trans-membrane receptor protein-translocated intimin receptor (Tir), which links the extracellular bacterium to the cell cytoskeleton. While both converge on neural Wiskott-Aldrich syndrome protein (N-WASP), Tir-mediated actin accretion by EPEC and EHEC differ in that Tir(EPEC) requires both tyrosine phosphorylation and the host adaptor protein Nck, whereas Tir(EHEC) is not phosphorylated and utilizes an unidentified linker. Here we report the identification of Tir-cytoskeleton coupling protein (TccP), a novel EHEC effector that displays an Nck-like coupling activity following translocation into host cells. A tccP mutant did not affect Tir translocation and focusing but failed to recruit alpha-actinin, Arp3, N-WASP and actin to the site of bacterial adhesion. When expressed in EPEC, bacterial-derived TccP restored actin polymerization activity following infection of an Nck-deficient cell line. TccP has a similar biological activity on infected human intestinal explants ex vivo. Purified TccP activates N-WASP stimulating, in the presence of Arp2/3, actin polymerization in vitro. These results show that EHEC translocates both its own receptor (Tir) and an Nck-like protein (TccP) to facilitate actin polymerization.  相似文献   

11.
Enteropathogenic Escherichia coli (EPEC) causes diarrhoeal disease worldwide. Pathogen adherence to host cells induces reorganization of the actin cytoskeleton into 'pedestal-like' pseudopods beneath the extracellular bacteria. This requires two bacterial virulence factors that mimic a ligand-receptor interaction. EPEC delivers its own receptor, the translocated intimin receptor (Tir), into the target cell plasma membrane, which is phosphorylated on interaction with the bacterial surface protein intimin. Tir phosphorylated on Tyr 474 (ref. 4) binds the cellular adaptor Nck, triggering actin polymerization. Nevertheless, despite its critical role, the mechanism of Tir Tyr 474 phosphorylation remains unknown. Here, by artificially uncoupling Tir delivery and activity, we show that Tir phosphorylation and Nck-dependent pedestal formation require the Src-family kinase (SFK) c-Fyn. SFK inhibitors prevent Tyr 474 phosphorylation, and cells lacking c-fyn are resistant to pedestal formation. c-Fyn exclusively phosphorylates clustered Tir in vitro, and kinase knockdown suppresses Tir phosphorylation and pedestal formation in cultured cells. These results identify the transient interaction with host c-Fyn as a pivotal link between bacterial Tir and the cellular Nck-WASP-Arp2/3 cascade, illuminating a tractable experimental system in which to dissect tyrosine kinase signalling.  相似文献   

12.
Enterohaemorrhagic Escherichia coli (EHEC) and enteropathogenic E. coli (EPEC) induce drastic reorganization of the microfilament cytoskeleton. EHEC and EPEC translocate Tir (translocated intimin receptor) which, once inserted into the host plasma membrane, binds the bacterial outer membrane adhesin intimin. Tir(EPEC) then becomes tyrosine phosphorylated facilitating the recruitment and site-specific binding of the eukaryotic adaptor Nck, which in turn binds and activates the Wiskott-Aldrich syndrome protein (N-WASP), leading to actin-related protein 2/3 (Arp2/3) complex-mediated actin polymerization. In contrast, Tir(EHEC) has no Nck binding site; instead, EHEC utilizes the translocated effector TccP (Tir-cytoskeleton coupling protein) to bind and activate N-WASP. Here we report a novel class of EPEC that translocates both TccP and Tir(EPEC)-like effector molecules. Consistent with these characteristics, we show that both the Tir-Nck and Tir:TccP actin remodelling pathways function simultaneously during infection, making this a novel and versatile EPEC category.  相似文献   

13.
Enteropathogenic Escherichia coli (EPEC) triggers a dramatic rearrangement of the host epithelial cell actin cytoskeleton to form an attaching and effacing lesion, or pedestal. The pathogen remains attached extracellularly to the host cell through the pedestal for the duration of the infection. At the tip of the pedestal is a bacterial protein, Tir, which is secreted from the bacterium into the host cell plasma membrane, where it functions as the receptor for an EPEC outer membrane protein, intimin [1]. Delivery of Tir to the host cell results in its tyrosine phosphorylation, followed by Tir-intimin binding. Tir is believed to anchor EPEC firmly to the host cell, although its direct linkage to the cytoskeleton is unknown. Here, we show that Tir directly binds the cytoskeletal protein alpha-actinin. alpha-Actinin is recruited to the pedestal in a Tir-dependent manner and colocalizes with Tir in infected host cells. Binding is mediated through the amino terminus of Tir. Recruitment of alpha-actinin occurs independently of Tir tyrosine phosphorylation. Recruitment of actin, VASP, and N-WASP, however, is abolished in the absence of this tyrosine phosphorylation. These results suggest that Tir plays at least three roles in the host cell during infection: binding intimin on EPEC; mediating a stable anchor with alpha-actinin through its amino terminus in a phosphotyrosine-independent manner; and recruiting additional cytoskeletal proteins at the carboxyl terminus in a phosphotyrosine-dependent manner. These findings demonstrate the first known direct linkage between extracellular EPEC, through the transmembrane protein Tir, to the host cell actin cytoskeleton via alpha-actinin.  相似文献   

14.
Enterohaemorrhagic Escherichia coli (EHEC) has emerged as an important agent of diarrhoeal disease. Attachment to host cells, an essential step during intestinal colonization by EHEC, is associated with the formation of a highly organized cytoskeletal structure containing filamentous actin, termed an attaching and effacing (A/E) lesion, directly beneath bound bacteria. The outer membrane protein intimin is required for the formation of this structure, as is Tir, a bacterial protein that is translocated into the host cell and is thought to function as a receptor for intimin. To understand intimin function better, we fused EHEC intimin to a homologous protein, Yersinia pseudotuberculosis invasin, or to maltose-binding protein. The N-terminal 539 amino acids of intimin were sufficient to promote outer membrane localization of the C-terminus of invasin and, conversely, the N-terminal 489 amino acids of invasin were sufficient to promote the localization of the C-terminus of intimin. The C-terminal 181 residues of intimin were sufficient to bind mammalian cells that had been preinfected with an enteropathogenic E. coli strain that expresses Tir but not intimin. Binding of intimin derivatives to preinfected cells correlated with binding to recombinant Tir protein. Finally, the 181-residue minimal Tir-binding region of intimin, when purified and immobilized on latex beads, was sufficient to trigger A/E lesions on preinfected mammalian cells.  相似文献   

15.
Enteropathogenic Escherichia coli (EPEC) is a bacterial pathogen that infects the epithelial lining of the small intestine and causes diarrhea. Upon attachment to the intestinal epithelium, EPEC uses a Type III Secretion System to inject its own high affinity receptor Translocated intimin receptor (Tir) into the host cell. Tir facilitates tight adhesion and recruitment of actin-regulating proteins leading to formation of an actin pedestal beneath the infecting bacterium. The pedestal has several similarities with podosomes, which are basolateral actin-rich extensions found in some migrating animal cells. Formation of podosomes is dependent upon the early podosome-specific scavenger protein Tks5, which is involved in actin recruitment. Although Tks5 is expressed in epithelial cells, and podosomes and EPEC pedestals share many components in their structure and mechanism of formation, the potential role of Tks5 in EPEC infections has not been studied. The aim of this study was to determine the subcellular localization of Tks5 in epithelial cells and to investigate if Tks5 is recruited to the EPEC pedestal. In an epithelial MDCK cell line stably expressing Tks5-EGFP, Tks5 localized to actin bundles. Upon infection, EPEC recruited Tks5-EGFP. Tir, but not Tir phosphorylation was essential for the recruitment. Time-lapse microscopy revealed that Tks5-EGFP was recruited instantly upon EPEC attachment to host cells, simultaneously with actin and N-WASp. EPEC infection of cells expressing a ΔPX-Tks5 deletion version of Tks5 showed that EPEC was able to both infect and form pedestals when the PX domain was deleted from Tks5. Future investigations will clarify the role of Tks5 in EPEC infection and pedestal formation.  相似文献   

16.
Citrobacter rodentium infection of mice serves as a relevant small animal model to study enterohaemorrhagic Escherichia coli (EHEC) and enteropathogenic E. coli (EPEC) infections in man. Enteropathogenic E. coli and EHEC translocate Tir into the host cytoplasmic membrane, where it serves as the receptor for the bacterial adhesin intimin and plays a central role in actin condensation beneath the adherent bacterium. In this report, we examined the function of C. rodentium Tir both in vitro and in vivo. Similar to EPEC, C. rodentium Tir is tyrosine phosphorylated and is essential for actin condensation. Citrobacter Tir and EPEC Tir are functionally interchangeable and both require tyrosine phosphorylation to mediate actin rearrangements. In contrast, Citrobacter Tir supports actin nucleation in EHEC independent of tyrosine phosphorylation, while EHEC Tir cannot replace Citrobacter Tir for this function. This indicates that C. rodentium and EPEC use an actin nucleating mechanism different from EHEC. We also found that Tir is expressed and translocated into mouse enterocytes in vivo by C. rodentium during infections. This represents the first direct demonstration of a type III effector translocated in vivo into a natural host by any pathogen. In addition, we showed that Tir, but not its tyrosine phosphorylation, is essential for C. rodentium to colonize the large bowel and induce attaching/effacing (A/E) lesions and colonic hyperplasia in mice, and that both EPEC Tir and EHEC Tir can substitute for Citrobacter Tir for these activities in vivo. These results thus demonstrate that Tir is an essential virulence factor in this infection model. The data also show that the function of Tir tyrosine phosphorylation and its subsequent actin nucleating activity are not essential for C. rodentium colonization of the mouse gut nor for inducing A/E lesions and colonic hyperplasia, thereby uncoupling colonization and disease from actin condensation for this A/E pathogen.  相似文献   

17.
The pathogenesis of enteropathogenic Escherichia coli (EPEC) is characterized by the type III secretion system-dependent exploitation of target cells that results in attaching and effacing (A/E) lesions, actin rearrangements and pedestal formation. This pathology is mediated by effector proteins which are translocated by the type III secretion system into the host cell such as the translocated intimin receptor (Tir) and several E. coli secreted proteins (Esp). Secretion of virulence proteins of EPEC is tightly regulated. In response to Ca(2+), Esp secretion is drastically reduced, whereas secretion of Tir is increased. Membrane insertion of Tir, secreted under low Ca(2+) conditions, is therefore independent of Esp. Furthermore, espB and espD mutant strains of EPEC, unable to form the translocation pore, still translocate Tir into host cells membranes. This autointegrated Tir is functional, as it is able to complement a tir mutant strain in recruiting actin to bacterial contact sites. The uptake of Tir into the host cell appears to depend on the C-terminal part of the protein, as deletion of this part of Tir prevents autointegration. Together, our results demonstrate that under conditions of limited Ca(2+) an alternative mechanism for Tir integration can trigger the induction of A/E lesions.  相似文献   

18.
Enteropathogenic Escherichia coli (EPEC) attach to the plasma membrane of infected host cells and induce diarrhea in a variety of farm animals as well in humans. These bacteria inject a three-domain protein receptor, Tir (translocated intimin receptor), that is subsequently inserted into the plasma membrane. EPEC induce the host cell to form membrane-covered actin-rich columns called pedestals. Focal adhesion constituents, alpha-actinin, talin, and vinculin, are localized along the length of the pedestals and we have previously reported they bind the two cytoplasmic domains of Tir, (Tir I and Tir III) [Freeman et al., 2000: Cell Motil. Cytoskeleton 47:307-318]. In the present study, various constructs were made expressing different regions of these three focal adhesion proteins to determine which domains of the proteins bound Tir I. Three different assays were used to detect Tir I/host protein domain interactions. In co-precipitation assays, His-Tir I bound to the 27-kDa region of alpha-actinin; to four different domains of talin; and to the N-terminal domain of the vinculin head and the vinculin tail domain. A yeast two-hybrid analysis of Tir I and the various focal adhesion fusion proteins revealed a region near the C-terminus of talin was the only domain to interact with Tir I. Finally, to assess direct binding interactions, biotinylated Tir I was used in overlay assays and confirmed the binding of Tir I with the 27-kDa region of alpha-actinin, the four regions of talin, and the vinculin tail. These binding interactions between hostfocal adhesion proteins and EPEC Tir may facilitate the adhesion of EPEC to the host cell surface.  相似文献   

19.
Subversion of the host cell cytoskeleton is the hallmark of enterohaemorrhagic Escherichia coli (EHEC) infection. EHEC translocates the trans -membrane receptor protein Tir (translocated intimin receptor), which links the extracellular bacterium to the eukaryotic cell actin cytoskeleton, triggering formation of actin-rich pedestals beneath adherent bacteria. Tir-mediated actin accretion by EHEC requires TccP (Tir cytoskeleton coupling protein), a recently discovered type III secretion system effector protein which, following translocation, binds and activates Wiskott–Aldrich syndrome protein (N-WASP), which in turn activates the actin-related protein 2/3 complex leading to localized polymerization of actin. In this study, truncated N-WASP and TccP derivatives were generated and tested in in vitro actin polymerization and epithelial cell infection assays. The C-terminal amino acids 253–276 of the GTPase binding domain (GBD) of N-WASP were identified as essential, although not sufficient, for TccP:N-WASP protein:protein interaction, TccP-mediated N-WASP activation and induction of actin polymerization. TccP from EHEC O157:H7 strain EDL933 consists of a unique N-terminal domain and six proline-rich repeats. Progressive deletions within the N-terminus of TccP revealed that residues 1–21 are necessary and sufficient for its translocation, while amino acids 1–181, encompassing the N-terminal translocation signal and two proline-rich repeats, are sufficient for triggering actin polymerization in EHEC-infected epithelial cells and in in vitro actin polymerization assays. This study defines the modular domain structure of TccP and the molecular basis of TccP-mediated N-WASP activation and EHEC-induced remodelling of the host actin cytoskeleton.  相似文献   

20.
Enteropathogenic Escherichia coli (EPEC) infects intestinal epithelial cells and perturbs the intestinal barrier that limits the paracellular movement of molecules. The disruption of the barrier is mediated by the effectors translocated into the host cells through the bacterial type III secretion system (TTSS). A previous report has described the importance of a bacterial outer membrane protein, intimin, in EPEC-mediated disruption of the barrier, and proposed that intimin, in concert with a host intimin receptor, controls the activity of the translocated barrier-disrupting effectors [P. Dean, B. Kenny, Intestinal barrier dysfunction by enteropathogenic Escherichia coli is mediated by two effector molecules and a bacterial surface protein, Mol. Microbiol. 54 (2004) 665-675]. In this study, we found that the importance of intimin is in its ability to bind a bacterial intimin receptor, Tir. Additionally, the impaired ability of an intimin-negative mutant was not restored by co-infection with intimin-expressing TTSS mutants. Collectively, the results in this study favor an alternative scenario explaining the importance of intimin, that the binding of intimin with Tir on the bacterial surface triggers or promotes the translocation of factors required for the efficient disruption of the barrier. Thus, the interaction of intimin with Tir may serve as a molecular switch that controls the delivery of virulence factors into the host cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号