共查询到20条相似文献,搜索用时 0 毫秒
1.
Myra Kinalwa Ewan W Blanch Andrew J Doig 《Protein science : a publication of the Protein Society》2011,20(10):1668-1674
Knowledge of the fold class of a protein is valuable because fold class gives an indication of protein function and evolution. Fold class can be accurately determined from a crystal structure or NMR structure, though these methods are expensive, time-consuming, and inapplicable to all proteins. In contrast, vibrational spectra [infra-red, Raman, or Raman optical activity (ROA)] are rapidly obtained for proteins under wide range of biological molecules under diverse experimental and physiological conditions. Here, we show that the fold class of a protein can be determined from Raman or ROA spectra by converting a spectrum into data of 10 cm−1 bin widths and applying the random forest machine learning algorithm. Spectral data from 605 and 1785 cm−1 were analyzed, as well as the amide I, II, and III regions in isolation and in combination. ROA amide II and III data gave the best performance, with 33 of 44 proteins assigned to one of the correct four top-level structural classification of proteins (SCOP) fold class (all α, all β, α and β, and disordered). The method also shows which spectral regions are most valuable in assigning fold class. 相似文献
2.
Two synthetic peptides, SNasealpha1 and SNasealpha2, corresponding to residues G55-I72 and K97-A109, respectively, of staphylococcal nuclease (SNase), are adopted for detecting the role of helix alpha1 (E57-A69) and helix alpha2 (M98-Q106) in the initiation of folding of SNase. The helix-forming tendencies of the two SNase peptide fragments are investigated using circular dichroism (CD) and two-dimensional (2D) nuclear magnetic resonance (NMR) methods in water and 40% trifluoroethanol (TFE) solutions. The coil-helix conformational transitions of the two peptides in the TFE-H2O mixture are different from each other. SNasealpha1 adopts a low population of localized helical conformation in water, and shows a gradual transition to helical conformation with increasing concentrations of TFE. SNasealpha2 is essentially unstructured in water, but undergoes a cooperative transition to a predominantly helical conformation at high TFE concentrations. Using the NMR data obtained in the presence of 40% TFE, an ensemble of alpha-helical structures has been calculated for both peptides in the absence of tertiary interactions. Analysis of all the experimental data available indicates that formation of ordered alpha-helical structures in the segments E57-A69 and M98-Q106 of SNase may require nonlocal interactions through transient contact with hydrophobic residues in other parts of the protein to stabilize the helical conformations in the folding. The folding of helix alpha1 is supposed to be effective in initiating protein folding. The formation of helix alpha2 depends strongly on the hydrophobic environment created in the protein folding, and is more important in the stabilization of the tertiary conformation of SNase. 相似文献
3.
We present a minimal model for proteins, which is able to capture the structural conversion between the alpha-helix and beta-hairpin. In most regimes of the parameter space, the model produces a stable structure at a low temperature; in a few limited regimes of the parameter space, the model displays an beta-hairpin transition as the physical conditions vary. These variations include a perturbation on hydrogen bonding propensity at the middle of the modeled chain, or the change of the hydrophobicity of a designated pair along the chain. Using Monte Carlo simulations, we demonstrate the structural conversion by means of state diagrams, heat capacity maps, and free energy maps. 相似文献
4.
Vibrational circular dichroism (VCD) spectra for the glycoproteins alpha1-acid glycoprotein (AGP) and bovine submaxillary mucin (BSM), have been measured in D2O solutions and for the films prepared from aqueous (H2O) buffer solutions in the 1800 to 900 cm(-1) region. The solution VCD results revealed that AGP has beta-sheet structure, along with a significant amount of alpha-helix as evidenced from a W pattern in the amide I region. The VCD of BSM solution suggested a polyproline II type structure, characterized by the appearance of strong negative couplet in the amide I region. The film VCD results on AGP and BSM suggested that the secondary structures of polypeptide fold in the film state are similar to those in the solution. The absence of any significant film VCD in the low frequency region (1200-900 cm(-1)), suggested that the dominant linkage for carbohydrate residues is likely to be a beta linkage. VCD spectroscopy gains importance in the secondary structural analysis of polypeptide fold in glycoproteins due to the absence of interfering VCD from the carbohydrate residues in the conformationally sensitive amide I region. Also, film VCD studies permit measurements in the low wavenumber region (1200-900 cm(-1)) that reveal the dominant type of linkage for carbohydrate residues. Such clear structural information is unlike that from ECD, where ECD bands of acylated amino sugar residues interfere with those of polypeptide backbone in the conformationally sensitive far-UV region. 相似文献
5.
The physiological function of the prion protein (PrP(C) ) and its conversion into its infectious form (PrP(Sc) ) are central issues to understanding the pathogenesis of prion diseases. The N-terminal moiety of PrP(C) (NH(2) -PrP(C) ) is an unstructured region with the characteristic of interacting with a broad range of partners. These interactions endow PrP(C) with multifunctional and sometimes contrasting capabilities, including neuroprotection and neurotoxicity. Recently, binding of β-sheet rich conformers to NH(2) -PrP(C) demonstrated a probable neurotoxic function for PrP(C) in Alzheimer's disease. NH(2) -PrP(C) also enhances the propagation of prions in vivo and is the target of the most potent antiprion compounds. Another level of complexity is provided by endoproteolysis and release of most of NH(2) -PrP(C) into the extracellular space. Further studies will be necessary to understand how NH(2) -PrP(C) regulates the physiological function of PrP(C) and how it is involved in the corruption of its normal function in diseases. 相似文献
6.
The relative stability of alpha-helix and beta-sheet secondary structure in the solid state was investigated using poly(L-alanine) (PLA) as a model system. Protein folding and stability has been well studied in solution, but little is known about solid-state environments, such as the core of a folded protein, where peptide packing interactions are the dominant factor in determining structural stability. (13)C cross-polarization with magic angle spinning (CPMAS) NMR spectroscopy was used to determine the backbone conformation of solid powder samples of 15-kDa and 21.4-kDa PLA before and after various sample treatments. Reprecipitation from helix-inducing solvents traps the alpha-helical conformation of PLA, although the method of reprecipitation also affects the conformational distribution. Grinding converts the secondary structure of PLA to a final steady-state mixture of 55% beta-sheet and 45% alpha-helix at room temperature regardless of the initial secondary structure. Grinding PLA at liquid nitrogen temperatures leads to a similar steady-state mixture with 60% beta-sheet and 40% alpha-helix, indicating that mechanical shear force is sufficient to induce secondary structure interconversion. Cooling the sample in liquid nitrogen or subjecting it to high pressure has no effect on secondary structure. Heating the sample without grinding results in equilibration of secondary structure to 50% alpha-helix/50% beta-sheet at 100 degrees C when starting from a mostly alpha-helical state. No change was observed upon heating a beta-sheet sample, perhaps due to kinetic effects and the different heating rate used in the experiments. These results are consistent with beta-sheet approximately 260 J/mol more stable than alpha-helix in solid-state PLA. 相似文献
7.
Oligopeptide-mediated helix stabilization of peptides in hydrophobic solutions was previously found by NMR and CD spectroscopic studies. The oligopeptide included the hydrophobic amino acids found in its parent peptide and were interposed by relevant basic oracidic amino acids. The strength of the interactions depended on the amino acid sequences. However, no helix-stabilizing effect was seen for the peptides in phosphate buffer solution, because the peptides assumed a random-coil structure. In order to ascertain whether the helix-stabilizing effect of an oligopeptide on its parent peptide could operate in aqueous solution, model peptides EK17 (Ac-AEAAAAEAAAKAAAAKA-NH2) and IFM17 (Ac-AEAAAAEIFMKAAAAKA-NH2) that may assume an alpha-helix in aqueous solutions were synthesized. Interactions were examined between various oligopeptides (EAAAK, KAAAE, EIFMK, KIFME, KIFMK and EYYEE) and EK17 or IFM17 in phosphate buffer and in 80% trifluoroethanol (TFE)-20% H2O solutions by CD spectra. EAAAK had little effect on the secondary structures of EK17 in both buffer and TFE solutions, while KAAAE, which has the reverse amino acid sequence of EAAAK, had a marked helix-destabilizing effect on EK17 in TFE. EIFMK and KIFME were found to stabilize the alpha-helical structure of EK17 in phosphate buffer solutions, whereas KIFMK and EYYEE destabilized the alpha-helical structure of EK17. EIFMK and KIFME had no effect on IFM17, because unexpectedly, IFM17 had appreciable amounts of beta-sheet structure in buffer solution. It was concluded that in order for the helix-stabilizing (1) the model peptide, the alpha-helical conformation of which is to be stabilized, should essentially assume an alpha-helical structure by nature, and (2) the hydrophobicity of the side-chains of the oligopeptide should be high enough for the oligopeptide to perform stable specific side chain-side chain intermolecular hydrophobic interactions with the model peptide. 相似文献
8.
Fernando Formaggio Andrea Bettio Vittorio Moretto Marco Crisma Claudio Toniolo Quirinus B Broxterman 《Journal of peptide science》2003,9(7):461-466
Fifteen years ago it was shown that an alpha-aminoisobutyric acid (Aib) residue is significantly more effective than an L-Pro or a D-amino acid residue in inducing beta-sheet disruption in short model peptides. As this secondary structure element is known to play a crucial role in the neuropathology of Alzheimer's disease, it was decided to check the effect of Aib (and other selected, helix inducer, C(alpha)-tetrasubstituted alpha-amino acids) on the beta-sheet conformation adopted by a protected pentapeptide related to the sequence 17-21 of the beta-amyloid peptide. By use of FT-IR absorption and 1H NMR techniques it was found that the strong self-association characterizing the pentapeptide molecules in weakly polar organic solvents is completely abolished by replacing a single residue with Aib or one of its congeners. 相似文献
9.
Tizzano B Palladino P De Capua A Marasco D Rossi F Benedetti E Pedone C Ragone R Ruvo M 《Proteins》2005,59(1):72-79
We have synthesized both free and terminally-blocked peptide corresponding to the second helical region of the globular domain of normal human prion protein, which has recently gained the attention of structural biologists because of a possible role in the nucleation process and fibrillization of prion protein. The profile of the circular dichroism spectrum of the free peptide was that typical of alpha-helix, but was converted to that of beta-structure in about 16 h. Instead, below 2.1 x 10(-5) M, the spectrum of the blocked peptide exhibited a single band centered at 200 nm, unequivocally associated to random conformations, which did not evolve even after 24 h. Conformational preferences of this last peptide have been investigated as a function of temperature, using trifluoroethanol or low-concentration sodium dodecyl sulfate as alpha- or beta-structure inducers, respectively. Extrapolation of free energy data to zero concentration of structuring agent highlighted that the peptide prefers alpha-helical to beta-type organization, in spite of results from prediction algorithms. However, the free energy difference between the two forms, as obtained by a thermodynamic cycle, is subtle (roughly 5-8 kJ mol(-1) at any temperature from 280 K to 350 K), suggesting conformational ambivalence. This result supports the view that, in the prion protein, the structural behavior of the peptide is governed by the cellular microenvironment. 相似文献
10.
Luisa Ronga Pasquale Palladino Gabriella Saviano Teodorico Tancredi Ettore Benedetti Raffaele Ragone Filomena Rossi 《Journal of peptide science》2008,14(10):1096-1102
The 173–195 segment corresponding to the helix 2 of the globular PrP domain is a good candidate to be one of the several ‘spots’ of intrinsic structural flexibility, which might induce local destabilization and concur to protein transformation, leading to aggregation‐prone conformations. Here, we report CD and NMR studies on the α2‐helix‐derived peptide of maximal length (hPrP[180–195]) that is able to exhibit a regular structure different from the prevalently random arrangement of other α2‐helix‐derived peptides. This peptide, which has previously been shown to be affected by buffer composition via the ion charge density dependence typical of Hofmeister effects, corresponds to the C‐terminal sequence of the PrPC full‐length α2‐helix and includes the highly conserved threonine‐rich 188–195 segment. At neutral pH, its conformation is dominated by β‐type contributions, which only very strong environmental modifications are able to modify. On TFE addition, an increase of α‐helical content can be observed, but a fully helical conformation is only obtained in neat TFE. However, linking of the 173–179 segment, as occurring in wild‐type and mutant peptides corresponding to the full‐length α2‐helix, perturbs these intrinsic structural propensities in a manner that depends on whether the environment is water or TFE. Overall, these results confirm that the 180–195 parental region in hPrPC makes a strong contribution to the chameleon conformational behavior of the segment corresponding to the full‐length α2‐helix, and could play a role in determining structural rearrangements of the entire globular domain. Copyright © 2008 European Peptide Society and John Wiley & Sons, Ltd. 相似文献
11.
Luisa Ronga Pasquale Palladino Raffaele Ragone Ettore Benedetti Filomena Rossi 《Journal of peptide science》2009,15(1):30-35
On consideration that intrinsic structural weakness could affect the segment spanning the α2‐helical residues 173–195 of the PrP, we have investigated the conformational stabilities of some synthetic Ala‐scanned analogs of the peptide derived from the 180–195 C‐terminal sequence, using a novel approach whose theoretical basis originates from protein thermodynamics. Even though a quantitative comparison among peptides could not be assessed to rank them according to the effect caused by single amino acid substitution, as a general trend, all peptides invariably showed an appreciable preference for an α‐type organization, consistently with the fact that the wild‐type sequence is organized as an α‐helix in the native protein. Moreover, the substitution of whatever single amino acid in the wild‐type sequence reduced the gap between the α‐ and the β‐propensity, invariably enhancing the latter, but in any case this gap was larger than that evaluated for the full‐length α2‐helix‐derived peptide. It appears that the low β‐conformation propensity of the 180–195 region depends on the simultaneous presence of all of the Ala‐scanned residues, indirectly confirming that the N‐terminal 173–179 segment could play a major role in determining the chameleon conformational behavior of the entire 173–195 region in the PrP. Copyright © 2008 European Peptide Society and John Wiley & Sons, Ltd. 相似文献
12.
Easily solubilized carotenoid-containing proteins have been found in aqueous extracts from three genera of cyanobacteria. The three proteins have been purified, and the absorption spectra have been determined to be virtually identical with absorption maxima at 495 and 465 nm. During the purification the orange protein spontaneously changed to a red protein with a single, broad absorption maximum at 505 nm. The orange protein showed a molecular weight of 47 000 on gel filtration while that of the red protein was 26 700. Sodium dodecyl sulfate polacrylamide gel electrophoresis indicated a single polypeptide of Mr 16 000 in both the red and orange forms, but this method removed the chromophore from the proteins. The main carotenoid component of the complex was determined to be 3′-hydroxy-4-keto-ββ-carotenoid or 3′-hydroxyechinenone. The number of carotenoid molecules per molecule of orange protein of molecular weight 47 000 was between 20 and 40. The stoichiometry of carotenoid to protein seemed reasonably constant. 相似文献
13.
The serum of the winter flounder contains a freezing-point-depressing protein of a molecular weight approximately 10,000 with 60% alanine in its composition. When injected into Xenopus o?cyte, a 6–10 S, poly A-rich RNA preparation isolated from the fish liver polysomes stimulated 3–4 fold the incorporation of [3H] alanine into 10% trichloroacetic acid-soluble, non-dialysable proteins. Analysis of the protein fractions showed a translation product similar in molecular weight and electrophoretic mobility to flounder freezing-point-depressing protein. These observations indicated that the 6–10 S RNA from the flounder contained mRNA for the synthesis of flounder's freezing-point-depressing protein. 相似文献
14.
S Subramanian A Basu S Nilekani C SivaRaman 《Biochemical and biophysical research communications》1984,122(3):1253-1259
The amino acid composition of the unusually large acyl-carrier protein subunit of citrate lyase from Escherichia coli is characteristic of a protein with a highly repetitive structure. Peptide mapping studies provide further evidence of repetitive sequences within the subunit. Only a single Pauly-positive spot is detected in the tryptic peptide map although the subunit contains 8 histidine residues. The 4 prosthetic groups covalently bound to the subunit are recovered in a single tryptic fragment in almost quantitative yield. These structural features of the large acyl-carrier protein subunit probably reflect internal gene duplications. 相似文献
15.
Resolutions and identification of the core deoxynucleoproteins of the simian virus 40 总被引:37,自引:0,他引:37
R S Lake S Barban N P Salzman 《Biochemical and biophysical research communications》1973,54(2):640-647
Low molecular weight basic core proteins of SV40 are resolved by Tris-Acetate-SDS polyacrylamide gel electrophoresis into a minimum of four polypeptides. These are the electrophoretic counterparts of the evolutionarily conserved histones F3, F2b, F2a2, and F2a1. Host African green monkey kidney cells contain an active protease activity which readily cleaves histone F3 during nuclear isolation in hypotonic buffers. 相似文献
16.
The oxygen of a peptide bond has two lone pairs of electrons. One of these lone pairs is poised to interact with the electron-deficient carbon of the subsequent peptide bond in the chain. Any partial covalency that results from this n→π* interaction should induce pyramidalization of the carbon (C'(i)) toward the oxygen (O(i-1)). We searched for such pyramidalization in 14 peptides that contain both α- and β-amino acid residues and that assume a helical structure. We found that the α-amino acid residues, which adopt the main chain dihedral angles of an α-helix, display dramatic pyramidalization but the β-amino acid residues do not. Thus, we conclude that O(i-1) and C'(i) are linked by a partial covalent bond in α-helices. This finding has important ramifications for the folding and conformational stability of α-helices in isolation and in proteins. 相似文献
17.
18.
Systematic protein folding studies depend on protein three-dimensional structure annotation, the assignment of amino acid structural types from atomic coordinates. Significant stabilizing factors between adjacent beta-sheet peptide chains have recently been characterized and were not considered during the development of previously published annotation methods. To produce an accurate beta-sheet domain catalog and to encompass the full beta-sheet spectacle, we developed a method, beta-Spider, which evaluates a packing energy between adjacent peptide chains in accordance with the newly discovered stabilizing factors. While considering important energetic factors, our approach also minimizes the use of subjective criteria, such as (phi,psi) boundaries and sets of H-bonding motifs that are used in other existing methods. As a result of the application of beta-Spider to a set of available high-resolution X-ray crystal structures, we present here a new beta-sheet catalog that differs considerably from the one produced by the most acclaimed DSSP method. The catalog includes new H-bonding motifs that were never reported. 相似文献
19.
Formaggio F Peggion C Crisma M Kaptein B Broxterman QB Mazaleyrat JP Wakselman M Toniolo C 《Chirality》2004,16(6):388-397
Recent applications in our laboratories of electronic circular dichroism to the study of peptide secondary structures and their changes under external stimuli are briefly reviewed. More specifically, this article deals with: 1). characterization of a novel peptide conformation; 2). origin of amino acid homo-chirality on Earth; 3). bend and helical peptides as spacers; and 4). transfer and propagation of chirality in peptides. 相似文献
20.
Stefania Albrizio Gabriella Caliendo Gerardino D'Errico Ettore Novellino Paolo Rovero Anna Maria D'Ursi 《Journal of peptide science》2005,11(10):617-626
The heterotrimeric guanine nucleotide-binding regulatory proteins (G proteins, Galphabetagamma) mediate the signalling process of a large number of receptors, known as G protein-coupled receptors. The C-terminal domain of the heterotrimeric G protein alpha-subunit plays a key role in the selective activation of G proteins by their cognate receptors. The interaction of this domain can take place at the end of a cascade including several successive conformational modifications. Galpha(s)(350-394) is the 45-mer peptide corresponding to the C-terminal region of the Galpha(s) subunit. In the crystal structure of the Galpha(s) subunit it encompasses the alpha4/beta6 loop, the beta6 beta-sheet segment and the alpha5 helix region. Following a previous study based on the synthesis, biological activity and conformational analysis of shorter peptides belonging to the same Galpha(s) region, Galpha(s)(350-394) was synthesized and investigated. The present study outlines the central role played by the residues involved in the alpha4/beta6 loop and beta6/alpha5 loops in the stabilization of the C-terminal Galpha(s)alpha-helix. H(2)O/(2)H(2)O exchange experiments, and NMR diffusion experiments show interesting evidence concerning the interaction between the SDS micelles and the polypeptide. These data prompt intriguing speculations on the role of the intracellular environment/cellular membrane interface in the stabilization and functionality of the C-terminal Galpha(s) region. 相似文献