首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human insulin-like growth factor II (IGF-II) mRNAs are subject to site-specific endonucleolytic cleavage in the 3' untranslated region, leading to an unstable 5' cleavage product containing the IGF-II coding region and a very stable 3' cleavage product of 1.8 kb. This endonucleolytic cleavage is most probably the first and rate-limiting step in degradation of IGF-II mRNAs. Two sequence elements within the 3' untranslated region are required for cleavage: element I, located approximately 2 kb upstream of the cleavage site, and element II, encompassing the cleavage site itself. We have identified a stable double-stranded RNA stem structure (delta G = -100 kcal/mol [418.4 kJ/mol]) that can be formed between element I and a region downstream of the cleavage site in element II. This structure is conserved among human, rat, and mouse mRNAs. Detailed analysis of the requirements for cleavage shows that the relative position of the elements is not essential for cleavage. Furthermore, the distance between the coding region and the cleavage site does not affect the cleavage reaction. Mutational analysis of the long-range RNA-RNA interaction shows that not only the double-stranded character but also the sequence of the stable RNA stem is important for cleavage.  相似文献   

2.
Insulin-like growth factor-II (IGF-II) mRNAs are subject to site-specific endonucleolytic cleavage in the 3' untranslated region (UTR), rendering an unstable 5' cleavage product containing the coding region and a very stable 3' cleavage product of 1.8 kb consisting of the 3'-UTR sequence and the poly(A) tail. Previously, it was established that two widely separated elements in the 3'-UTR (elements I and II), that can form a duplex structure, are necessary and sufficient for cleavage. To further investigate the sequence and secondary structure requirements for cleavage, we have introduced a number of mutations around the cleavage site and assayed their effects on cleavage. Several recognition determinants involved in the endonucleolytic cleavage of IGF-II mRNAs were identified. Mutational analysis around the cleavage site revealed that cleavage is sequence specific and that the cleavage site must be in a single-stranded conformation to allow efficient cleavage. In addition, we have identified an accessory protein that specifically interacts with a stem-loop structure located 133 to 73 nt upstream of the cleavage site.  相似文献   

3.
4.
Human insulin-like growth factor II (IGF-II) mRNA can be cleaved at a specific site in its 4 kb long 3′-UTR. This yields a stable 3′ cleavage product of 1.8 kb consisting of a 3′-UTR and a poly(A) tail and an unstable 5′ cleavage product containing the IGF-II coding region. After cleavage, the 5′ cleavage product is targeted to rapid degradation and consequently is no longer involved in IGF-II protein synthesis. Cleavage is therefore thought to provide an additional way to control IGF-II gene expression. In this paper the kinetics and the efficiency of cleavage of IGF-II mRNAs are examined. The cleavage efficiency of IGF-II mRNAs carrying four different leaders (L1–L4) is enhanced in the highly structured leaders L1 and L3. Additionally, under standard cell culture conditions cleavage is a slow process that only plays a limited role in destabilisation and translation of the IGF-II mRNAs. However, in human Hep3B cells and CaCo2 cells which express IGF-II endogenously, cleavage is upregulated 3–5-fold at high cell densities. Regulated endonucleolytic cleavage of IGF-II mRNAs is restricted to cells in which IGF-II expression is related to specific cell processes.  相似文献   

5.
6.
The human T-cell leukemia virus type I rex gene product plays a critical role in the expression of the retroviral structural proteins Gag and Env from incompletely spliced mRNAs. Rex protein acts through a cis element (rex-response element [RxRE]) which is located in the U3/R region of the 3' long terminal repeat and is present on all human T-cell leukemia virus type I-specific mRNAs. Two domains of the predicted secondary structure of the RxRE are crucially important for Rex action in vivo as measured by two assay systems. In vitro studies using highly purified recombinant Rex protein revealed a specific and direct interaction with radiolabeled RxRE sequences. The correlation between our in vivo results and the direct binding of Rex protein to mutant and wild-type RxRE sequences supports both the existence of the predicted secondary structure and the importance of this direct interaction with the cis-acting RNA sequence for Rex function in vivo.  相似文献   

7.
The insulin-like growth factor II mRNAs are targets for site-specific endonucleolytic cleavage in the 3'-UTR, which results in a very stable 3' cleavage product of 1.8 kb, consisting of 3'-UTR sequences and a poly(A) tail. The 5' cleavage product contains the coding region and is rapidly degraded. Thus, cleavage is thought to provide an additional way to control IGF-II protein synthesis. We had established that cleavage requires two widely separated sequence elements (I and II) in the 3'-UTR that form a stable duplex of 83 nucleotides. The cleavage-site itself is located in an internal loop preceded by two stable stem-loop structures. Furthermore, in a study which was based on RNA folding algorithms, we have shown that there are specific sequence and structural requirements for the cleavage reaction. Here, the functions of the different structural domains in cleavage were assessed by deletion/mutational analyses, and biochemical structure probing assays were performed to characterize better the RNA structures formed and to verify the computer folding predictions. The data suggest that the stem-loop domain contributes to maintain a highly specific c leavage-site by preventing the formation of alternative structures in the cleavage-site domain. Involvement of the nucleotides in the cleavage-site loop itself in non-Watson-Crick interactions may be important for providing a specific recognition surface for an endoribonuclease activity.  相似文献   

8.
9.
Two somatomedin-like peptides were extracted from Cohn fraction IV of human plasma and brought to homogeneity: one focused at pH 7.8 and the other at pH less than 5.6. Each consisted of two peptide chains interlinked by disulphide bonds. The basic peptide was identical to insulin-like growth factor I (IGF-I) and had a single cleavage in the C-domain before Arg37 [IGF-I(Arg36cl)]. The acid peptide showed identity with IGF-II, with a cleavage in the B-domain before Arg30 [IGF-II(Ser29cl)]. The effects of these cleavages on the characteristics of binding to type I and type II receptor sites, to binding proteins and to antibodies was studied. Binding of IGF-I(Arg36cl) to antibodies directed against the B-domain or against the AD-domain of IGF-I was the same as IGF-I binding. Thus the cleavage does not influence these antigenic sites. In contrast, binding of IGF-I(Arg36cl) to the type I receptor on human and bovine placental cell membranes was markedly decreased compared with IGF-I binding. Binding to the insulin receptor on human placental cell membranes was slightly diminished, whereas the interaction with specific type II receptors on bovine placental cell membranes was unaffected. There was only a minor influence of the cleavage on the region involved in binding to binding proteins. The cleavage in IGF-II(Ser29cl) diminished binding to antibodies directed against the C-domain of IGF-II, compared with binding of IGF-II itself. Binding to receptors (type I and type II) was changed less profoundly. With 125I-labelled IGF-II(Ser29cl), less insulin was needed in order to obtain 50% displacement of the tracer compared with displacement of 125I-labelled IGF-II. The cleaved form of IGF-II probably has a greater affinity towards the common receptor population than does native IGF-II. Binding to binding proteins was not affected by the cleavage in IGF-II.  相似文献   

10.
In competent Balb/c 3T3 cells primed with epidermal growth factor (primed competent cells), insulin-like growth factor-II (IGF-II) stimulated calcium influx in a concentration dependent manner with the ED50 of 450 pM. When receptor-bound [125I]IGF-II was cross-linked by use of disuccinimidyl suberate, a 240 K-Da protein was radiolabeled. Excess amount of unlabeled IGF-II inhibited the affinity-labeling of the 240 K-Da protein. To further examine whether IGF-II stimulates calcium influx by acting on the type II IGF receptor, we employed polyclonal antibody raised against rat type II IGF receptor, R-II-PABl. This antibody immunoprecipitated the type II IGF receptor and inhibited IGF-II binding in Balb/c 3T3 cell membrane without affecting IGF-I binding. In primed competent cells, R-II-PABl elicited an agonistic action in stimulating [3H]thymidine incorporation. Under the same condition, R-II-PABl elicited a marked stimulation of calcium influx. These results suggest that, in Balb/c 3T3 cells, 1) relatively low concentrations of IGF-II act mainly on the type II IGF receptor; 2) the type II IGF receptor is coupled to a calcium gating system; and 3) binding of a ligand to the type II IGF receptor leads to the stimulation of DNA synthesis.  相似文献   

11.
D McDonald  T J Hope    T G Parslow 《Journal of virology》1992,66(12):7232-7238
The human immunodeficiency virus type 1 Rev and human T-cell leukemia virus type I Rex proteins induce cytoplasmic expression of incompletely spliced viral mRNAs by binding to these mRNAs in the nucleus. Each protein binds a specific cis-acting element in its target RNAs. Both proteins also associated with nucleoli, but the significance of this association is uncertain because mutations that inactivate nucleolar localization signals in Rev or Rex also prevent RNA binding. Here we demonstrate that Rev and Rex can function when tethered to a heterologous RNA binding site by a bacteriophage protein. Under these conditions, cytoplasmic accumulation of unspliced RNA occurs without the viral response elements, mutations in the RNA binding domain of Rev do not inhibit function, and nucleolar localization can be shown to be unnecessary for the biological response.  相似文献   

12.
Lee EG  Linial ML 《Journal of virology》2000,74(19):9167-9174
We previously showed that the yeast three-hybrid system provides a genetic assay of both RNA and protein components for avian retroviral RNA encapsidation. In the current study, we used this assay to precisely define cis-acting determinants involved in avian leukosis sarcoma virus packaging RNA binding to Gag protein. In vivo screening of Rous sarcoma virus mutants was performed with randomly mutated minimal packaging sequences (MPsi) made using PCR amplification after cotransformation with GagDeltaPR protein into yeast cells. Colonies with low beta-galactosidase activity were analyzed to locate mutations in MPsi sequences affecting binding to Gag proteins. This genetic assay delineated secondary structural elements that are important for efficient RNA binding, including a single-stranded small bulge containing the initiation codon for uORF3, as well as adjacent stem structures. This implies a possible tertiary structure favoring the high-affinity binding sites for Gag. In most cases, results from the three-hybrid assay were well correlated with those from the viral RNA packaging assays. The results from random mutagenesis using the rapid three-hybrid binding assay are consistent with those from site-directed mutagenesis using in vivo packaging assays.  相似文献   

13.
We have previously shown that a distal GU-rich downstream element of the mouse IgM secretory poly(A) site is important for polyadenylation in vivo and for polyadenylation specific complex formation in vitro. This element can be predicted to form a stem-loop structure with two asymmetric internal loops. As stem-loop structures commonly define protein RNA binding sites, we have probed the biological activity of the secondary structure of this element. We show that mutations affecting the stem of the structure abolish the biological activity of this element in vivo and in vitro at the level of cleavage and polyadenylation specificity factor/cleavage stimulation factor complex formation and that both internal loops contribute to the enhancing effect of the sequence in vivo. Lead (II) cleavage patterns and RNase H probing of the sequence element in vitro are consistent with the predicted secondary structure. Furthermore, mobility on native PAGE suggests a bent structure. We propose that the secondary structure of this downstream element optimizes its interaction with components of the polyadenylation complex.  相似文献   

14.
The kink-turn, a stem I-internal loop-stem II structure of the 5 ' stem-loop of U4 and U4atac small nuclear (sn) RNAs bound by 15.5K protein is required for binding of human Prp31 protein (hPrp31) during U4 and U4atac snRNP assembly. In box C/D snoRNPs a similar kink-turn with bound 15.5K protein is required for selective binding of proteins NOP56 and NOP58. Here we analyzed RNA structural requirements for association of hPrp31 with U4 snRNP in vitro by hydroxyl radical footprinting. hPrp31 induced protection of the terminal penta-loop, as well as of stems I and II flanking the kink-turn. Similar protection was found with U4/U6 snRNA duplex prebound with 15.5K protein. A detailed mutational analysis of the U4 snRNA elements by electrophoretic mobility shift analysis revealed that stem I could not be shortened, although it tolerated sequence alterations. However, introduction of a third Watson-Crick base pair into stem II significantly reduced hPrp31 binding. While stem I of U4atac snRNA showed relaxed binding requirements, its stem II requirements were likewise restricted to two base pairs. In contrast, as shown previously, stem II of the kink-turn motif in box C/D snoRNAs is comprised of three base pairs, and NOP56 and NOP58 require a G-C pair at the central position. This indicates that hPrp31 binding specificity is achieved by the recognition of the two base pair long stem II of the U4 and U4atac snRNAs and suggests how discrimination is achieved by RNA structural elements during assembly of U4/U6 and U4atac/U6atac snRNPs and box C/D snoRNPs.  相似文献   

15.
The active elements of the beta-globin locus control region (LCR) are located within domains of unique chromatin structure. These nuclease hypersensitive sites (HSs) are characterized by high DNase I sensitivity, erythroid specificity, similar nucleosomal structure, and evolutionarily conserved clusters of cis-acting elements that are required for the formation and function of the core elements. To determine the requirements for HS core formation in the setting of nuclear chromatin, we constructed a series of artificial HS cores containing binding sites for GATA-1, NF-E2, and Sp1. In contrast to the results of previous in vitro experiments, we found that when constructs were stably integrated in mouse erythroleukemia cells the binding sites for NF-E2, GATA-1, or Sp1 alone or in any combination were unable to form core HS structures. We subsequently identified two new cis-acting elements from the LCR HS4 core that, when combined with the NF-E2, Sp1, and tandem inverted GATA elements, result in core structure formation. Both new cis-acting elements bind Sp1, and one binds erythroid Kruppel-like factor (EKLF). We conclude that in vivo beta-globin LCR HS core formation is more complex than previously thought and that several factors are required for this process to occur.  相似文献   

16.
We previously constructed a multiribozyme expression vector by combining cis- and trans-acting ribozymes and we showed that several ribozymes, each directed against a different target in the HIV genome and acting independently in a 'shotgun' manner, markedly increased the efficiency of cleavage of HIV RNA in vitro [Ohkawa et al., Proc. Natl Acad. Sci. USA 90, 11302 (1993)]. However, the cis-acting ribozymes that had trimmed the 5' and 3' ends of each trans-acting ribozyme were designed merely to await for degradation by RNases when they were used in vivo. Since several trans-activator proteins are essential for viral replication of HIV-1, we wondered whether a decoy function could be coupled with the cleavage activity of ribozymes. We therefore introduced the TAR or the RRE sequence into the stem II region of each cis-acting ribozyme. When the activity of each resulting cis-acting ribozyme that had been endowed with the decoy function was examined in vitro, it was found to retain almost full trimming activity. Moreover, cis-acting ribozymes with either the TAR or the RRE sequence were shown to be able to trap Tat or Rev protein successfully. It is, therefore, possible to endow the stem II region with a specific protein-binding function without the loss of ribozyme function. Thus, cis-acting ribozymes, endowed with the decoy function, can first trim the 5' and 3' ends of each trans-acting ribozyme and are then still available for trapping trans-activator proteins possibly prior to their degradation by RNases when they are to be used in vivo. Furthermore, it is also expected that the reduction in production of HIV RNA that is achieved by sequestering the trans-activator proteins might provide the trans-acting ribozymes, targeted to HIV RNA, with a better chance of eliminating the remaining HIV RNA.  相似文献   

17.
18.
Type I collagen is composed of two α1(I) polypeptides and one α2(I) polypeptide and is the most abundant protein in the human body. Expression of type I collagen is primarily controlled at the level of mRNA stability and translation. Coordinated translation of α(I) and α2(I) mRNAs is necessary for efficient folding of the corresponding peptides into the collagen heterotrimer. In the 5' untranslated region (5' UTR), collagen mRNAs have a unique 5' stem-loop structure (5' SL). La ribonucleoprotein domain family member 6 (LARP6) is the protein that binds 5' SL with high affinity and specificity and coordinates their translation. Here we show that RNA helicase A (RHA) is tethered to the 5' SL of collagen mRNAs by interaction with the C-terminal domain of LARP6. In vivo, collagen mRNAs immunoprecipitate with RHA in an LARP6-dependent manner. Knockdown of RHA prevents formation of polysomes on collagen mRNAs and dramatically reduces synthesis of collagen protein, without affecting the level of the mRNAs. A reporter mRNA with collagen 5' SL is translated three times more efficiently in the presence of RHA than the same reporter without the 5' SL, indicating that the 5' SL is the cis-acting element conferring the regulation. During activation of quiescent cells into collagen-producing cells, expression of RHA is highly up-regulated. We postulate that RHA is recruited to the 5' UTR of collagen mRNAs by LARP6 to facilitate their translation. Thus, RHA has been discovered as a critical factor for synthesis of the most abundant protein in the human body.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号