首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
AIMS: Characterization of a mutated Geobacillus stearothermophilus L-arabinose isomerase used to increase the production rate of D-tagatose. METHODS AND RESULTS: A mutated gene was obtained by an error-prone polymerase chain reaction using L-arabinose isomerase gene from G. stearothermophilus as a template and the gene was expressed in Escherichia coli. The expressed mutated L-arabinose isomerase exhibited the change of three amino acids (Met322-->Val, Ser393-->Thr, and Val408-->Ala), compared with the wild-type enzyme and was then purified to homogeneity. The mutated enzyme had a maximum galactose isomerization activity at pH 8.0, 65 degrees C, and 1.0 mM Co2+, while the wild-type enzyme had a maximum activity at pH 8.0, 60 degrees C, and 1.0-mM Mn2+. The mutated L-arabinose isomerase exhibited increases in D-galactose isomerization activity, optimum temperature, catalytic efficiency (kcat/Km) for D-galactose, and the production rate of D-tagatose from D-galactose. CONCLUSIONS: The mutated L-arabinose isomerase from G. stearothermophilus is valuable for the commercial production of D-tagatose. SIGNIFICANCE AND IMPACT OF THE STUDY: This work contributes knowledge on the characterization of a mutated L-arabinose isomerase, and allows an increased production rate for D-tagatose from D-galactose using the mutated enzyme.  相似文献   

2.
L-arabinose isomerase (EC 5.3.1.4) mediates the isomerization of D-galactose into D-tagatose as well as the conversion of L-arabinose into L-ribulose. To investigate the properties of L-arabinose isomerase as a biocatalyst for the conversion of galactose to tagatose, the L-arabinose isomerase of Escherichia coli was characterized. The substrate specificity for L-arabinose was 166-fold higher than that for D-galactose. The optimal pH and temperature for the galactose isomerization reaction were 8.0 and 30 °C, respectively. The enzyme activity was stable for 1 h at temperatures below 35 °C and within a pH range of 8–10. The Michaelis constant, K m, for galactose was 1480 mM, which is 25-fold higher than that for arabinose. The addition of Fe2+ and Mn2+ ions enhanced the conversion of galactose to tagatose, whereas the addition of Cu2+, Zn2+, Hg2+, and Fe3+ ions inhibited the reaction completely. In the presence of 1 mM Fe2+ ions, the K m for galactose was found to be 300 mM.  相似文献   

3.
L-Arabinose isomerase isolated from Geobacillus stearothermophilus (GSAI) was modified to improve its substrate specificity for D-galactose for the production of D-tagatose, a potential reduced-energy sweetener. Among the selected residues, mutation at residue 18 produced a mutant strain, H18T, which exhibited increased activity for D-galactose compared with the wild-type (WT) enzyme. Analysis of the substrate specificity of H18T showed a 45.4% improvement for D-galactose. Replacing histidine with threonine at residue 18 resulted in approximately 2.7-fold and 1.8-fold higher substrate binding and catalytic efficiency, respectively, for D-galactose. Further enhancement of the specific activity and catalytic efficiency of H18T for D-galactose by up to 2.7-fold and 4.3-fold, respectively, was achieved by adding borate during L-arabinose isomerase catalysis. Moreover, H18T showed thermostability and no destabilization was detected, which is promising for the industrial production of D-tagatose.  相似文献   

4.
Azospirillum brasiliense converts L-arabinose to alpha-ketoglutarate via five hypothetical enzymatic steps. We purified and characterized L-arabinose 1-dehydrogenase (EC 1.1.1.46), catalyzing the conversion of L-arabinose to L-arabino-gamma-lactone as an enzyme responsible for the first step of this alternative pathway of L-arabinose metabolism. The purified enzyme preferred NADP+ to NAD+ as a coenzyme. Kinetic analysis revealed that the enzyme had high catalytic efficiency for both L-arabinose and D-galactose. The gene encoding L-arabinose 1-dehydrogenase was cloned using a partial peptide sequence of the purified enzyme and was overexpressed in Escherichia coli as a fully active enzyme. The enzyme consists of 308 amino acids and has a calculated molecular mass of 33,663.92 Da. The deduced amino acid sequence had some similarity to glucose-fructose oxidoreductase, D-xylose 1-dehydrogenase, and D-galactose 1-dehydrogenase. Site-directed mutagenesis revealed that the enzyme possesses unique catalytic amino acid residues. Northern blot analysis showed that this gene was induced by L-arabinose but not by D-galactose. Furthermore, a disruptant of the L-arabinose 1-dehydrogenase gene did not grow on L-arabinose but grew on D-galactose at the same growth rate as the wild-type strain. There was a partial gene for L-arabinose transport in the flanking region of the L-arabinose 1-dehydrogenase gene. These results indicated that the enzyme is involved in the metabolism of L-arabinose but not D-galactose. This is the first identification of a gene involved in an alternative pathway of L-arabinose metabolism in bacterium.  相似文献   

5.
Ryu SA  Kim CS  Kim HJ  Baek DH  Oh DK 《Biotechnology progress》2003,19(6):1643-1647
D-Tagatose was continuously produced using thermostable L-arabinose isomerase immobilized in alginate with D-galactose solution in a packed-bed bioreactor. Bead size, L/D (length/diameter) of reactor, dilution rate, total loaded enzyme amount, and substrate concentration were found to be optimal at 0.8 mm, 520/7 mm, 0.375 h(-1), 5.65 units, and 300 g/L, respectively. Under these conditions, the bioreactor produced about 145 g/L tagatose with an average productivity of 54 g tagatose/L x h and an average conversion yield of 48% (w/w). Operational stability of the immobilized enzyme was demonstrated, with a tagatose production half-life of 24 days.  相似文献   

6.
The induction of D-xylose, D-ribose, L-arabinose, and D-lyxose isomerases by various sugars was studied to determine the configuration necessary for induction. D-Xylose isomerase was only induced by D-xylose, whereas D-ribose isomerase was induced by D-ribose, L-rhamnose, and L-lyxose. L-arabinose isomerase was induced by L-arabinose, D-galactose, L-arabitol, D-fucose, and dulcitol, whereas D-lyxose isomerase was induced by D-lyxose, D-mannose, D-ribose, dulcitol, and myoinositol. Some compounds such as dulcitol, D-galactose, and D- or L-fucose which do not support growth are still able to serve as inducers for various pentose isomerases.  相似文献   

7.
The continuous enzymatic conversion of D-galactose to D-tagatose with an immobilized thermostable L-arabinose isomerase in packed-bed reactor and a novel method for D-tagatose purification were studied. L-arabinose isomerase from Thermoanaerobacter mathranii (TMAI) was recombinantly overexpressed and immobilized in calcium alginate. The effects of pH and temperature on D-tagatose production reaction catalyzed by free and immobilized TMAI were investigated. The optimal condition for free enzyme was pH 8.0, 60°C, 5 mM MnCl(2). However, that for immobilized enzyme was pH 7.5, 75°C, 5 mM MnCl(2). In addition, the catalytic activity of immobilized enzyme at high temperature and low pH was significantly improved compared with free enzyme. The optimum reaction yield with immobilized TMAI increased by four percentage points to 43.9% compared with that of free TMAI. The highest productivity of 10 g/L h was achieved with the yield of 23.3%. Continuous production was performed at 70°C; after 168 h, the reaction yield was still above 30%. The resultant syrup was then incubated with Saccharomyces cerevisiae L1 cells. The selective degradation of D-galactose was achieved, obtaining D-tagatose with the purity above 95%. The established production and separation methods further potentiate the industrial production of D-tagatose via bioconversion and biopurification processes.  相似文献   

8.
The araA gene encoding L-arabinose isomerase (AI) from the hyperthermophilic bacterium Thermotoga maritima was cloned and overexpressed in Escherichia coli as a fusion protein containing a C-terminal hexahistidine sequence. This gene encodes a 497-amino-acid protein with a calculated molecular weight of 56,658. The recombinant enzyme was purified to homogeneity by heat precipitation followed by Ni(2+) affinity chromatography. The native enzyme was estimated by gel filtration chromatography to be a homotetramer with a molecular mass of 232 kDa. The purified recombinant enzyme had an isoelectric point of 5.7 and exhibited maximal activity at 90 degrees C and pH 7.5 under the assay conditions used. Its apparent K(m) values for L-arabinose and D-galactose were 31 and 60 mM, respectively; the apparent V(max) values (at 90 degrees C) were 41.3 U/mg (L-arabinose) and 8.9 U/mg (D-galactose), and the catalytic efficiencies (k(cat)/K(m)) of the enzyme were 74.8 mM(-1).min(-1) (L-arabinose) and 8.5 mM(-1).min(-1) (D-galactose). Although the T. maritima AI exhibited high levels of amino acid sequence similarity (>70%) to other heat-labile mesophilic AIs, it had greater thermostability and higher catalytic efficiency than its mesophilic counterparts at elevated temperatures. In addition, it was more thermostable in the presence of Mn(2+) and/or Co(2+) than in the absence of these ions. The enzyme carried out the isomerization of D-galactose to D-tagatose with a conversion yield of 56% for 6 h at 80 degrees C.  相似文献   

9.
10.
应用PCR从大肠杆菌基因组中扩增L-阿拉伯糖异构酶基因,用EcoR I和Not I双酶切将其克隆进P.pastoris表达载体,获得重组表达载体pGAP9K-L-ai。通过电转法将pGAP9K—L-ai转化毕赤酵母GS115,筛选高G418抗性和高表达L-阿拉伯糖异构酶的重组工程菌。用葡萄糖作为碳源在摇瓶中发酵48 h,表达重组L-ai 53 mg/L。用毕赤酵母的GAP启动子调控表达的重组L-ai具有异构D-半乳糖生成D-塔格糖的生物学活性。  相似文献   

11.
The araA gene, encoding l-arabinose isomerase (AI), from the thermophilic bacterium Geobacillus thermodenitrificans was cloned and expressed in Escherichia coli. Recombinant AI was isolated with a final purity of about 97% and a final specific activity of 2.10 U/mg. The molecular mass of the purified AI was estimated to be about 230 kDa to be a tetramer composed of identical subunits. The AI exhibited maximum activity at 70 degrees C and pH 8.5 in the presence of Mn2+. The enzyme was stable at temperatures below 60 degrees C and within the pH range 7.5-8.0. d-Galactose and l-arabinose as substrate were isomerized with high activities. Ribitol was the strongest competitive inhibitor of AI with a Ki of 5.5mM. The apparent Km and Vmax for L-arabinose were 142 mM and 86 U/mg, respectively, whereas those for d-galactose were 408 mM and 6.9 U/mg, respectively. The catalytic efficiency (kcat/Km) was 48 mM(-1)min(-1) for L-arabinose and 0.5mM(-1)min(-1) for D-galactose. Mn2+ was a competitive activator and increased the thermal stability of the AI. The D-tagatose yield produced by AI from d-galactose was 46% without the addition of Mn2+ and 48% with Mn2+ after 300 min at 65 degrees C.  相似文献   

12.
An isolated gene from Bacillus subtilis str. 168 encoding a putative isomerase was proposed as an L-arabinose isomerase (L-AI), cloned into Escherichia coli, and its nucleotide sequence was determined. DNA sequence analysis revealed an open reading frame of 1,491 bp, capable of encoding a polypeptide of 496 amino acid residues. The gene was overexpressed in E. coli and the protein was purified using nickel-nitrilotriacetic acid chromatography. The purified enzyme showed the highest catalytic efficiency ever reported, with a k cat of 14,504 min−1 and a k cat/K m of 121 min−1 mM−1 for L-arabinose. A homology model of B. subtilis L-AI was constructed based on the X-ray crystal structure of E. coli L-AI. Molecular dynamics simulation studies of the enzyme with the natural substrate, L-arabinose, and an analogue, D-galactose, shed light on the unique substrate specificity displayed by B. subtilis L-AI only towards L-arabinose. Although L-AIs have been characterized from several other sources, B. subtilis L-AI is distinguished from other L-AIs by its high substrate specificity and catalytic efficiency for L-arabinose.  相似文献   

13.
Lactobacillusdelbrueckii subsp. bulgaricus and Streptococcus thermophilus are used for the biotransformation of milk in yoghurt. During milk fermentation, these lactic acid bacteria (LAB) hydrolyze lactose producing a glucose moiety that is further metabolized and a galactose moiety that they are enable to metabolize. We investigated the ability of L. bulgaricus and S. thermophilus strains expressing a heterologous L-arabinose isomerase to convert residual D-galactose to D-tagatose. The Bacillus stearothermophilus US100l-arabinose isomerase (US100l-AI) was expressed in both LAB, using a new shuttle vector where the araA US100 gene is under the control of the strong and constitutive promoter of the L. bulgaricus ATCC 11842 hlbA gene. The production of L-AI by these LAB allowed the bioconversion of D-galactose to D-tagatose during fermentation in laboratory media and milk. We also established that the addition of L-AI to milk also allowed the conversion of D-galactose into D-tagatose during the fermentation process.  相似文献   

14.
ABSTRACT: BACKGROUND: D-Tagatose is a natural monosaccharide which can be used as a low-calorie sugar substitute in food, beverages and pharmaceutical products. It is also currently being tested as an anti-diabetic and obesity control drug. D-Tagatose is a rare sugar, but it can be manufactured by the chemical or enzymatic isomerization of D-galactose obtained by a beta-D-galactosidase-catalyzed hydrolysis of milk sugar lactose and the separation of D-glucose and D-galactose. L-Arabinose isomerases catalyze in vitro the conversion of D-galactose to D-tagatose and are the most promising enzymes for the large-scale production of D-tagatose. RESULTS: In this study, the araA gene from psychrotolerant Antarctic bacterium Arthrobacter sp. 22c was isolated, cloned and expressed in Escherichia coli. The active form of recombinant Arthrobacter sp. 22c L-arabinose isomerase consists of six subunits with a combined molecular weight of approximately 335 kDa. The maximum activity of this enzyme towards D-galactose was determined as occurring at 52[DEGREE SIGN]C; however, it exhibited over 60% of maximum activity at 30[DEGREE SIGN]C. The recombinant Arthrobacter sp. 22c L-arabinose isomerase was optimally active at a broad pH range of 5 to 9. This enzyme is not dependent on divalent metal ions, since it was only marginally activated by Mg2+, Mn2+ or Ca2+ and slightly inhibited by Co2+ or Ni2+. The bioconversion yield of D-galactose to D-tagatose by the purified L-arabinose isomerase reached 30% after 36 h at 50[DEGREE SIGN]C. In this study, a recombinant Pichia pastoris yeast strain secreting beta-D-galactosidase Arthrobacter chlorophenolicus was also constructed. During cultivation of this strain in a whey permeate, lactose was hydrolyzed and D-glucose was metabolized, whereas D-galactose was accumulated in the medium. Moreover, cultivation of the P. pastoris strain secreting beta-D-galactosidase in a whey permeate supplemented with Arthrobacter sp. 22c L-arabinose isomerase resulted in a 90% yield of lactose hydrolysis, the complete utilization of D-glucose and a 30% conversion of D-galactose to D-tagatose. CONCLUSIONS: The method developed for the simultaneous hydrolysis of lactose, utilization of D-glucose and isomerization of D-galactose using a P. pastoris strain secreting beta-D-galactosidase and recombinant L-arabinose isomerase seems to offer an interesting alternative for the production of D-tagatose from lactose-containing feedstock.  相似文献   

15.
Considerable interest in the D-xylose catabolic pathway of Pachysolen tannophilus has arisen from the discovery that this yeast is capable of fermenting D-xylose to ethanol. In this organism D-xylose appears to be catabolized through xylitol to D-xylulose. NADPH-linked D-xylose reductase is primarily responsible for the conversion of D-xylose to xylitol, while NAD-linked xylitol dehydrogenase is primarily responsible for the subsequent conversion of xylitol to D-xylulose. Both enzyme activities are readily detectable in cell-free extracts of P. tannophilus grown in medium containing D-xylose, L-arabinose, or D-galactose and appear to be inducible since extracts prepared from cells growth in media containing other carbon sources have only negligible activities, if any. Like D-xylose, L-arabinose and D-galactose were found to serve as substrates for NADPH-linked reactions in extracts of cells grown in medium containing D-xylose, L-arabinose, or D-galactose. These L-arabinose and D-galactose NADPH-linked activities also appear to be inducible, since only minor activity with L-arabinose and no activity with D-galactose is detected in extracts of cells grown in D-glucose medium. The NADPH-linked activities obtained with these three sugars may result from the actions of distinctly different enzymes or from a single aldose reductase acting on different substrates. High-performance liquid chromatography and gas-liquid chromatography of in vitro D-xylose, L-arabinose, and D-galactose NADPH-linked reactions confirmed xylitol, L-arabitol, and galactitol as the respective conversion products of these sugars. Unlike xylitol, however, neither L-arabitol nor galactitol would support comparable NAD-linked reaction(s) in cellfree extracts of induced P. tannophilus. Thus, the metabolic pathway of D-xylose diverges from those of L-arabinose or D-galactose following formation of the pentitol.  相似文献   

16.
Escherichia coli L-arabinose isomerase (ECAI; EC 5.3.1.4) catalyzes the isomerization of L-arabinose to L-ribulose in vivo. This enzyme is also of commercial interest as it catalyzes the conversion of D-galactose to D-tagatose in vitro. The crystal structure of ECAI was solved and refined at 2.6 A resolution. The subunit structure of ECAI is organised into three domains: an N-terminal, a central and a C-terminal domain. It forms a crystallographic trimeric architecture in the asymmetric unit. Packing within the crystal suggests the idea that ECAI can form a hexameric assembly. Previous electron microscopic and biochemical studies supports that ECAI is hexameric in solution. A comparison with other known structures reveals that ECAI adopts a protein fold most similar to E. coli fucose isomerase (ECFI) despite very low sequence identity 9.7%. The structural similarity between ECAI and ECFI with regard to number of domains, overall fold, biological assembly, and active site architecture strongly suggests that the enzymes have functional similarities. Further, the crystal structure of ECAI forms a basis for identifying molecular determinants responsible for isomerization of arabinose to ribulose in vivo and galactose to tagatose in vitro.  相似文献   

17.
The Escherichia coli araBAD operon consists of three genes encoding three enzymes that convert L-arabinose to D-xylulose-5 phosphate. In this paper we report that the genes of the E. coli araBAD operon have been expressed in Saccharomyces cerevisiae using strong promoters from genes encoding S. cerevisiae glycolytic enzymes (pyruvate kinase, phosphoglucose isomerase, and phosphoglycerol kinase). The expression of these cloned genes in yeast was demonstrated by the presence of the active enzymes encoded by these cloned genes and by the presence of the corresponding mRNAs in the new host. The level of expression of L-ribulokinase (araB) and L-ribulose-5-phosphate 4-epimerase (araD) in S. cerevisiae was relatively high, with greater than 70% of the activity of the enzymes in wild type E. coli. On the other hand, the expression of L-arabinose isomerase (araA) reached only 10% of the activity of the same enzyme in wild type E. coli. Nevertheless, S. cerevisiae, bearing the cloned L-arabinose isomerase gene, converted L-arabinose to detectable levels of L-ribulose during fermentation. However, S. cerevisiae bearing all three genes (araA, araB, and araD) was not able to produce detectable amount of ethanol from L-arabinose. We speculate that factors such as pH, temperature, and competitive inhibition could reduce the activity of these enzymes to a lower level during fermentation compared to their activity measured in vitro. Thus, the ethanol produced from L-arabinose by recombinant yeast containing the expressed BAD genes is most likely totally consumed by the cell to maintain viability.  相似文献   

18.
An L-arabinose isomerase of Escherichia coli was immobilized using covalent binding to agarose to produce D-tagatose, a bulking sweetener that can be economically used as a sugar substitute. The immobilized L-arabinose isomerase stably produced an average of 7.5 g-tagatose/L.day for 7 days with a productivity exceeding that of the free enzyme (0.47 vs 0.30 mg/U.day). Using a scaled-up immobilized enzyme system, 99.9 g-tagatose/L was produced from galactose with 20% equilibrium in 48 h. The process was repeated two more times with production of 104.1 and 103.5 g-tagatose/L. D-Tagatose production using an immobilized L-arabinose isomerase has a high potential for commercial application.  相似文献   

19.
L-阿拉伯糖异构酶是生物法生产新型功能性因子D-塔格糖最为有效的酶。本文获得了一种新型耐热L-阿拉伯糖异构酶的编码基因araA,来源于Bacillus stearothermophilis IAM 11001,经NCBI Blastn分析,与GenBank中Thermus sp. IM6501 araA序列的同源性为95%,并将该新基因提交到GenBank,获得登陆号:EU394214。以pET-22b(+)为载体质粒,E. coli BL21(DE3)为宿主细胞,构建了基因重组菌,IPTG可诱导目的蛋白的过量表达;经亲和层析纯化的重组蛋白样品进行SDS-PAGE电泳分析,约在59 kDa处出现显著的特征蛋白条带;同时对重组L-AI的活性进行了初步研究,全细胞反应24小时D-塔格糖的转化率为39.8%。  相似文献   

20.
The active accumulation of L-arabinose by arabinose induced cultures of Escherichia coli is mediated by 2 independent transport mechanisms. One, specified by the gene locus araE, is membrane bound and possesses a relatively “low affinity.” The other, specified in part by the genetic locus araF, contains as a functional component the L-arabinose binding protein and functions with a “high affinity” for the substrate. The L-arabinose binding protein has been purified, partially characterized, crystallized, and sequenced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号