首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
H Dietl 《Life sciences》1988,43(4):317-324
The effect of experimentally induced blood pressure changes on the in vivo release of neuronal corticosterone in limbic and hypothalamic areas was studied in anaesthetized rats. A fall of the arterial blood pressure (ABP) elicited by the intravenous (i.v.) injection of the vasodilatator nitroprusside or the ganglionic blocking agent chlorisondamine decreased the release of corticosterone in the central amygdala (AC) and the ventral hippocampus (VH) whereas an experimentally induced hypertension after i.v. administration of the alpha adrenoreceptoragonist tramazoline led to an enhanced release of the glucocorticoid in the limbic areas mentioned above. Alterations in ABP did not affect the rates of corticosterone release in the medial hypothalamus (MH). The results may indicate a functional role for neuronal limbic corticosterone in central blood pressure regulation.  相似文献   

2.
J.N. Sinha  H. Dietl  A. Philippu 《Life sciences》1980,26(21):1751-1760
The posterior hypothalamus of anaesthetized cats was superfused through a push-pull cannula and the release of endogenous catecholamines was determined in the superfusate which was continuously collected in 15 min periods. Fall in blood pressure elicited by nitroprusside or bleeding led to an increased rate of release of noradrenaline, adrenaline and dopamine in the hypothalamus. Transection of the brain causal to hypothalamus greatly reduced the rate of resting release of the catecholamines and abolished the enhancing effects of bleeding and nitroprusside. Determination of the catecholamines in samples which were collected in 90 s periods suggested a different pattern of release of the three catecholamines. Further shortening of the collection period (10 s) showed that the fall in blood pressure immediately increased the release of dopamine, while the rates of release of noradrenaline and adrenaline were increased gradually. Hypotension did not influence the rates of release of the catecholamines in the anterior hypothalamus. It is concluded that dopamine, adrenaline and noradrenaline systems of the hypothalamus are involved in the regulation of the arterial blood pressure. The different patterns of release might indicate that dopamine exerts a different function from those of noradrenaline and adrenaline in the normalization of the blood pressure after acute hypotension.  相似文献   

3.
目的:探讨在抗体应答期间,脑和淋巴器官中儿茶酚胺(CAs)含量的动态变化,籍以了解免疫状态对中枢和外周CAs神经活动的影响。方法:用绵羊红细胞(SRBC)免疫大鼠,在免疫后第2 ̄7d应用高效液相色谱-电化学检测法(HPLC-ECD)测定大鼠下丘脑、海马、脑干和胸腺中云甲肾上腺素(NA)、肾上腺素(A)、多巴胺(DA)和高香草酸(HVA)的含量。结果:①下且脑和海马内NA在抗体应答期间升高,而胸腺中  相似文献   

4.
The effect of chronic treatment with tyroxine (T4) or propylthiouracile (PTU) on the turnover of norepinephrine (NE), dopamine (DA) and 5-hydroxytryptamine (5-HT) has been studied in various areas of the rat brain (brain stem, hypothalamus, striatum and "rest of the brain"). The turnover of NE and DA was determined by the decay in endogenous levels after inhibition of tyrosine hydroxylase by alpha-methylparatyrosine and the turnover of 5-HT was evaluated by the initial accumulation of endogenous 5-HT after inhibition of monoamine oxydase by pargyline. T4 treatment accelerated the release of DA from the striatum but had no significant effects on NA release in the various cerebral areas : nevertheless the NE endogenous level was significantly reduced in the brain stem. PTU treatment delayed the release of DA and NA only from the "rest of the brain". Concerning 5-HT, the only significant variation was observed in the hypothalamus of PTU-treated rats and implied increased turnover. The possible relations between the changes in cerebral monoamines turnover and the behavioural alterations which are observed in thyroid disfunction are discussed.  相似文献   

5.
Using High Performance Liquid Chromatography coupled with electrochemical detection the post-mortem stability of noradrenaline (NA), dopamine (DA), serotonin (5-HT) and 5-hydroxy indole acetic acid (5-HIAA) were examined in the rat hypothalamus, amygdala, cerebral cortex, cerebellum and corpus striatum over an 8 hour time period. Changes in concentrations of the different neurotransmitters were less than it might be expected. The significant changes were: a. A fall in NA levels in the cerebral cortex by 4 hours and in the hypothalamus at 8 hours. b. A reduction in DA concentrations in the corpus striatum at 8 hours but a two fold rise of levels in the hypothalamus at 1 and 2 hours. c. A four-fold increase in 5-HT concentrations in the amygdala throughout the 8 hours studied. The results indicate that for comparative studies on post-mortem brain tissue correction factors should be employed to take into account differential changes in the concentrations of the various neurotransmitters.  相似文献   

6.
Noradrenaline (NA) and dopamine (DA) contents in various brain regions and their dependence on genotype, determining predisposition to domination, were studied during 7 days after the formation of artificial micropopulations consisting of 6 male mice of different genotypes. Significant changes of NA level were found in the olfactory bulbs and in the medulla oblongata and of DA in the hypothalamus and the hippocampus. Genotypic differences in NA levels were found in the hypothalamus and in DA levels--in the hippocampus. Reactions of RT males predisposed to domination differed both in noradrenaline and DA systems of the brain from the reactions of the males genetically predisposed to subordinate type of behaviour. Interconnection between the amines content both inside and between catecholamine systems was revealed.  相似文献   

7.
There has been carried out an investigation dealing with catecholamines metabolism in the patients suffering from alcoholism in the first, second and third stage at the short-term remission. The first developed alcoholism stage was determined as a typical one for increasing the excretion with urine of DOPA, dopamine (DA), noradrenaline (NA) and adrenaline (A), as well as the blood levels of DA, NA and A. DA/NA rate evidences about an increased synthesis of NA with DA. The marked second alcoholism stage is characterized by an acute decrease of excreting with urine and blood levels of NA. Alongside with the latter. DA excretion with urine and its blood levels remained high. DA/NA rate indicates to the considerably low relative activity of NA with DA synthesis, both in relation to the control and to the developed first alcoholism stage. In the third alcoholism stage NA excretion with urine and its blood levels become lower relatively to the marked second stage. Simultaneously DA excretion with urine and its blood levels are lower than in the developed second stage, hower exceed the control values. DA/NA rate testifies the slight activation of NA and DA synthesis. The results obtained in the work indicate to the significant role of CA metabolism disturbances in the alcoholic dependence formation.  相似文献   

8.
Experimentally naive male rats were sequentially tested for an exploratory (open-field) and a one-trial learning passive avoidance behavior. Subsequently, α-MPT-induced disappearance of noradrenaline (NA) and dopamine (DA) was determined in microdissected brain regions. The animals were classified as good or poor avoiders on the basis of their performance in passive avoidance retention test. Trained controls were subjected to the same training except of electric foot-shock during the learning trial. The rate constant of NA disappearance was higher in the hippocampal dentate gyrus of the good vs. poor avoiders. In the good avoiders, the rate constant of DA disappearance was significantly higher in the central nucleus of the amygdala. The different turnover of catecholamines in the dorsal hippocampus and the amygdala in relation to passive avoidance performance suggests that individual differences in memory and/or learning may correlate with the catecholamine turnover of certain limbic structures.  相似文献   

9.
Mass-fragmentographic methods are described that enable the simultaneous measurement of total, free, and conjugated catecholamines in brain tissues. These methods were used to assess the distribution, kinetics, and pharmacological characteristics of total, free, and conjugated catecholamines in the hypothalamus, caudate nucleus, hippocampus, and septum. Conjugated norepi-nephrine (NE) represents ?20% of total NE in the hypothalamus, septum, and hippocampus, whereas the percentage is ? 50% in the caudate nucleus. The percentages of conjugated dopamine (DA) in these brain areas are consistently less than those of NE (?13%). Although in the hypothalamus the steady-state concentrations of total, free, and conjugated NE are over four times higher than those of the corresponding total, free, and conjugated DA, the turnover rates of this DA are comparable with those of the corresponding NE. Further, the ratios of conjugated NE or DA turnover rates to those of the total amines are higher than the corresponding ratios of their steady-state concentrations. Treatments with pargyline (75 mg/kg, i.p.; rats killed 30 and 60 min later) failed to change the contents of conjugated catecholamines in the hypothalamus and the caudate nucleus significantly. Pharmacological manipulation with a number of proto-typic drugs revealed that although the assay of conjugated catecholamines might shed additional light on the effects of drugs on central catecholamines, the assessment of total or free amines are on the whole equally informative. In conclusion, a detailed assessment of brain conjugated catecholamines is reported. The information provided, fills a gap in our knowledge that has up to now not been adequately addressed.  相似文献   

10.
To define the role of catecholamines (CA) in the metabolic adaptation to fasting we examined the effect of exogenous dopamine(DA) on heat production(HP) and CA content in the interscapular brown adipose tissue(IBAT) and adrenals of control-fed and 2-day fasted rats in the morning(M) and in the evening(E). DA stimulates HP in fed rats in the M by 45% but the thermogenic effect of this CA is markedly higher in the E. However, DA had no thermogenic effect in fasted rats. The tissue CA in fed rats fluctuates diurnally: in the IBAT noradrenaline(NA) was much higher in the E while adrenaline(A) in adrenals was lower. DA in fed rats did not change the adrenal A but reduced NA content both in the adrenals and in the IBAT all over the day. Fasting depleted A from adrenals but increased NA content both in the M and in the E. Unlike the adrenals in the IBAT fasting did not affect NA content. In the adrenal gland of fasted rats DA significantly increased the A content to the equal degree during the day, while this CA had no effect on NA content of the IBAT.  相似文献   

11.
N.B. Thoa  R.K. Davidson 《Life sciences》1982,30(17):1479-1485
The release of endogenous catecholamines (CA) from rat brain slices containing the nucleus tractus solitarius (NTS) was measured using a sensitive radioenzymatic assay. KCl (35 to 75 mM) induced a dose-related increase in norepinephrine (NE) release. Dopamine (DA) release was maximal with 50 mM KCl. An increase in epinephrine (E) release was only observed with 75 mM KCl. NE and E release was totally calcium-dependent whereas DA release was only partially calcium-dependent. Subsequent administrations of KCl released less CA. The calcium dependency of the KCl induced release of E, NE, and DA suggests a neurotransmitter function in the NTS for these CA. A difference in storage sites and/or mechanisms may be responsible for the observed differences in sensitivity to KCl and to extracellular calcium.  相似文献   

12.
H Ueda  Y Goshima  Y Misu 《Life sciences》1983,33(4):371-376
Using high performance liquid chromatography with an electro-chemical detector, we studied effects of different compounds on the impulse-evoked release of endogenous noradrenaline (NA) and dopamine (DA) release from slices of the rat hypothalamus. Adrenaline (10(-7) M), with a potent alpha-agonistic action decreased both NA and DA release, and these effects were blocked by pretreatment with yohimbine (10(-7 M). The alpha 2-antagonist, yohimbine alone (10(-8) - 10(-6) M) concentration-dependently increased these releases, while alpha 1-antagonist, prazosin showed weak increase on NA but not DA release at 10(-6) M. Isoproterenol (10(-10) - 10(-8) M) concentration-dependently increased these releases and the effects were antagonized by pretreatment with a non-selective beta-antagonist, 1-propranolol, a beta 1-antagonist, atenolol or a beta 2-antagonist, butoxamine. 1-Propranolol (3 X 10(-7) M) alone, but not the d-isomer inhibited the releases. Thus, in the rat hypothalamus, the release of NA and DA may be mediated via presynaptic alpha 2-, beta 1- and beta 2-adrenoceptors.  相似文献   

13.
Tissue concentrations of noradrenaline (NA), dopamine (DA) and adrenaline (A) were compared in spontaneously hypertensive (SHR) and normotensive (NCR) rats, aged 1, 3, 8, 14 and 24 weeks The organs analyzed included the brain, subdivided into prosencephalon and rhombencephalon, heart, adrenal glands and kidney. Brain catecholamines were significantly lower in SHR than in NCR, and the difference appeared already at the age of 3 weeks. Concomitant increase was found in the adrenal NA and A concentrations of the SHR. Concentration of NA in the heart decreased in the SHR following onset of hypertension. It is concluded that the diminished NA, DA and A concentrations in the brain as well as the augmented adrenal NA and A levels in the SHR may be causally related to the development of hypertension, while the heart NA level reflects the secondary, hypertension -- related changes.  相似文献   

14.
The concentrations of catecholamine and indoleamine metabolites were measured in intact and adrenalectomized mice to determine whether adrenal hormones mediate or modulate the stress-induced responses. Thirty minutes of footshock resulted in significant increases of the ratios of the dopamine (DA) catabolite, dihydroxyphenylacetic acid (DOPAC), to DA in prefrontal cortex, nucleus accumbens, striatum, hypothalamus, and brainstem, and of homovanillic (HVA)/DA ratios in nucleus accumbens, striatum, amygdala, and hypothalamus. Ratios of 3-methoxy-4-hydroxyphenylethyleneglycol to norepinephrine (NE) were also increased in prefrontal cortex, nucleus accumbens, septum, amygdala, hypothalamus, hippocampus, and brainstem. The concentration of NE was decreased in amygdala. 5-Hydroxyindoleacetic acid (5-HIAA)/5-hydroxytryptamine (5-HT, serotonin) ratios and free tryptophan were also increased in every brain region. Very similar data were obtained from mice restrained for 30 min. Adrenalectomy resulted in increased HVA/DA ratios in prefrontal cortex and striatum, and 5-HIAA/5-HT in septum. The stress-related changes were largely similar in adrenalectomized mice. Significant interactions between adrenalectomy and footshock treatment occurred in prefrontal cortical DOPAC/DA and hypothalamic NE which was depleted only in adrenalectomized mice, suggesting tendencies for these measures to be more responsive in adrenalectomized mice. Corticosterone administration (0.5-2.0 mg/kg s.c.) which resulted in plasma concentrations in the physiological range did not alter the concentrations of the cerebral metabolites measured in any region. We conclude that adrenal hormones do not mediate cerebral catecholamine or indoleamine metabolism in stress, although adrenalectomy may affect HVA and 5-HIAA metabolism, and there was a tendency for catecholamines to be more sensitive to stress in adrenalectomized animals.  相似文献   

15.
Diurnal variations in the concentrations of the catechols (CA) L-DOPA (LD), dopamine (DA), noradrenaline (NA), adrenaline (A) and DOPAC were determined in different brain parts, peripheral organs and plasma of the Atlantic cod, Gadus morhua, over a 24-hr period of artificial standard laboratory conditions and natural light (dark interval: 22.11-04.14). Three to four fishes were captured at 3-hourly intervals and killed by breaking their necks. The organs were dissected out and prepared using the alumina extraction procedure and subsequently analysed in an HPLC-system with electrochemical detection. In the brain structures (telencephalon, optic lobes, medulla oblongata + pons and hypothalamus), the CA levels showed a bimodal pattern with peaks at 16.00-19.00 and 07.00. The catecholamines (CAM) DA, NA and A exhibited the same pattern in the spleen, while NA and A in the heart and NA in plasma varied in a trimodal rhythm with peaks at 19.00, 01.00-04.00 and 07.00. The distribution of CAs and ratios of CAMs in the various brain structures, peripheral organs and plasma are given. The mean concentrations were calculated from the mean of eight groups of cod, taken over a 24-hr period. The results obtained are discussed in relation to the activity pattern of the cod and the differences in CA levels and rhythms between central structures, peripheral organs and plasma of the cod are discussed in relation to other studies on CA levels and rhythmic variations of CAs in related animals.  相似文献   

16.
One-day-old rats were exposed to a gas mixture of 15% CO2-21% O2-64% N2 for a 30-min period. Monoamine synthesis in whole brain was measured during, and at various intervals after, hypercapnia by estimating the accumulation of dihydroxyphenylalanine (DOPA) and 5-hydroxytryptophan (5-HTP) after inhibition of aromatic L-amino-acid decarboxylase with NSD 1015. Endogenous concentrations of tyrosine, dopamine (DA), noradrenaline (NA), tryptophan, 5-hydroxytryptamine (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) were measured at the same intervals. Exposure to CO2 induced an increased synthesis of catecholamines and 5-HT. Further, an increase in DA concentration was seen during hypercapnia, while NA and 5-HT were unchanged. After the CO2 exposure the increased in vivo synthesis rates of catecholamines and 5-HT were rapidly normalized, as was the endogenous DA concentration. A slight increase in 5-HT and 5-HIAA concentrations was seen immediately after CO2 exposure. These results indicate that in neonatal animals, hypercapnia induces changes in central monoamine neurons, primarily an increased synthesis. These alterations may be relevant to some physiological changes seen during CO2 exposure, such as the alteration in central respiratory performance.  相似文献   

17.
Catecholamine sulfates were found to be inactive at vascular receptor sites. Only at one nonvascular receptor site important for blood pressure (BP) regulation was dopamine-3-O-sulfate found to be an inhibitory modulator of the adrenocortical secretion of aldosterone in vitro. However, sulfation of catecholamines (CA) does play an important role in BP regulation, as shown by the following observations: Sulfoconjugated CA with a long half-life are sometimes better markers of CA release than free CA, which have short half-lives. This is particularly true of dopamine (DA) sulfate because free DA, being rapidly sulfoconjugated, is usually undetectable. This led to the recognition of a previously unsuspected role of DA in paroxysmal hypertension and orthostatic hypotension. Measurements of CA sulfates reveal potentially important storage functions for sulfoconjugation that can rapidly inactivate excessive circulating free CA and so mitigate their cardiovascular impact while building up a pool of conjugated CA. The possibility that free CA can be generated from this pool through deconjugation whenever a need for them arises should be further investigated. Reproducible individual differences in the velocity of the sulfoconjugation of infused free CA can be detected, which suggests a genetic control of certain components of the sulfoconjugating process. These differences in sulfoconjugation probably modulate the cardiovascular action of CA and of some drugs with similar structure that also undergo sulfoconjugation.  相似文献   

18.
Sex-specific peculiarities of catecholamine (CA) content and turnover in neuroendocrine brain areas and their modification with neonatal steroids or prenatal stress (PS) in Wistar rats were studied. No changes in noradrenaline (NA) content and turnover rate were found in the preoptic area (POA), meanwhile dopamine (DA) turnover rates in the POA and mediobasal hypothalamus (MBH) were increased in neonatally androgenized 10-day-old females. Treatment of female neonates with various catecholestrogens increased hypothalamic NA content by 30–95% but only 4-hydroxyestradiol-17β induced anovulation. 6-Hydroxydopamine had no significant impact on hypothalamic CA content in neonates and did not prevent testosterone-induced persistent estrous. Maternal stress (restriction for 1 h a day, 15–21st days of pregnancy) resulted in a decrease of hypothalamic NA and blood plasma corticosterone response to acute stress in adult male offspring. Sex differences in CA content in the POA and MBH disappeared in 10-day-old prenatally stressed rats. Conclusions: (1) sexual brain differentiation needs co-operative actions of sex steroids and CA to be completed; and (2) early changes in CA content and turnover induced by PS or neonatal steroid exposure predetermine long-term alterations of the stress responsiveness, reproductive behaviour and neuroendocrine control of ovulation.  相似文献   

19.
Using radioenzymatic assay procedures, we have measured picomolar amounts of endogenous norepinephrine (NE) and dopamine (DA) released in vitro. The release of NE and DA in response to KCl stimulation was examined in 6 brain regions: cortex, hippocampus, hypothalamus, striatum, combined accumbens-olfactory tubercle, and substantia nigra. NE release was detectable in all regions except striatum. Amounts of NE released by 55mM KCl (expressed as % control) were: cortex (313%), hippocampus (227%), hypothalamus (225%), accumbens-tubercle (278%), s. nigra (155%). KCl stimulated release of DA was detected in 3 regions: striatum (414%), accumbenstubercle (282%), and hypothalamus (312%). DA was measurable in filtrates from the s. nigra but levels in control and KCl stimulated samples were equal. Release of NE and DA was also measured in 12 brain regions after incubation of tissue in vitro with 10?4M d-amphetamine sulfate. d-Amphetamine stimulated NE outflow when compared to controls in all regions examined. DA outflow was markedly increased in most regions, especially striatum (287%), hypothalamus (387%) and accumbens-tubercle (670%). d-Amphetamine doubled endogenous DA outflow from the s. nigra.  相似文献   

20.
We investigated the early and late effects of two types of ultra-long exercise on sympatho-adrenal and dopaminergic activity. With this aim both free and sulphoconjugated plasma catecholamines (CA), noradrenaline (NA), adrenaline (A), and dopamine (DA) were determined in two groups of athletes immediately after completion of 24-h running or a 10-h triathlon and on recovery during the next 1-3 days. Both races stimulated the sympathetic activity, but differences were observed in the CA pattern: the 24-h run induced a marked elevation of free and sulphoconjugated NA (+175% and +180%, respectively) but failed to alter significantly A and DA levels. The triathlon challenge increased the three conjugated CA (NA sulphate +350%; A sulphate +110%; DA sulphate +270%) and to a lesser extent free CA (NA +45%; A +30%). On the first post-exercise morning, a sustained intense noradrenergic activity was still present in the 24 h-runners, as evidenced by the large increase in free and sulphated NA levels (+140% and +100%, respectively). Such a prolonged activity was also indicated after completion of the triathlon, by the increase of NA sulphate (+140%) observed on the 1st recovery day. However, after the triathlon there was a decreased release of A from the adrenal medulla for several days. These data show that both types of ultralong exercise are able to induce for several hours a sustained sympathetic activation during the test and in the recovery period. Furthermore, the study shows that plasma conjugated CA may provide delayed and cumulative indexes of sympathetic activation, complementary to the instantaneous markers such as free CA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号