首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Doppel (Dpl) is the first described homologue of the prion protein, the main constituent of the agent responsible for prion diseases. The cellular prion protein (PrP(C)) is predominantly present in the central nervous system. Although its role is not yet completely clarified, PrP(C) seems to be involved in Cu(2+) recycling from synaptic clefts and in preventing neuronal oxidative damage. Conversely, Dpl is expressed in heart and testis and has been shown to regulate male fertility by intervening in gametogenesis and sperm-egg interactions. Therefore, despite a high sequence homology and a similar three-dimensional fold, the functions of PrP(C) and Dpl appear unrelated. Here we show by electron paramagnetic resonance and fluorescence spectroscopy that the in vitro binding of copper(II) to human recombinant Dpl occurs with a different pattern from that observed for recombinant PrP. At physiological pH values, two copper(II)-binding sites with different affinities were found in Dpl. At lower pH values, two additional copper(II)-binding sites can be identified as follows: one complex is present only at pH 4, and the other is observed in the pH range 5-6. As derived from the electron paramagnetic resonance characteristics, all Dpl-copper(II) complexes have a different coordination sphere from those present in PrP. Furthermore, in contrast to the effect shown previously for PrP(C), addition of Cu(2+) to Dpl-expressing cells does not cause Dpl internalization. These results suggest that binding of the ion to PrP(C) and Dpl may contribute to the different functional roles ascribed to these highly homologous proteins.  相似文献   

2.
In this paper, we report the characterization of copper(II) complexes with two prion (PrP) protein peptide fragment analogues (VNITKQHTVTTTT), one with the N-terminus acetylated and the C-terminus amidated (PrP Ac180-193NH2) and the other with both the C- and N-termini free (PrP 180-193). Such peptide sequence almost entirely encompasses the PrPC's helix 2 in the C-terminal region. The stoichiometry, the binding modes and the conformational features of the copper(II) complexes with the above mentioned two peptides were investigated by electrospray ionization-mass spectrometry (ESI-MS), UV-visible (UV-Vis) spectrometry and electron paramagnetic resonance (EPR) spectrometry as well as by circular dichroism (CD) measurements. The binding site location of copper(II) in the structured region of the protein can be here suggested on the basis of our findings that show the involvement of His 187 residue. The similarity of the EPR parameters suggests that the anchoring imidazole residue drives the copper(II) coordination environment towards a common binding motif in different regions of the prion protein.  相似文献   

3.
Multi-histidinic peptides have been investigated for Cu(II) and Ni(II) binding. We present spectroscopic evidence that, at low pH and from sub-stoichiometric to stoichiometric amounts of metals, macrochelate and multi-histidinic Cu(II) and Ni(II) complexes form; but, from neutral pH and above, both copper and nickel bind to individual histidine residues. NMR, EPR, UV–Visible (UV–Vis) and UV–Visible CD spectroscopy were used to understand about the variety of complexes obtained at low pHs, where amide deprotonation and coordination is unfavoured. A structural transition between two coordination geometries, as the pH is raised, was observed. Metal binds to Nδ of histidine imidazole when main-chain coordination is involved and coordinates via Nε under mildly acidic conditions and sub-stoichiometric amounts of metals. From EPR results a distortion from planarity has been evidenced for the Cu(II) multi-histidinic macrochelate systems, which may be relevant to biological activity. The behaviour of our peptides was comparable to the pH dependent effect on Cu(II) coordination observed in octapeptide repeat domain in prion proteins and in amyloid precursor peptides involved in Alzheimer’s disease. Changes in pH and levels of metal affect coordination mode and can have implications for the affinity, folding and redox properties of proteins and peptide fragments.  相似文献   

4.
A potentiometric and spectroscopic (UV-vis, CD and EPR) study of Cu(II) binding to the (11-20), (11-28), (Ac-11-20H) and (Ac-11-28) fragments of human (H) and mouse (M) beta-amyloid peptide was carried out. The values of the protonation constants of the two lysine side chain amino groups for the (11-28) and (Ac-11-28) fragments of beta-amyloid peptide differ noticeably suggesting considerable interactions between the two residues. The N-terminal amino acid sequence Xaa-Yaa-His for the (11-20H) and (11-28H) fragments determines the coordination ability of the fragments studied to copper(II) ions. Addition of the (17-20) and (17-28) sequences to the (11-16) fragment of human and mouse beta-amyloid peptide does not change the coordination mode, and the stabilities of the complexes formed are comparable to those of the (11-16) peptide, although 1N complexes of the (11-28) fragments are stabilized by about one order of magnitude compared to those of the (11-16) peptides. The (Ac-11-28) peptides form complexes with the same coordination mode as those for the (Ac-11-16) fragments. The stability of the complexes for the (Ac-11-28H) fragment is one or two orders of magnitude higher compared to those of the (Ac-11-16H) fragment. This stabilization may result from structural organization of a peptide in copper(II) complexes.  相似文献   

5.
The binding of Cu(II) to the prion protein is investigated by computations at the B3LYP level of theory on models of the octarepeat domain of the prion protein. The models incorporate the functionality of the glycine (G) and histidine (H) residues which occur in the octarepeat domain, PHGGGWGQ. The copper complexes are designated Cu[HG] and Cu[HGGG]. Coordination to the metal via the imidazole ring of the histidine, the amide carbonyl groups, and the backbone nitrogen atom of the amide groups were examined, as well as several protonation/deprotonation states of each structure. EPR and CD titration experiments suggest that the octarepeat segments of the unstructured N-terminal domain of prion protein can bind Cu(II) in a 1:1 Cu-to-octarepeat ratio. The results identify the extent to which the Cu(II) facilitates peptide backbone deprotonation, and the propensity of binding in the forward (toward the C-terminus) direction from the anchoring histidine residue. A plausible mechanism is suggested for changing from amide O-atom to deprotonated amide N-atom coordination, and for assembly of the observed species in solutions of Cu[PrP] and truncated models of it. A structure is proposed which has the N2O2 coordination pattern for the minor component observed experimentally by EPR spectroscopy for the Cu[HGGG] model. The most stable neutral Cu[HGGG] structure found, with coordination environment N3O1, corresponds to that observed for Cu[HGGGW] and Cu[HGGG] both in the solid state and as the major component in solution at neutral pH.  相似文献   

6.
Stoichiometry, stability constants and solution structures of the copper(II) complexes of the (1-16H), (1-28H), (1-16M), (1-28M), (Ac-1-16H) and (Ac-1-16M) fragments of human (H) and mouse (M) beta-amyloid peptide were determined in aqueous solution in the pH range 2.5-10.5. The potentiometric and spectroscopic data (UV-Vis, CD, EPR) show that acetylation of the amino terminal group induces significant changes in the coordination properties of the (Ac-1-16H) and (Ac-1-16M) peptides compared to the (1-16H) and (1-16M) fragments, respectively. The (Ac-1-16H) peptide forms the 3N [N(Im)(6), N(Im)(13), N(Im)(14)] complex in a wide pH range (5-8), while for the (Ac-1-16M) fragment the 2N [N(Im)(6), N(Im)(14)] complex in the pH range 5-7 is suggested. At higher pH values sequential amide nitrogens are deprotonated and coordinated to copper(II) ions. The N-terminal amino group of the (1-16) and (1-28) fragments of human and mouse beta-amyloid peptide takes part in the coordination of the metal ion, although, at pH above 9 the complexes with the 4N [N(Im), 3N(-)] coordination mode are formed. The phenolate -OH group of the Tyr(10) residue of the human fragments does not coordinate to the metal ion.  相似文献   

7.
Nickel(II) complexes of the peptide fragments of human prion protein containing histidyl residues both inside and outside the octarepeat domain have been studied by the combined application of potentiometric, UV-visible and circular dichroism spectroscopic methods. The imidazole-N donor atoms of histidyl residues are the exclusive metal binding sites below pH 7.5, but the formation of stable macrochelates was characteristic only for the peptide HuPrP(76-114) containing four histidyl residues. Yellow colored square planar complexes were obtained above pH 7.5-8 with the cooperative deprotonation of three amide nitrogens in the [Nim,N,N,N] coordination mode. It was found that the peptides can bind as many nickel(II) ions as the number of independent histidyl residues. All data supported that the complex formation processes of nickel(II) are very similar to those of copper(II), but with a significantly reduced stability for nickel(II), which shifts the complex formation reactions into the slightly alkaline pH range. The formation of coordination isomers was characteristic of the mononuclear complexes with a significant preference for the nickel(II) binding at the histidyl sites outside the octarepeat domain. The results obtained for the two-histidine fragments of the protein, HuPrP(91-115), HuPrP(76-114)H85A and HuPrP(84-114)H96A, made it possible to compare the binding ability of the His96 and His111 sites. These data reveal a significant difference in the nickel(II) and copper(II) binding sites of the peptides: His96 was found to predominate almost completely for nickel(II) ions, while the opposite order, but with comparable concentrations, was reported for copper(II).  相似文献   

8.
Recent experimental evidence supports the hypothesis that prion proteins (PrPs) are involved in the Cu(II) metabolism. Moreover, the copper binding region has been implicated in transmissible spongiform encephalopathies, which are caused by the infectious isoform of prion proteins (PrP(Sc)). In contrast to mammalian PrP, avian prion proteins have a considerably different N-terminal copper binding region and, most interestingly, are not able to undergo the conversion process into an infectious isoform. Therefore, we applied x-ray absorption spectroscopy to analyze in detail the Cu(II) geometry of selected synthetic human PrP Cu(II) octapeptide complexes in comparison with the corresponding chicken PrP hexapeptide complexes at pH 6.5, which mimics the conditions in the endocytic compartments of neuronal cells. Our results revealed that structure and coordination of the human PrP copper binding sites are highly conserved in the pH 6.5-7.4 range, indicating that the reported pH dependence of copper binding to PrP becomes significant at lower pH values. Furthermore, the different chicken PrP hexarepeat motifs display homologous Cu(II) coordination at sub-stoichiometric copper concentrations. Regarding the fully cation-saturated prion proteins, however, a reduced copper coordination capability is supposed for the chicken prion protein based on the observation that chicken PrP is not able to form an intra-repeat Cu(II) binding site. These results provide new insights into the prion protein structure-function relationship and the conversion process of PrP.  相似文献   

9.
Doppel (Dpl) is a glycosylphosphatidylinositol-anchored protein expressed in the testis. It exhibits 26% sequence identity with the prion protein (PrP) but lacks the octarepeat region implicated as the major copper-binding domain. Contrary to expectations, Cu(II) induced a 26% reduction in the intrinsic fluorescence of Dpl(27-154) and a calculated K(d) for a single-site model of 0.16 +/- 0.08 microm. Other metals had minimal effects on fluorescence quenching. Matrix-assisted laser desorption ionization mass spectrometry of a Dpl peptide revealed binding of copper (but not other metals) to the helical alphaB/B'-loop-alphaC subregion of Dpl. Fluorescence quenching and equilibrium dialysis analyses of this Dpl(101-145) peptide were compatible with a binding site of K(d) = 0.4 microm. Diethylpyrocarbonate footprinting (Qin, K., Yang, Y., Mastrangelo, P., and Westaway, D. (2002) J. Biol. Chem. 277, 1981-1990) of Dpl(27-154) defined one residue/molecule was protected by copper from diethylpyrocarbonate adduct formation, and reiteration of this analysis with Dpl(101-145) suggested that His(131) may contribute to Cu(II) binding. Taken together, our data indicate that the alpha-helical region of mouse Dpl possesses a selective copper-binding site with a submicromolar K(d) and perhaps one or more lower affinity sites. Although metallated forms of Dpl might exist in vivo, analyses of Tg(Dpl)10329 mice were inconsistent with reports that Dpl expression is associated with increased carbonylation and nitrosylation of brain proteins. Thus, rather than comprising an important source of free radical damage, copper binding may serve to modulate the activity, stability, or localization of the Dpl protein.  相似文献   

10.
Copper(II) and zinc(II) complexes of the peptides Ac-HisValHis-NH2 and Ac-HisValGlyAsp-NH2 related to the active site of the enzyme CuZnSOD were studied by potentiometric and spectroscopic (UV-Vis, CD and EPR) techniques. The results reveal that both ligands have effective metal binding sites, but the tripeptide is a much stronger complexing agent than the tetrapeptide. The formation of a macrochelate via the coordination of the imidazolyl residues is suggested in the copper(II)-Ac-HisValHis-NH2 system in the acidic pH range, while a 4N complex predominates at physiological pH. The interaction of Ac-HisValHis-NH2 with zinc(II) results in the formation of a precipitate indicating polynuclear complex formation. Both copper(II)-Ac-HisValHis-NH2 and copper(II)-HisValHis systems exhibit catalytic activity toward the dismutation of superoxide anion at physiological pH, but the saturated coordination sphere of the metal ions in both systems results in low reactivity as compared to the native enzyme.  相似文献   

11.
Stoichiometry, stability constants and solution structures of the copper(II) complexes of the N-acetylated tetrapeptide HisGlyHisGly were determined in aqueous solution in the pH range 2-11. The potentiometric and spectroscopic data (UV-Vis, CD, EPR and Raman scattering) show that acetylation of the amino terminal group induces drastic changes in the coordination properties of AcHGHG compared to HGHG. The N3 atoms of the histidine side chains are the first anchoring sites of the copper(II) ion. At pH 4.7 and 5.6 both the imidazole rings cooperate in the formation of a 2N equatorial set, while, at higher pH values, 3N and 4N complexes are formed through the coordination of peptide N- atoms. The logbeta values of the copper complexes of AcHGHG are by far lower than those of the corresponding species in the parent CuII-HGHG system.  相似文献   

12.
Potentiometric and spectroscopic (UV-Vis, CD and EPR) studies were carried out on copper(II) complexes with chicken prion protein N-terminal fragments, Ac-(PHNPGY)4-NH2, and the mutated residue, Ac-(PHNPGF)4-NH2, to assess the role of tyrosine in the copper coordination. Both thermodynamic and spectroscopic results indicate that chicken prion fragments are not able to bind more than two copper ions and only with the involvement of side chain tyrosine groups. The prevailing complex shows one copper ion bound to four imidazole nitrogen atoms in the 1:1 metal to ligand ratio systems. The superoxide dismutase (SOD)-like activity of copper(II) complexes with the avian peptides and mammal analogue, Ac-(PHGGGWGQ)4-NH2, was also investigated by means of Pulse radiolysis. The copper(II) complexes with avian peptides do not display SOD-like activity, while very low activity has been detected for the copper(II) complexes with mammalian tetraoctarepeat.  相似文献   

13.
14.
Lu K  Wang W  Xie Z  Wong BS  Li R  Petersen RB  Sy MS  Chen SG 《Biochemistry》2000,39(44):13575-13583
The doppel protein (Dpl) is a newly recognized prion protein (PrP)-like molecule encoded by a novel gene locus, prnd, located on the same chromosome as the PrP gene. To study the structural features of Dpl, we have expressed recombinant human Dpl corresponding to the putative mature protein domain (residues 24-152) in Escherichia coli. The primary structure of the recombinant Dpl 24-152 was characterized using gel electrophoresis, N-terminal Edman sequencing, matrix-assisted laser desorption ionization mass spectrometry, and electrospray ionization mass spectrometry. Dpl 24-152 was shown to contain two disulfide bonds (Cys94-Cys145 and Cys108-Cys140). The secondary structure of Dpl was analyzed using far-UV circular dichroism spectroscopy. Dpl 24-152 was found to be an alpha-helical protein having a high helical content (40%). Dpl 24-152 exhibited characteristics of a thermodynamically stable protein that undergoes reversible and cooperative thermal denaturation. In addition, Dpl was found to be soluble and sensitive to proteinase K digestion. Therefore, Dpl 24-152 possesses biochemical properties similar to those of recombinant PrP. This study provides knowledge about the molecular features of human Dpl that will be useful in further investigation into its normal function and the role it may play in neurodegenerative diseases.  相似文献   

15.
Prion protein (PrP) misfolding is one of the pivotal issues in understanding the rudiments of neurodegenerative disorders. The conformational change of mammalian cellular PrP to scrapie PrP is caused by an unknown agent, but there is reasonable evidence supporting the key role of copper ions in this process. The structure of the avian PrP was found to be very similar to the mammalian protein, although there is only 30% homology in the secondary structure. This work shows that copper ions are very effectively bound by hexarepeat fragments of chicken prion protein, although not as effectively as it was found in the case of mammalian protein. By means of potentiometric and spectroscopic techniques (nuclear magnetic resonance, circular dichroism, UV-vis, and electronic paramagnetic resonance), it was shown that Cu(II) ions coordinate to the chicken PrP hexapeptide domain in physiological pH via imidazole nitrogen donors of His residue(s). The binding pattern changes the structure of peptide involved, indicating a possible impact of Cu(II) ions in the biology and pathology of nonmammalian PrP, which could be similar to that found for mammalian PrP. The present study shows that, similar to the human prion octapeptide repeats, chicken prion hexapeptide repeats might bind copper ions in two different ways, depending on the number of repeats and metal/ligand molar ratio: (i) an intra-repeat coordination mode in which copper ion is chelated by His imidazole and deprotonated amide nitrogen in monomeric peptide and (ii) an inter-repeat coordination mode in which a polymeric peptide ligand (dimer and trimer) forms polyimidazole complexes that are very stable at physiological pH. Two proline residues inserted into the hexapeptide unit have a critical impact on the metal-binding ability.  相似文献   

16.
The stoichiometry, stability constants and solution structure of the complexes formed in the reaction of copper(II) with N-terminal fragments of human and mouse beta-amyloid peptide, 1-6, 1-9, 1-10 have been determined by potentiometric, UV/VIS, CD and EPR spectroscopic methods. The fragments 1-9 and 1-10 form complexes with the same coordination modes as the fragments 1-6. The coordination of the metal ion for human and mouse fragments starts from the N-terminal Asp residue which stabilizes significantly the 1N complex as a result of chelation through the beta-carboxylate group. In a wide pH range of 4-10, the imidazole nitrogen of His(6) is coordinated to form a macrochelate. Results show that, in the pH range 5-9 the human fragments form the complex with different coordination mode compared to that of the mouse fragments. The low pK(1)(amide) values (approximately 5) obtained for the mouse fragments may suggest the coordination of the amide nitrogen of His(6) while in case of the human fragments the coordination of the amide nitrogen of Ala(2) is suggested. The replacement of glycine by the arginine residue in the fifth position of the beta-amyloid peptide sequence changes the coordination modes of a peptide to metal ion in the physiological pH range. In a wide pH (including physiological) range the mouse fragments of beta-amyloid peptide are much more effective in Cu(II) binding than the human fragments.  相似文献   

17.
The GGGTHSQW sequence in the amyloidogenic part of the prion protein is a potential binding site for Cu(II). We have previously studied the binding of copper to the shorter GGGTH peptide and showed that it is highly pH dependent (Hureau et al. in J. Biol. Inorg. Chem. 11:735–744, 2006). Two predominant complexes could be characterized at pH 6.7 and 9.0 with equatorial binding modes of 3N1O and 4N for the metal ion, respectively. In this work, we have further investigated the coordination of Cu(II) to the GGGTH peptide as well as the longer GGGTHSQW peptide in order to identify the oxygen donor ligand at neutral pH and to study the proximity and redox activity of the tryptophan residue of the latter. The results for both peptides show that, at pH 6.7, Cu(II) is coordinated by a carbonyl peptide backbone. At higher pH values, the carbonyl ligand dissociates and the coordination changes to a 4N binding mode, inducing a structural rearrangement that brings the GGGTHSQW peptide’s tryptophan residue into the vicinity of the copper ion, thus affecting their respective redox properties.  相似文献   

18.
The complexes between copper(II) and the synthetic octapeptide fragments of the prion protein Ac-GWGQPHGG-NH2 (1), Ac-PHGGGWGQ-NH2 (3) and the cyclic analogue c-(GWGQPHGG) (2) have been comparatively investigated by circular dichroism (CD), absorption (UV-Vis), and electron paramagnetic resonance (EPR) spectroscopic methods.The results suggest a similar copper(II) coordination behaviour of the two linear peptides. In both cases two major complex species were spectroscopically detected. The first one, existing in the range of pH 7-9, showed spectroscopic parameters attributable to a 3N complex species, while the 4N complex was the main species at strongly alkaline pH values. Copper(II) binding appears to be confined within the aminoacid sequence HGG.Cyclisation of the main chain, as in the peptide 2, was found to have remarkable effects on the copper(II) complex speciation especially at pH 7-8 where the 3N species predominated in the linear counterparts. By contrast the spectroscopic data obtained at pH 11 provided evidence of the restoration of the same set of donor atoms as in the linear peptides.  相似文献   

19.
Copper(II) complexes of dipeptides of histidine containing additional chelating bis(imidazol-2-yl) agent at the C-termini (PheHis-BIMA [N-phenylalanyl-histidyl-bis(imidazol-2-yl)methylamine] and HisPhe-BIMA [N-histidyl-phenylalanyl-bis(imidazol-2-yl)methylamine]) were studied by potentiometric, UV-Visible and Electron Paramagnetic Resonance (EPR) techniques. The imidazole nitrogen donor atoms of the bis(imidazol-2-yl)methyl group are described as the primary metal binding sites forming stable mono- and bis(ligand) complexes at acidic pH. The formation of a ligand-bridged dinuclear complex [Cu2L2]4+ is detected in equimolar solutions of copper(II) and HisPhe-BIMA. The coordination isomers of the dinuclear complex are described via the metal binding of the bis(imidazol-2-yl)methyl, amino-carbonyl and amino-imidazole(His) functions. In the case of the copper(II)-PheHis-BIMA system the [NH2, N-(amide), N(Im)] tridentate coordination of the ligand is favoured and results in the formation of di- and trinuclear complexes [Cu2H(-1)L]3+ and [Cu3H(-2)L2]4+ in equimolar solutions. The presence of these coordination modes shifts the formation of "tripeptide-like" ([NH2, N-, N-, N(Im)]-coordinated) [CuH(-2)L] complexes into alkaline pH range as compared to other dipeptide derivatives of bis(imidazol-2-yl) ligands. Although there are different types of imidazoles in these ligands, the deprotonation and coordination of the pyrrole-type N(1)H groups does not occur below pH 10.  相似文献   

20.
Several proteins linked to neurodegenerative diseases, such as the beta-amyloid precursor protein, amyloid beta-peptide, beta-secretase, and tau, undergo selective polarized sorting. We investigated polarized sorting of the mammalian prion protein (PrP(C)) and its homologue doppel (Dpl). In contrast to Dpl, which accumulates on the apical surface, PrP(C) is targeted selectively to the basolateral side in Madin-Darby canine kidney cells. An extensive deletion and domain swapping analysis revealed that the internal hydrophobic domain (HD) of PrP (amino acids 113-133) confers basolateral sorting in a dominant manner. PrP mutants lacking the HD are sorted apically, while Dpl chimeras containing the HD of PrP are directed to the basolateral membrane. Furthermore, a pathogenic PrP missense mutation within the HD leads to aberrant apical sorting of PrP as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号