首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
To improve the DNA hydrolytic activity of the zinc finger nuclease, we have created a new artificial zinc finger nuclease (ZWH4) by connecting two distinct zinc finger domains possessing different types of Zn(II) binding sites (Cys2His2- and His4-types). The overall fold of ZWH4 is similar to that of the wild-type Sp1 zinc finger (Sp1(zf123)) as revealed by circular dichroism spectroscopy. The gel mobility shift assay demonstrated that ZWH4 binds to the GC box DNA, although the DNA-binding affinity is lower than that of Sp1(zf123). Evidently, ZWH4 hydrolyzes the covalently closed circular plasmid DNA (form I) containing the GC box (pBSGC) to the linear duplex DNA (form III) in the presence of a higher concentration (50 times) of the protein than DNA for a 24-h reaction. Of special interest is the fact that the novel mixed zinc finger protein containing the Cys2His2- and His4-type domains was first created. The present results provide the useful information for the redesign strategy of an artificial nuclease based on the zinc finger motif.  相似文献   

2.
In humans and mice, the Cys2His2 zinc finger protein PRDM9 binds to a DNA sequence motif enriched in hotspots of recombination, possibly modifying nucleosomes, and recruiting recombination machinery to initiate Double Strand Breaks (DSBs). However, since its discovery, some researchers have suggested that the recombinational effect of PRDM9 is lineage or species specific. To test for a conserved role of PRDM9-like proteins across taxa, we use the Drosophila pseudoobscura species group in an attempt to identify recombination associated zinc finger proteins and motifs. We leveraged the conserved amino acid motifs in Cys2His2 zinc fingers to predict nucleotide binding motifs for all Cys2His2 zinc finger proteins in Drosophila pseudoobscura and identified associations with empirical measures of recombination rate. Additionally, we utilized recombination maps from D. pseudoobscura and D. miranda to explore whether changes in the binding motifs between species can account for changes in the recombination landscape, analogous to the effect observed in PRDM9 among human populations. We identified a handful of potential recombination-associated sequence motifs, but the associations are generally tenuous and their biological relevance remains uncertain. Furthermore, we found no evidence that changes in zinc finger DNA binding explains variation in recombination rate between species. We therefore conclude that there is no protein with a DNA sequence specific human-PRDM9-like function in Drosophila. We suggest these findings could be explained by the existence of a different recombination initiation system in Drosophila.  相似文献   

3.
Ml4 protein from Mesorhizobium loti has a 58% sequence identity with the Ros protein from Agrobacterium tumefaciens that contains a prokaryotic Cys2His2 zinc finger domain. Interestingly, Ml4 is a zinc-lacking protein that does not contain the Cys2His2 motif and is able to bind the Ros DNA target sequence with high affinity. Here we report the 1H, 15N and 13C NMR assignments of the Ml4 protein DNA binding domain (residue 52–151), as an important step toward elucidating at a molecular level how this prokaryotic domain can overcome the metal requirement for proper folding and DNA-binding activity.  相似文献   

4.
5.
6.
7.
The C‐terminal three‐Cys2His2 zinc‐finger domain (TZD) of mouse testis zinc‐finger protein binds to the 5′‐TGTACAGTGT‐3′ at the Aie1 (aurora‐C) promoter with high specificity. Interestingly, the primary sequence of TZD is unique, possessing two distinct linkers, TGEKP and GAAP, and distinct residues at presumed DNA binding sites at each finger, especially finger 3. A Kd value of ~10?8 M was obtained from surface plasmon resonance analysis for the TZD‐DNA complex. NMR structure of the free TZD showed that each zinc finger forms a typical ββα fold. On binding to DNA, chemical shift perturbations and the R2 transverse relaxation rate in finger 3 are significantly smaller than those in fingers 1 and 2, which indicates that the DNA binding affinity in finger 3 is weaker. Furthermore, the shift perturbations between TZD in complex with the cognate DNA and its serial mutants revealed that both ADE7 and CYT8, underlined in 5′‐ATATGTACAGTGTTAT‐3′, are critical in specific binding, and the DNA binding in finger 3 is sequence independent. Remarkably, the shift perturbations in finger 3 on the linker mutation of TZD (GAAP mutated to TGEKP) were barely detected, which further indicates that finger 3 does not play a critical role in DNA sequence‐specific recognition. The complex model showed that residues important for DNA binding are mainly located on positions ?1, 2, 3, and 6 of α‐helices in fingers 1 and 2. The DNA sequence and nonsequence‐specific bindings occurring simultaneously in TZD provide valuable information for better understanding of protein–DNA recognition. Proteins 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

8.
9.
10.
11.
The conformational properties of unbound multi‐Cys2His2 (mC2H2) zinc finger proteins, in which zinc finger domains are connected by flexible linkers, are studied by a multiscale approach. Three methods on different length scales are utilized. First, atomic detail molecular dynamics simulations of one zinc finger and its adjacent flexible linker confirmed that the zinc finger is more rigid than the flexible linker. Second, the end‐to‐end distance distributions of mC2H2 zinc finger proteins are computed using an efficient atomistic pivoting algorithm, which only takes excluded volume interactions into consideration. The end‐to‐end distance distribution gradually changes its profile, from left‐tailed to right‐tailed, as the number of zinc fingers increases. This is explained by using a worm‐like chain model. For proteins of a few zinc fingers, an effective bending constraint favors an extended conformation. Only for proteins containing more than nine zinc fingers, is a somewhat compacted conformation preferred. Third, a mesoscale model is modified to study both the local and the global conformational properties of multi‐C2H2 zinc finger proteins. Simulations of the CCCTC‐binding factor (CTCF), an important mC2H2 zinc finger protein for genome spatial organization, are presented. Proteins 2015; 83:1604–1615. © 2015 Wiley Periodicals, Inc.  相似文献   

12.
13.
锌簇家族蛋白即Zn2Cys6类锌指蛋白,是真菌中特有的一类蛋白,它们属于转录因子类,广泛参与真菌中初级和次级代谢、胁迫应答和细胞分裂等生命活动的调控。锌簇蛋白主要包括N端的DNA结合结构域、中间的调节结构域和C端的酸性区域,其中DNA结合结构域包含锌指基序并负责结合靶基因的启动子。目前已经解析了多个锌簇家族转录因子DNA结合结构域的三维结构,并发现该家族中一些蛋白能够参与调控多个基因的表达,但缺乏对其结构、动力学和功能关系的全面分析。本文综合分析了不同锌簇蛋白与DNA结合的结构特征,总结其结构域与功能的关系,指出锌簇蛋白研究的重要方向,旨在为锌簇家族蛋白的深入研究提供思路。  相似文献   

14.
The second zinc finger fragment of Sp1 (Sp1-ZF2), its mutant (Sp1-ZF2/HT. E20 → H, R23 → T), and two mimic analogues (ZF20 and ZF15) were synthesized by stepwise solid phase technique. The CD spectra and UV-visible spectrum with CoC12 indicated that the formation of zinc finger structure was affected not only by the hydrophobic amino acids but also by the change of the distance between Cys and His. Gel-retardat ion electrophoresis assays indicated that the Glu and Arg residues are very important for recognition. A single zinc finger like Sp1-ZF2 is able to bind DNA sequence specifically.  相似文献   

15.
16.
The p53-induced mouse wig-1 gene encodes a Cys2His2-type zinc finger protein of unknown function. The zinc fingers in wig-1 are connected by long (56–75) amino acid linkers. This distribution of zinc finger domains resembles that of the previously described double-stranded (ds)RNA-binding proteins dsRBP-ZFa and JAZ. Ectopically expressed FLAG-tagged mouse wig-1 protein localized to nuclei and in some cells to nucleoli, whereas GFP-tagged mouse wig-1 localized primarily to nucleoli. Electrophoretic mobility shift assay using a recombinant GST–wig-1 fusion protein showed that wig-1 preferentially binds dsRNA rather than single-stranded RNA or dsDNA. A set of deletion/truncation mutants of wig-1 was tested to determine the dsRNA-binding domain(s) or region(s) in wig-1 that is involved in the stabilization of wig-1–dsRNA complexes in vitro. This revealed that the first zinc finger in wig-1 is essential for binding to dsRNA, whereas zinc fingers 2 and 3 are dispensable. wig-1 protein expressed in mammalian cells also showed a high affinity for dsRNA. wig-1 represents the first confirmed p53-induced gene that encodes a dsRNA-binding protein. This suggests that dsRNA binding plays a role in the p53-dependent stress response.  相似文献   

17.
The Zn(II) binding by partial peptides of human protamine HP2: HP21–15; HP21–25, HP226–40, HP237–47, and HP243–57 was studied by circular dichroism (CD). Precipitation of a 20mer DNA by these partial peptides and the effects of Zn(II) thereon were investigated using polyacrylamide gel electrophoresis (GE). The results of this study suggest that reduced HP2 (thiol groups intact) can bind Zn(II) at various parts of the molecule. In the absence of DNA, the primary Zn(II) binding site in reduced HP2 is located in the 37–47 sequence (involving Cys37, His39, His43, and Cys47), while in the presence of DNA, the strongest Zn(II) binding is provided by sequences 12–22 (by His12, Cys13, His19, and His22) and 43–57 (His43, Cys47, Cys53, and His57). In its oxidized form, HP2 can bind zinc through His residues of the 7–22 sequence. Zn(II) markedly enhances DNA binding by all partial peptides. These findings suggest that Zn(II) ions may be a regulatory factor for sperm chromatin condensation processes.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号