首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of this study was to synthesize and evaluate plasmid DNA interaction of new platinum(II) complexes with some 2-substituted benzimidazole derivatives as carrier ligands which may have potent anticancer activity and low toxicity. Twelve benzimidazole derivatives carrying indole, 2-/or 3-/or 4-methoxyphenyl, 4-methylphenyl, 3,4-dimethoxyphenyl, 3,4,5-trimethoxyphenyl, 4-methoxybenzyl, 3,4,5-trimethoxybenzyl, 3,4,5-trimethoxystyryl, 3,4,5-trimethoxybenzylthio or dimethylamino ethyl groups in their position 2 and twelve platinum(II) complexes with these carrier ligands were synthesized. The chemical structure of the platinum complexes have been characterized by their elemental analysis and FIR, 1H NMR and mass spectra and their 1H NMR and FIR spectra were interpreted by comparison with those of the ligands. The interaction of all the ligands and their complexes with plasmid DNA and their restriction endonuclease reactions by BamHI and HindIII enzymes were studied by agarose gel electrophoresis. It was determined that complex 1 [dichloro-di(2-(1H-indole-3-yl)benzimidazole)platinum(II)·2H2O] has stronger interaction than carboplatin and complex 10 [dichloro-di(2-(3,4,5-trimethoxystyryl)benzimidazole)platinum(II)·2H2O] has stronger interaction than both carboplatin and cisplatin with plasmid DNA.  相似文献   

2.
Treatment of 4N-monosubstituted bis(thiosemicarbazone) ligands of 3,5-diacetyl-1,2,4-triazol series with lithium tetrachloridopalladate gave the dinuclear complexes of general formula [Pd(μ-H3L1-5)]2, but using dichloridobistriphenylphosphinepalladium(II) salt, the first mononuclear bis(thiosemicarbazone)-palladium-triphenylphosphine complexes of the 3,5-diacetyl-1,2,4-triazol series, [Pd(H3L1-5)PPh3], have been obtained. All the compounds have been characterized by elemental analysis and by IR and NMR spectroscopy, and the crystal and molecular structures of dinuclear complexes [Pd(μ-H3L3)]2 and [Pd(μ-H3L5)]2 as well as mononuclear complexes [Pd(H3L1)PPh3], [Pd(H3L2)PPh3], [Pd(H3L3)PPh3] and [Pd(H3L4)PPh3] have been determined by X-ray crystallography. The new compounds synthesized have been evaluated for antiproliferative activity in vitro against NCI-H460, A2780 and A2780cisR human cancer cell lines. Subsequent toxicity study, on normal renal LLC-PK1 cells, shows that all compounds investigated exhibit very low toxicity on kidney cells with respect to cisplatin.  相似文献   

3.
In this work, the interaction between the guanine-rich single-strand oligomer AG3(T2AG3)3 quadruplex and two Ru(II) complexes, [Ru(L1)(dppz)2](PF6)4 (1) and [Ru(L2)(dppz)2](PF6)4 (2) (L1 = 5,5′-di(1-(trimethylammonio)methyl)-2,2′-dipyridyl cation, L2 = 5,5′-di(1-(triethylammonio)methyl)-2,2′-dipyridyl cation, dppz = dipyrido[3,2-a:2′,3′-c] phenazine), has been studied by UV-Visible, fluorescence, DNA melting, and circular dichroism in K+ buffer. The two complexes after binding to G-quadruplex have shown different DNA stability and fluorescence enhancement. The results show that both complexes can induce the stabilization of quadruplex DNA. ΔTm values of complexes 1 and 2 at [Ru]/[DNA] ratio of 1:1 were 9.4 and 7.0, respectively. Binding stoichiometry along with the quadruplex was investigated through a luminescence-based Job plot. The major inflection points for complexes 1 and 2 were 0.49 and 0.46, respectively. The data were consistent with the binding mode at a [quadruplex]/[complex] ratio of 1:1. In addition, the conformation of G-quadruplex was not changed by the complexes at the high ionic strength of K+ buffer.  相似文献   

4.
The interaction of a series of mixed ligand complexes of the type [Ru(NH3)4(diimine)]Cl2, where diimine=2,2-bipyridine (bipy), 1,10-phenanthroline (phen), 5,6-dimethyl-1,10-phenanthroline (5,6-dmp), 4,7-dimethyl-1,10-phenanthroline (4,7-dmp), 2,9-dimethyl-1,10-phenanthroline (2,9-dmp), 3,4,7,8-tetra-methyl-1,10-phenanthroline (Me4phen), with calf thymus DNA has been studied using absorption, emission and circular dichroic spectral measurements and viscometry and electrochemical techniques. On interaction with DNA the complexes show hypochromism and red-shift in their MLCT band suggesting that the complexes bind to DNA. The magnitude of the binding constant (Kb) obtained from absorption spectral titration varies depending upon the nature of the diimine ligand: Me4phen > 5,6-dmp > 4,7-dmp > phen suggesting the use of diimine ‘face’ of the octahedral complexes in binding to DNA. The interaction of phen complex possibly involves phen ring partially inserted into the DNA base pairs. In contrast, the methyl-substituted phen complexes would involve hydrophobic interaction of the phen ring in the grooves of DNA, which is supported by hydrogen bonding interactions of the ammonia ligands with the intrastrand nucleobases. Also the shape and size of the phen ligand as modified by the methyl substituents determine the DNA binding site sizes (0.12-0.45 base pairs). The relative emission intensities (I/I0) of the DNA-bound complexes parallel the variation in Kb values. Almost all the metal complexes exhibit induced CD bands on binding to B DNA, with the 4,7-dmp and Me4phen complexes inducing certain structural modifications on the biopolymer. DNA melting curves obtained in the presence of metal complexes reveal a monophasic melting of the DNA strands, the Me4phen complex exhibiting a slightly enhanced tendency to stabilize the double-stranded DNA. There were slight to appreciable changes in the relative viscosities of DNA, which are consistent with enhanced hydrophobic interaction of the methyl-substituted phen rings. Upon interaction with CT DNA, the Me4phen, 4,7-dmp and 5,6-dmp complexes, in contrast to bipy, phen and 2,9-dmp complexes, show a decrease in anodic peak current in their cyclic voltammograms suggesting that they exhibit enhanced DNA binding. DNA cleavage experiments show that all the complexes induce cleavage of pBR322 plasmid DNA, the Me4phen and 5,6-dmp complexes being remarkably more efficient than other complexes.  相似文献   

5.
The interactions of three related cationic porphyrins, TMPyP4, TMPyP3 and TMPyP2, with a WT 39-mer Bcl-2 promoter sequence G-quadruplex were studied using Circular Dichroism, ESI mass spectrometry, Isothermal Titration Calorimetry, and Fluorescence spectroscopy. The planar cationic porphyrin TMPyP4 (5, 10, 15, 20-meso-tetra (N-methyl-4-pyridyl) porphine) is shown to bind to a WT Bcl-2 G-quadruplex via two different binding modes, an end binding mode and a weaker mode attributed to intercalation. The related non-planar ligands, TMPyP3 and TMPyP2, are shown to bind to the Bcl-2 G-quadruplex by a single mode. ESI mass spectrometry experiments confirmed that the saturation stoichiometry is 4:1 for the TMPyP4 complex and 2:1 for the TMPyP2 and TMPyP3 complexes. ITC experiments determined that the equilibrium constant for formation of the (TMPyP4)1/DNA complex (K1 = 3.7 × 106) is approximately two orders of magnitude greater than the equilibrium constant for the formation of the (TMPyP2)1/DNA complex, (K1 = 7.0 × 104). Porphyrin fluorescence is consistent with intercalation in the case of the (TMPyP4)3/DNA and (TMPyP4)4/DNA complexes. The non-planar shape of the TMPyP2 and TMPyP3 molecules results in both a reduced affinity for the end binding interaction and the elimination of the intercalation binding mode.  相似文献   

6.
The transactivator Staf, which contains seven contiguous zinc fingers of the C2-H2 type, exerts its effects on gene expression by binding to specific targets in vertebrate small nuclear RNA (snRNA) and snRNA-type gene promoters. Here, we have investigated the interaction of the Staf zinc finger domain with the optimal Xenopus selenocysteine tRNA (xtRNASec) and human U6 snRNA (hU6) Staf motifs. Generation of a series of polypeptides containing increasing numbers of Staf zinc fingers tested in binding assays, by interference techniques and by binding site selection served to elucidate the mode of interaction between the zinc fingers and the Staf motifs. Our results provide strong evidence that zinc fingers 3–6 represent the minimal zinc finger region for high affinity binding to Staf motifs. Furthermore, we show that the binding of Staf is achieved through a broad spectrum of close contacts between zinc fingers 1–6 and xtRNASec or optimal sites or between zinc fingers 3–6 and the hU6 site. Extensive DNA major groove contacts contribute to the interaction with Staf that associates more closely with the non-template than with the template strand. Based on these findings and the structural information provided by the solved structures of other zinc finger–DNA complexes, we propose a model for the interaction between Staf zinc fingers and the xtRNASec, optimal and hU6 sites.  相似文献   

7.
Three binuclear Ru(II) complexes with two [Ru(bpy)2(pip)]2+-based subunits {where bpy = 2,2′-bipyridine and pip = 2-phenylimidazo[4,5-f][1,10]phenanthroline} being linked by varied lengths of flexible bridges, were synthesized and characterized by 1H NMR, elemental analysis, UV-visible (UV-vis) and photoluminescence spectroscopy. The structures of the three complexes were optimized by density functional theory calculations. The interaction of the complexes with calf thymus DNA was investigated by UV-vis and luminescence titrations, steady-state emission quenching by [Fe(CN)6]4−, DNA competitive binding with ethidium bromide, DNA melting experiments, and viscosity measurements. The experimental results indicated that the three complexes bound to the DNA most probably in a threading intercalation binding mode with high DNA binding constant values three orders of magnitude greater than the DNA binding constant value reported for proven DNA intercalator, mononuclear counterpart [Ru(bpy)2(p-mopip)]2+ {p-mopip = 2-(4-methoxylphenyl)imidazo[4,5-f][1,10]phenanthroline}.  相似文献   

8.
The superoxide scavenging activities of copper(II) complexes with the ligands, 6,6′-methylene-bis(5′-amino-3′,4′-benzo-2′-thiapentyl)-1,11-diamino-2,3:9,10-dibenzo-4,8-dithiaundecane (H4L), and 6,6′-bis(5′-amino-3′,4′-benzo-2′-thiapentyl)-1,11-diamino-2,3:9,10-dibenzo-4,8-dithiaundecane (H4L′), were investigated by xanthine–xanthine oxidase (X/XO) assays using nitroblue tetrazolium (NBT) as indicator molecule, and the results were compared with respect to the particular type of anion (ClO·4, Cl·, NO·3) on the apical site of the copper(II) complexes. All of the complexes inhibited the reduction of NBT by superoxide radicals, with the [Cu2(L′)](ClO4)2 complex exhibiting the highest scavenging activity against superoxide radicals among the complexes examined. The catalytic efficiency of the complexes for dismutation of superoxide radicals depends on the particular anion liganded to Cu(II) ion in the complexes, and the order of potency was observed to be ClO4 > Cl > NO·3 in phosphate buffer at pH 7.40. The Cu(II)-H4L′ complexes had the lowest IC50 and catalytic rate constant values indicating that the distorted geometry of the Cu(II)-H4L′ complexes influence their catalytic activities for dismutation of superoxide radicals more efficiently. The difference in the activities of the complexes toward superoxide radicals can also be attributed to the nature of the anions on the apical site of the copper(II) complexes and the superoxide dismutase-like activity. © 1997 John Wiley & Sons, Inc. J Biochem Toxicol 12: 53–59, 1998  相似文献   

9.
Uptake of DNA from the environment into the bacterial cytoplasm is mediated by a macromolecular transport machinery that is similar in structure and function to type IV pili (T4P) and, indeed, DNA translocator and T4P share common components. One is the secretin PilQ which is assembled into homopolymeric complexes forming highly dynamic outer membrane (OM) channels mediating pilus extrusion and DNA uptake. How PilQ interacts with the motor is still enigmatic. Here, we have used biochemical and genetic techniques to study the interaction of PilQ with PilW, a unique protein which is essential for natural transformation and T4P extrusion of T. thermophilus. PilQ and PilW form high molecular mass complexes in the OM of T. thermophilus. When pilW was deleted, PilQ complexes were no longer observed but only PilQ monomers, accompanied by a loss of DNA uptake as well as a loss of T4P and twitching motility. Piliation of a ΔpilT2pilW double mutant suggests that PilW is important for stable assembly of PilQ complexes. To analyze the role of different regions of PilW, partial deletions (pilW?240, pilW?50150, pilW?163216 and pilW?216292) were generated and the effect on DNA uptake, PilQ complex formation and T4P functions such as twitching motility, biofilm formation and cell-cell interaction was studied. These studies revealed that a central disordered region in PilW is required for pilus dynamics. We propose that PilW is part of a protein network that connects the transport ATPase to drive different functions of the DNA translocator and T4P.  相似文献   

10.
The effect of various coordination complexes of Pt(II) on the renaturation of the DNA was studied with special attention to the degree of hydrolysis. We found that hydrolysed solutions of biologically active complexes (cis-dichlorodiammine-platinum(II) (cis-Pt(II)), dichloroethylenediamine platinum(II), oxalatodiammine-platinum(II), malonatodiammineplatinum(II) and malonatoethylenediaminepiatinum(II)) do stimulate the renaturation immediately after the mixing with DNA, whereas the inactive complexes (trans-dichlorodiammineplatinum(II), K2PtCl4 and K2PtCl6 have no effect, or have it only after a longer heating of the mixture. Higher concentration of chlorides shifts the optimal Pt/Pdna ratio to higher values. The interaction which is responsible for the stimulation of the renaturation cannot be removed by dialysis. All observations support the suggestion that hydrolysis is the first step in the interaction of biologically active complexes with the components of living systems.  相似文献   

11.
A series of mixed ligand Ru(II) complexes of 5,6-dimethyl-1,10-phenanthroline (5,6-dmp) as primary ligand and 1,10-phenanthroline (phen), 2,2′-bipyridine (bpy), pyridine (py) and NH3 as co-ligands have been prepared and characterized by X-ray crystallography, elemental analysis and 1H NMR and electronic absorption spectroscopy. The X-ray crystal structure of the complex [Ru(phen)2(bpy)]Cl2 reveals a distorted octahedral coordination geometry for the RuN6 coordination sphere. The DNA binding constants obtained from the absorption spectral titrations decrease in the order, tris(5,6-dmp)Ru(II) > bis(5,6-dmp)Ru(II) > mono(5,6-dmp)Ru(II), which is consistent with the trend in apparent emission enhancement of the complexes on binding to DNA. These observations reveal that the DNA binding affinity of the complexes depend upon the number of 5,6-dmp ligands and hence the hydrophobic interaction of 5,6-dimethyl groups on the DNA surface, which is critical in determining the DNA binding affinity and the solvent accessibility of the exciplex. Among the bis(5,6-dmp)Ru(II) complexes, those with monodentate py (4) or NH3 (5) co-ligands show DNA binding affinities slightly higher than the bpy and phen analogues. This reveals that they interact with DNA through the co-ligands while both the 5,6-dmp ligands interact with the exterior of the DNA surface. All these observations are supported by thermal denaturation and viscosity measurements. Two DNA binding modes - surface/electrostatic and strong hydrophobic/partial intercalative DNA interaction - are suggested for the mixed ligand complexes on the basis of time-resolved emission measurements. Interestingly, the 5,6-dmp ligands promote aggregation of the complexes on the DNA helix as a helical nanotemplate, as evidenced by induced CD signals in the UV region. The ionic strength variation experiments and competitive DNA binding studies on bis(5,6-dmp)Ru(II) complexes reveal that EthBr and the partially intercalated and kinetically inert [Ru(phen)2(dppz)]2+ (dppz = dipyrido[3,2-a:2′,3′-c]phenazine) complexes revert the CD signals induced by exciton coupling of the DNA-bound complexes with the free complexes in solution.  相似文献   

12.
The study of a series of cis-[APtCl2] complexes (A = ethylenediamine, en, methylated at different positions) was carried out to evaluate the effect of different methyl substitutions on the cytotoxic properties of the resulting derivatives. As expected, differentially methylated complexes were found to differ widely in their cytotoxic effects on human cultured ovarian carcinoma cells (A2780). Molecular mechanics (MM) calculations have been performed to assess the relationship between differential diamine methylation and the repulsive energy of the corresponding complexes when interacting with DNA. Compounds that bind DNA at high energetic cost relative to cisplatin, due to the steric hindrance of additional methyl groups, have shown high values for IC50 (concentration inhibiting tumour cell growth by 50%). Semi-quantitative analyses with a DNA electrochemical biosensor confirm that the interaction between cis-[APtCl2] complexes and ds-DNA deposed onto the electrode is stronger for the non-methylated derivative with respect to the fully methylated congener. In addition, MM calculations were used to investigate the interactions between DNA and cis-[(P-L-A)PtCl2] complexes [A = en group linked to an antiestrogen-like pharmacophore, P, via a –(CH2)n– spacer (n = 2, 4, 6, 8 and 10), L].  相似文献   

13.
Five MnII-sdba coordination polymers with mono-, di-, tri-, tetra-nuclear cores based on the V-shaped 4,4′-dicarboxybiphenyl sulfone (H2sdba) ligands: [Mn(sdba)(phen)2(H2O)]n·3nH2O (1), [Mn2(sdba)2(μ-H2O)(py)4]n (2), [Mn3(sdba)2(Hsdba)2(2,2′-bipy)2]n (3), [Mn4(sdba)4(4-mepy)2(H2O)4]n·2nH2O (4) and [Mn4(sdba)4(bpp)4(μ-H2O)2]n·0.5nH2O (5) (phen = 1,10-phenanthroline, 2,2′-bipy = 2,2′-bipyridine, 4-mepy = 4-picoline, bpp = 1,3-bi(pyridine-4-yl)propane) were hydrothermally synthesized and structurally characterized. The M-O-C metal clusters in above complexes act as SBUs, and the V-shaped sdba ligands link the SBUs to generate the novel frameworks. In complexes 1 and 3 their 1D chains are linked into the 2D planes through various hydrogen bonding. Complex 2 displays the 3D structure with interpenetrated threefold, while complexes 4 and 5 both exhibit the 3D structures with the tetra-nuclear Mn4 units. The magnetic susceptibility studies in the 2-300 K range for these complexes reveal the existence of anti-ferromagnetic exchange interactions between the MnII ions.  相似文献   

14.
The chemical and biological features of two newly synthesized [PtCl2(L)(2-aminonaphthalene)] complexes (L is NH3 or 2-aminonaphthalene) were compared with those of two already reported enantiomeric complexes of formula [PtCl2(DABN)] [DABN is (R)-1,1′-binaphthyl-2,2′-diamine or (S)-1,1′-binaphthyl-2,2′-diamine]. Solution behavior, lipophilicity, cytotoxicity with regard to one colorectal (HCT116) and two ovarian (A2780 and A2780Cp8) human carcinoma cell lines, and in vitro DNA- and G-quadruplex-binding properties were evaluated. In particular, the cytotoxicity of [PtCl2(NH3)(2-aminonaphthalene)] was better than that of cisplatin for all cell lines, and rather resembled that of oxaliplatin. The solution behavior of the whole series of complexes and the absence of an evident relationship between lipophilicity and cytotoxicity seem to suggest that all these experimental parameters are probably smoothed out during the 3-day cytotoxicity experiments and do not strongly affect the half-maximal inhibitory concentrations. The results of electrophoretic studies indicate that different kinds of interaction with DNA can be involved in the mode of action of these complexes, with intercalation in double-stranded DNA and stacking on G-quadruplex DNA being strongly implicated in particular for [PtCl2(NH3)(2-aminonaphthalene)].  相似文献   

15.
Reactions of zinc(II) ion with racemic malic acid (C4H6O5 = H3mal) result in the isolation of four new zinc(II) malato complexes: (NH4)[Zn(R-H2mal)3] · H2O (1), trans-[Zn(R-H2mal)(S-H2mal)(H2O)2] · 2H2O (2), (NH4)2[Zn(R-Hmal)(S-Hmal)] · 2H2O (3), and [Zn2(R-Hmal)(S-Hmal)(H2O)4]n · 2nH2O (4). Three R-malic acids in 1 act as bidentate ligands via their alcoholic and the central carboxy groups with Zn(II) ion, leaving the terminal carboxylic acid groups free. The R- and S-malates of 2 coordinate in a bidentate manner with zinc ion in trans-form. In 3, Zn(II) ion is coordinated by R- and S-malates in a tridentate fashion via their alcoholic and two carboxy groups. Complex 4 forms a two-dimensional layered structure through the links of a new dimeric unit [Zn2(R-Hmal)(S-Hmal)(H2O)4] with one of the oxygen atoms from the terminal carboxy group of malate ligand. The coordination of malates depends on pH variation, on Zn:malate ratio, and also on temperature. Tridentate chelation of malate in 3 is found between pH 4.5-9.0. The soluble monomeric species 1-3 have been investigated using 13C NMR spectra by long-time acquisition. The solution NMR spectra indicate that zinc malate complexes dissociate in H2O (D2O). Obvious downfield shifts of the central carboxy carbon atoms in 1-3 are observed compared with those of free malate, which indicate that these zinc malate complexes dissociate in aqueous solution.  相似文献   

16.
Zn(II) complexes with norfloxacin (NOR) in the absence or in the presence of 1,10-phenanthroline (phen) were obtained and characterized. In both complexes, the ligand NOR was coordinated through a keto and a carboxyl oxygen. Tetrahedral and octahedral geometries were proposed for [ZnCl2(NOR)]·H2O (1) and [ZnCl2(NOR)(phen)]·2H2O (2), respectively. Since the biological activity of the chemicals depends on the pH value, pH titrations of the Zn(II) complexes were performed. UV spectroscopic studies of the interaction of the complexes with calf-thymus DNA (CT DNA) have suggested that they can bind to CT DNA with moderate affinity in an intercalative mode. The interactions between the Zn(II) complexes and bovine serum albumin (BSA) were investigated by steady-state and time-resolved fluorescence spectroscopy at pH 7.4. The experimental data showed static quenching of BSA fluorescence, indicating that both complexes bind to BSA. A modified Stern–Volmer plot for the quenching by complex 2 demonstrated preferential binding near one of the two tryptophan residues of BSA. The binding constants obtained (K b ) showed that BSA had a two orders of magnitude higher affinity for complex 2 than for 1. The results also showed that the affinity of both complexes for BSA was much higher than for DNA. This preferential interaction with protein sites could be important to their biological mechanisms of action. The analysis in vitro of the Zn(II) complexes and corresponding ligand were assayed against Trypanosoma cruzi, the causative agent of Chagas disease and the data showed that complex 2 was the most active against bloodstream trypomastigotes.  相似文献   

17.
To investigate the effect of organic anions on the coordination frameworks, we synthesized five new complexes, namely, {[Zn3(μ-OH2)2(btc)2(btx)3]·4H2O}n (1), [Zn(bdc)(btx)]n (2), {[Ag8(3,5-pydc)4(btx)4]·8H2O}n (3), [Ag(2,6-Hpydc)(btx)]n (4) and [Cd22-OH2)(2,6-pydc)2(btx)]n (5) (H2bdc = 1,4-benzenedicarboxylic acid; H3btc = 1,3,5-benzenetricarboxylate; 3,5-H2pydc = pyridine-3,5-dicarboxylic acid; 2,6-H2pydc = pyridine-2,6-dicarboxylic acid), which were obtained by the reactions of 1,4-bis(1,2,4-triazol-1-ylmethyl)benzene (btx) as main ligand, and several aromatic polycarboxylate as organic anions with different d10 metal salts. Single crystal structure analysis shows that complexes 1, 3 and 5 possess 3D structures, 2 takes a 2D layer motif, and 4 displays a 1D chain structure. The distinct structures indicate that polycarboxylate anions with the diverse coordination modes and coordination groups can affect the topologies of metal-organic frameworks. In addition, the luminescence measurements reveal that the complexes 1, 2 and 5 exhibit strong fluorescent emissions in the solid state at room temperature.  相似文献   

18.
The novel methylphosphonic acid monoethylester (H4dotpOEt) has been synthesized and characterized and their complexes with Sm(III) and Ho(III) ions were studied. Dissociation constants of the ligand are lower than those of H4dota. The stability constants of the Ln(III)-H4dotpOEt complexes are surprisingly much lower that those of H4dota (H4dota = 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid) probably due to a lower coordination ability of the phosphonate monoester groups. Acid-assisted decomplexation studies have shown that both complexes are less kinetically inert than the H4dota complexes, but still much more inert than complexes of open-chain ligands. Nevertheless, the synthesis of 153Sm and 166Ho complexes with this ligand led to stable complexes both in vitro and in vivo. A very low binding of these complexes to hydroxyapatite (HA) and calcified tissues was observed confirming the assumption that a fully ionized phosphonate group(s) is necessary for a strong bone affinity. Both complexes show similar behaviour in vivo and, in general, follow the biodistribution trend of the H4dota complexes with the same metals.  相似文献   

19.
5,10-Methylenetetrahydrofolate (5,10-CH2-H4PteGlu) was identified as a major active reduced folate in rat bile using high-performance liquid chromatography with electrochemical detection (HPLC—ED). The identification of the folate derivative was based on the similarities in the retention-time profiles, electrochemical properties, UV absorption characteristics and demethylenation profiles of the bile folate and the synthetic standard. An HPLC—ED method was developed for the simultaneous determination of reduced folates including 5,10-CH2-H4PteGlu, tetrahydrofolate (H4PteGlu), 10-formyltetrahydrofolate (10-HCO-H4PteGlu) and 5-methyltetrahydrofolate (5-CH3-H4PteGlu) in rat bile. All peaks of the reduced folates in bile were separated using this method with a total retention time of less than 15 min. The detection limit was 0.01 ng/injection for H4PteGlu, 10-HCO-H4PteGlu and 5-CH3-H4PteGlu, and 0.02 ng/injection for 5,10-CH2-H4PteGlu at a signal-to-noise ratio of 3 and an injection volume of 100 μl. Recoveries of synthetic folates from rat bile were higher than 90%. The distribution percentages of 5,10-CH2-H4PteGlu, H4PteGlu, 10-HCO-H4PteGlu and 5-CH3-H4PteGlu in rat bile were 29.6 ± 7.2, 17.7 ± 3.5, 24.4 ± 6.5 and 28.2 ± 7.1%, respectively, and total secretion rate of the bile reduced folates was 1514 ± 663 ng/h (mean ± S.D., n = 9).  相似文献   

20.
The enantiomers of the Sm (III), Eu (III) and Yb (III) complexes [LnL(NO3)2](NO3) of a chiral hexaazamacrocycle were tested as catalysts for the hydrolytic cleavage of supercoiled plasmid DNA. The catalytic activity was remarkably enantioselective; while the [LnLSSSS(NO3)2](NO3) enantiomers promoted the cleavage of plasmid pBR322 from the supercoiled form (SC) to the nicked form (NC), the [LnLRRRR(NO3)2](NO3) enantiomers were inactive. Kinetics of plasmid DNA hydrolysis was also investigated by agarose electrophoresis and it indicated typical single-exponential cleavage reaction. The hydrolytic mechanism of DNA cleavage was confirmed by the successful ligation of hydrolysis product by T4 ligase. The NMR study of the solutions of the complexes in various buffers indicated that the complexes exist as monomeric cationic complexes [LnL(H2O)3]3 + in slightly acidic solutions and as dimeric cationic complexes [Ln2L2(μ-OH)2(H2O)2]4 + in slightly basic 8 mM solutions, with the latter form being a possible catalyst for hydrolysis of phosphodiester bonds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号