首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We review the extra-helical guanine interactions present in many oligonucleotide crystals. Very often terminal guanines interact with other guanines in the minor groove of neighboring oligonucleotides through N2 x N3 hydrogen bonds. In other cases the interaction occurs with the help of Ni2+ ions. Guanine/netropsin stacking in the minor groove has also been found. From these studies we conclude that guanine may have multiple extra-helical interactions. In particular it may be considered a very effective minor groove binder, which could be used in the design of sequence selective binding drugs. Interactions through the major groove are seldom encountered, but might be present when DNA is stretched. Such interactions are also analyzed, since they might be important for homologous chromosome pairing during meiosis.  相似文献   

2.
The aim of this study was to clarify whether Ni2+ ions could bind to guanine bases in a standard B-DNA duplex and eventually induce a B-->Z transition. We have determined by X-ray crystallography at 3.1 A resolution the structure of the alternating deoxynucleotide d(CGTGTACACG), which contains both internal and terminal guanines. The duplex is in the B form. It is shown that nickel ions bind selectively to the N7 atom of guanine 10, which is in an extra-helical position, and guanine 2, which is in the terminal position of the duplex. It does not bind to guanine 4, which lies within a standard B-DNA tract. This simple but unambiguous result proves that nickel ions select between different guanines via steric accessibility. Guanine-Ni2+-guanine bridges among symmetry-related duplexes have also been found. These bridges may explain why Ni2+ ions may act either as a precipitant or a renaturing agent for DNA under certain conditions. The biochemical interaction of nickel with DNA can thus be related to its capacity to specifically bind to B-DNA regions with exposed guanines. Also, from the structural point of view, we have found a terminal cytosine, which forms a C.G:C reverse-Hoogsteen triple structure with a base pair of a neighbor duplex. This type of triplet is seldom found and is here described for the first time for a DNA structure.  相似文献   

3.
The effect of G.T mispair incorporation into a double-helical environment was examined by molecular dynamics simulation. The 60-ps simulations performed on the two hexanucleotide duplexes d (G3C3)2 and d(G3TC2)2 included 10 Na+ counterions and first hydration shell waters. The resulting backbone torsional angle trajectories were analyzed to select time spans representative of conformational domains. The average backbone angles and helical parameters of the last time span for both duplexes are reported. During the simulation the hexamers retained B-type DNA structures that differed from typical A- or B-DNA forms. The overall helical structures for the two duplexes are vary similar. The presence of G.T mispairs did not alter the overall helical structure of the oligonucleotide duplex. Large propeller twist and buckle angles were obtained for both duplexes. The purine/pyrimidine crossover step showed a large decrease in propeller twist in the normal duplex but not in the mismatch duplex. Upon the formation of wobble mispairs in the mismatched duplex, the guanines moved into the minor groove and the thymines moved into the major groove. This helped prevent purine/purine clash and created a deformation in the relative orientation of the glycosidic bonds. It also exposed the free O4 of the thymines in the major groove and N2 of the guanines in the minor groove to interactions with solvent and counterions. These factors seemed to contribute to the apparently higher rigidity of the mismatched duplex during the simulation.  相似文献   

4.
We report the 1.77-Å resolution X-ray crystal structure of a dodecamer DNA duplex with the sequence 5′-CCTCTGGTCTCC-3′ that has been modified to contain a single engineered 1,2-cis-{Pt(NH3)2}2+-d(GpG) cross-link, the major DNA adduct of cisplatin. These data represent a significant improvement in resolution over the previously published 2.6-Å structure. The ammine ligands in this structure are clearly resolved, leading to improved visualization of the cross-link geometry with respect to both the platinum center and to the nucleobases, which adopt a higher energy conformation. Also better resolved are the deoxyribose sugar puckers, which allow us to re-examine the global structure of platinum-modified DNA. Another new feature of this model is the location of four octahedral [Mg(H2O)6]2+ ions associated with bases in the DNA major groove and the identification of 124 ordered water molecules that participate in hydrogen-bonding interactions with either the nucleic acid or the diammineplatinum(II) moiety.  相似文献   

5.
The structures of the complexes formed between 9-amino-[N-(2-dimethyl-amino)butyl]acridine-4-carboxamide and d(CG5BrUACG)2 and d(CGTACG)2 have been solved by X-ray crystallography using MAD phasing methodology and refined to a resolution of 1.6 Å. The complexes crystallised in space group C222. An asymmetric unit in the brominated complex comprises two strands of DNA, one disordered drug molecule, two cobalt (II) ions and 19 water molecules (31 in the native complex). Asymmetric units in the native complex also contain a sodium ion. The structures exhibit novel features not previously observed in crystals of DNA/drug complexes. The DNA helices stack in continuous columns with their central 4 bp adopting a B-like motif. However, despite being a palindromic sequence, the terminal GC base pairs engage in quite different interactions. At one end of the duplex there is a CpG dinucleotide overlap modified by ligand intercalation and terminal cytosine exchange between symmetry-related duplexes. A novel intercalation complex is formed involving four DNA duplexes, four ligand molecules and two pairs of base tetrads. The other end of the DNA is frayed with the terminal guanine lying in the minor groove of the next duplex in the column. The structure is stabilised by guanine N7/cobalt (II) coordination. We discuss our findings with respect to the effects of packing forces on DNA crystal structure, and the potential effects of intercalating agents on biochemical processes involving DNA quadruplexes and strand exchanges. NDB accession numbers: DD0032 (brominated) and DD0033 (native).  相似文献   

6.
Thorpe JH  Hobbs JR  Todd AK  Denny WA  Charlton P  Cardin CJ 《Biochemistry》2000,39(49):15055-15061
The structure of the duplex d[CG(5-BrU)ACG](2) bound to 9-bromophenazine-4-carboxamide has been solved through MAD phasing at 2.0 A resolution. It shows an unexpected and previously unreported intercalation cavity stabilized by the drug and novel binding modes of Co(2+) ions at certain guanine N7 sites. For the intercalation cavity the terminal cytosine is rotated to pair with the guanine of a symmetry-related duplex to create a pseudo-Holliday junction geometry, with two such cavities linked through the minor groove interactions of the N2/N3 guanine sites at an angle of 40 degrees, creating a quadruplex-like structure. The mode of binding of the drug is shown to be disordered, with the major conformations showing the side chain bound to the N7 position of adjacent guanines. The other end of the duplex exhibits a terminal base fraying in the presence of Co(2+) ions linking symmetry-related guanines, causing the helices to intertwine through the minor groove. The stabilization of the structure by the intercalating drug shows that this class of compound may bind to DNA junctions as well as duplex DNA or to strand-nicked DNA ('hemi-intercalated'), as in the cleavable complex. This suggests a structural basis for the dual poisoning of topoisomerase I and II enzymes by this family of drugs.  相似文献   

7.
A peptide nucleic acid (PNA) oligomer and a series of PNA conjugates featuring covalently attached pendant 1,4,7,10-tetraazacyclododecane (cyclen) or bis((pyridin-2-yl)methyl)amine (DPA) moieties have been synthesized that are complementary to regions of the HIV-1 TAR messenger RNA stem-loop. Thermal denaturation studies, in conjunction win with native gel shift assays, suggest that the PNAs “invade” TAR to produce a mixture of two 1:1 PNA–TAR adducts, tentatively assigned as an “open-duplex” structure, in which the TAR stem-loop dissociates and the PNA hybridizes with its RNA complement via Watson–Crick base-pairing, and a triplex-type structure, in which the initially displaced RNA segment is bound to the PNA:RNA duplex through Hoogsteen base-pairing. Thermal denaturation experiments with the TAR sequence and single-stranded RNA and DNA oligonucleotides, both in the presence and in the absence of Zn2+ ions, show that the introduction of cyclen or DPA ligand arms into the PNA oligomer leads to a small but reproducible increase in the T m values. This is attributed to hydrogen-bonding and/or electrostatic interactions between protonated forms of cyclen/DPA and the cognate RNA or DNA oligonucleotide targets. Contrary to expectations, the addition of Zn2+ ions did not further enhance duplex formation through binding of Zn(II)–cyclen or Zn(II)–DPA moieties to the complementary RNA or DNA. Native gel shift assays further confirmed the stability increase of the metal-free cyclen- and DPA-modified PNA hybrids as compared with a control PNA sequence. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

8.
Oligodeoxyribonucleotides (ODNs) with long, terminal runs of consecutive guanines, and either a dA or dT tract at the other end form higher-order structures called DNA frayed wires. These aggregates self-assemble into species consisting of 2, 3, 4, 5, … associated strands. Some of the remarkable features of these structures are their extreme thermostability and resistance to chemical denaturants and nucleases. However, the nature of the molecular interactions that stabilize these structures remains unclear. Based on dimethyl sulfate (DMS) methylation results, our group previously proposed DNA frayed wires to be a unique set of nucleic-acid assemblies in which the N7 of guanine does not participate in the guanine–guanine interactions. To probe the hydrogen bonding involved in the stabilization of d(A15G15) frayed wires, we used Raman spectroscopy in which the DNA sample is held in photonic crystal fibers. This technique significantly enhances the signals thus allowing the use of very low laser power. Based on our results for d(A15G15) and those of incorporating the isoelectronic guanine analog pyrazolo[3,4,-d]pyrimidine or PPG, into a frayed wire-forming sequence, we provide evidence that these structures are based on the G-quadruplex model. Furthermore, from the Raman spectrum, we observed markers that are consistent with the presence of deoxyguanosine residues in the syn conformation, this suggests the presence of anti-parallel G-quadruplexes. To identify the species that contain syn guanine residues, we used circular dichroism and gel electrophoresis to study an ODN in which all of the guanine residues were brominated, d(A158-BrG15). In the presence of potassium, d(A158-BrG15) forms what appears to be an anti-parallel dimeric G-quadruplex. To our knowledge, this is the first report of a DNA sequence having all its guanine residues replaced by 8-bromo-guanine and maintaining its ability to form a G-quadruplex structure.  相似文献   

9.
Pyrrolobenzodiazepines (PBDs) are covalent-binding DNA-interactive agents with growing importance as payloads in Antibody Drug Conjugates (ADCs). Until now, PBDs were thought to covalently bond to C2-NH2 groups of guanines in the DNA-minor groove across a three-base-pair recognition sequence. Using HPLC/MS methodology with designed hairpin and duplex oligonucleotides, we have now demonstrated that the PBD Dimer SJG-136 and the C8-conjugated PBD Monomer GWL-78 can covalently bond to a terminal guanine of DNA, with the PBD skeleton spanning only two base pairs. Control experiments with the non-C8-conjugated anthramycin along with molecular dynamics simulations suggest that the C8-substituent of a PBD Monomer, or one-half of a PBD Dimer, may provide stability for the adduct. This observation highlights the importance of PBD C8-substituents, and also suggests that PBDs may bind to terminal guanines within stretches of DNA in cells, thus representing a potentially novel mechanism of action at the end of DNA strand breaks.  相似文献   

10.
In order to assess the geometric changes caused when the antitumor drug cis-diammine-dichloroplatinum(II) (cis-DDP) binds to DNA, molecular mechanics calculations were performed on two double-stranded and two single-stranded oligonucleotides and their adducts with cis-{Pt(NH3)2}2+. For the platinated duplexes, three model structures have been derived, one involving only local disruption of base pairing with retention of the helix directionality, and two models showing pronounced kinking of the double helix. One of the kinked models is stabilized by bridging sodium ions. The other kinked duplex model shows retention of all Watson–Crick base pairing, including that of the coordinated guanines. All models exhibit hydrogen bonds connecting one ammine ligand of platinum with one or two phosphate groups located at the 5′ side of the platinated strand.  相似文献   

11.
We have determined the structure of a catalytically inactive D70N variant of the Escherichia coli RusA resolvase bound to a duplex DNA substrate that reveals critical protein–DNA interactions and permits a much clearer understanding of the interaction of the enzyme with a Holliday junction (HJ). The RusA enzyme cleaves HJs, the fourway DNA branchpoints formed by homologous recombination, by introducing symmetrical cuts in the phosphodiester backbone in a Mg2+ dependent reaction. Although, RusA shows a high level of selectivity for DNA junctions, preferring to bind fourway junctions over other substrates in vitro, it has also been shown to have appreciable affinity for duplex DNA. However, RusA does not show DNA cleavage activity with duplex substrates. Our structure suggests the possible basis for structural selectivity as well as sources of the sequence specificity observed for DNA cleavage by RusA.  相似文献   

12.
Abstract

Assignment of the 1H and 31P NMR spectra of a phosphorodithioate modified oligonucleotide decamer duplex, d(CGCTTpS? 2AAGCG)2 (10-mer-S; a site of dithioate substitution is designated with the symbols pS? 2), was achieved by two-dimensional homonuclear TOCSY, NOES Y and 1H-31P Pure Absorption phase Constant time (PAC) heteronuclear correlation spectroscopy. In contrast to the parent palindromic decamer sequence (1) which has been shown to exist entirely in the duplex B-DNA conformation under comparable conditions (100 mM KCI), the dithiophosphate analogue forms a hairpin loop. However, the duplex form of the dithioate oligonucleotide can be stabilized at lower temperatures, higher salt and strand concentration. The solution structure of the decamer duplex was calculated by an iterative hybrid relaxation matrix method (MORASS) combined with 2D NOESY-distance restrained molecular dynamics. These backbone modified compounds, potentially attractive antisense oligonucleotide agents, are often assumed to possess similar structure as the parent nucleic acid complex. Importantly, the refined structure of the phosphorodithioate duplex shows a significant deviation from the parent unmodified, phosphoryl duplex. An overall bend and unwinding in the phosphorodithioate duplex is observed. The structural distortion of the phosphorodithioate duplex was confirmed by comparison of helicoidal parameters and groove dimensions. Especially, the helical twists of the phosphorodithioate decamer deviate significantly from the parent phosphoryl decamer. The minor groove width of phosphorodithioate duplex 10-mer-S varies between 8.4 and 13.3 Å which is much wider than those of the parent phosphoryl decamer d(CGCTTAAGCG)2 (4.2~9.4Å). The larger minor groove width of 10-mer-S duplex contributes to the unwinding of the backbone and indicates that the duplex has an overall A-DNA-like conformation in the region surrounding the dithiophosphate modification.  相似文献   

13.
Abstract

By means of molecular modelling, electrostatic interactions are shown to play an important role in the sequence-dependent structure of triple helices formed by a homopyrimidine oligonucleotide bound to a homopurine, homopyrimidine sequence on DNA. This is caused by the presence of positive charges due to the protonation of cytosines in the Hoogsteen-bonded strand, required in order to form C.GxC+ triplets. Energetic and conformational characteristics of triple helices with different sequences are analyzed and discussed. The effects of duplex mismatches on the triple helix stability are investigated via thermal dissociation using UV absorption.  相似文献   

14.
Abstract

Two novel substitutionally-inert diastereomeric ruthenium(II) cations of the form ∧-and Δ-cis-β-[Ru(RR-picchxn)(phen)]2+, where RR-picchxn is N,N'-dimethyl-/N,/N'-di(2-picolyl)-1R,2R-diaminocyclohexane and phen is 1,10-phenanthroline, have been studied with respect to their interactions with duplex DNA. NMR investigations show that both diastereomers bind to the oligonucleotide [d(CGCGATCGCG)]2 in the fast exchange regime and that binding predominantly takes place in the minor groove of the oligonucleotide, but that the governing interactions are significantly different for the two Δ and ∧ forms. Linear dichroism data support the latter interpretation, in that the relative orientations of cis-β-[Ru(RR-pic-chxn)(phen)]2+ to calf thymus DNA also are observed to differ for the Δ and ∧ diastereomers. Interpretation of these data indicates the ∧ form to be bound with the planar phen ligand closely parallel to the DNA base-pairs, but the average orientation of the phen ligand in the Δ form deviates significantly from a parallel alignment.  相似文献   

15.
Abstract

Phase diagrams for several oligonucleotide duplex -spermine systems have been constructed. These diagrams characterize the duplex and spermine concentrations ranges in which crystalline precipitates are formed. All of them are wedge-like form. The slope of the upper branch of the diagram is determined by the oligonucleotide length. The position of the lower branch depends on both the nucleotide sequence and its length. The position of the lower branch depends on both the nucleotide sequence and its length. It has been shown that the addition to the system ofMgCl2 and NaCl salts and MPD results in specific changes in the diagrams. A model for oligonucleotide duplex-spermine system has been suggested which explains the main characteristic features of the obtained phase diagrams. The experimental phase diagrams for the (pGpT)n · (pApC)n-spermine system (n = 2,3,4) have been analyzed ion terms of this model and the values of the binding constants of spermine and Mg2+ions binding to duplexes have been determined. It permitted to identify the complexes that precipitated in different regions of the phase diagrams under various conditions. The diagram obtained in the presence of a cobalt hexammine counterion is also considered. It has been shown that this phase diagram, in general, is similar to those obtained for the oligonucleotide duplex-spermine system.  相似文献   

16.
Clostridium thermocellum polynucleotide kinase (CthPnk), the 5′-end-healing module of a bacterial RNA repair system, catalyzes reversible phosphoryl transfer from a nucleoside triphosphate (NTP) donor to a 5′-OH polynucleotide acceptor, either DNA or RNA. Here we report the 1.5-Å crystal structure of CthPnk-D38N in a Michaelis complex with GTP-Mg2+ and a 5′-OH RNA oligonucleotide. The RNA-binding mode of CthPnk is different from that of the metazoan RNA kinase Clp1. CthPnk makes hydrogen bonds to the ribose 2′-hydroxyls of the 5′ terminal nucleoside, via Gln51, and the penultimate nucleoside, via Gln83. The 5′-terminal nucleobase is sandwiched by Gln51 and Val129. Mutating Gln51 or Val129 to alanine reduced kinase specific activity 3-fold. Ser37 and Thr80 donate functionally redundant hydrogen bonds to the terminal phosphodiester; a S37A-T80A double mutation reduced kinase activity 50-fold. Crystallization of catalytically active CthPnk with GTP-Mg2+ and a 5′-OH DNA yielded a mixed substrate-product complex with GTP-Mg2+ and 5′-PO4 DNA, wherein the product 5′ phosphate group is displaced by the NTP γ phosphate and the local architecture of the acceptor site is perturbed.  相似文献   

17.
In the preceding paper in this journal, we described the solution structure of the nitrous acid cross-linked dodecamer duplex [d(GCATCCGGATGC)]2 (the cross-linked guanines are underlined). The structure revealed that the cross-linked guanines form a nearly planar covalently linked 'G:G base pair', with the complementary partner cytidines flipped out of the helix. Here we explore the flanking sequence context effect on the structure of nitrous acid cross-links in [d(CG)]2 and the factors allowing the extrahelical cytidines to adopt such fixed positions in the minor groove. We have used NMR spectroscopy to determine the solution structure of a second cross-linked dodecamer duplex, [d(CGCTACGTAGCG)]2, which shows that the identity of the flanking base pairs significantly alters the stacking patterns and phosphate backbone conformations. The cross-linked guanines are now stacked well on adenines preceding the extrahelical cytidines, illustrating the importance of purine- purine base stacking. Observation of an imino proton resonance at 15.6 p.p.m. provides evidence for hydrogen bonding between the two cross-linked guanines. Preliminary structural studies on the cross-linked duplex [d(CGCGACGTCGCG)]2 show that the extrahelical cytidines are very mobile in this sequence context. We suggest that favorable van der Waals interactions between the cytidine and the adenine 2 bp away from the cross-link localize the cytidines in the previous cross-linked structures.  相似文献   

18.
19.
In this work, we explore the influence of different solvents and ions on the crystallization behavior of an all‐AT dodecamer d(AATAAATTTATT)2 In all cases, the oligonucleotides are found as continuous columns of stacked duplexes. The spatial organization of such columns is variable; consequently we have obtained seven different crystal forms. The duplexes can be made to crystallize in either parallel or crossed columns. Such versatility in the formation of a variety of crystal forms is characteristic for this sequence. It had not been previously reported for any other sequence. In all cases, the oligonucleotide duplexes have been found to crystallize in the B form. The crystallization conditions determine the organization of the crystal, although no clear local interactions have been detected. Mg2+ and Ni2+ can be used in order to obtain compact crossed structures. DNA–DNA interactions in the crystals of our all‐AT duplexes present crossovers which are different from those previously reported for mixed sequence oligonucleotides. Our results demonstrate that changes in the ionic atmosphere and the crystallization solvent have a strong influence on the DNA–DNA interactions. Similar ionic changes will certainly influence the biological activity of DNA. Modulation of the crystal structure by ions should also be explored in DNA crystal engineering. Liquid crystals with a peculiar macroscopic shape have also been observed. © 2014 Wiley Periodicals, Inc. Biopolymers 103: 123–133, 2015.  相似文献   

20.
The structure and conformation of nucleic acids are influenced by metal ions, polyamines, and the microenvironment. In poly(purine) · poly(pyrimidine) sequences, triplex DNA formation is facilitated by metal ions, polyamines and other ligands. We studied the effects of mono- and di-valent metal ions, and ammonium salts on the stability of triple- and double-stranded structures formed from poly(dA) and poly(dT) by measuring their respective melting temperatures. In the presence of metal ions, the absorbance versus temperature profile showed two transitions: Tm1 for triplex to duplex and single stranded DNA, and Tm2 for duplex DNA melting to single stranded DNA. Monovalent cations (Li+, Na+, K+, Rb+, Cs+ and 4NH+NH4+) promoted triplex DNA at concentrations ≥150 mM. Tm1 varied from 49.8 °C in the presence of 150 mM Li+ to 30.6 °C in the presence of 150 mM K+. 4NH+NH4+ was very effective in stabilizing triplex DNA and its efficacy decreased with increasing substitution of the hydrogen atoms with methyl, ethyl, propyl and butyl groups. As in the case of monovalent cations, a concentration-dependent increase in Tm1 was observed with divalent ions and triplex DNA stabilization decreased in the order: Mg2+ > Ca2+ > Sr2+ > Ba2+. All positively charged cations increased the melting temperature of duplex DNA. Values of Δn (number of ions released) on triplex DNA melting were 0.46 ± 0.06 and 0.18 ± 0.02, respectively, for mono- and di-valent cations, as calculated from 1/Tm1 versus ln[M+,2+] plots. The corresponding values for duplex DNA were 0.25 ± 0.02 and 0.12 ± 0.02, respectively, for mono- and di-valent cations. Circular dichroism spectroscopic studies showed distinct conformational changes in triplex DNA stabilized by alkali metal and ammonium ions. Our results might be useful in developing triplex forming oligonucleotide based gene silencing techniques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号